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ABSTRACT  

A review of published work in clinical natural language processing (NLP) may suggest that the 
negation detection task has been “solved.” This work contends that an optimizable solution does 
not equal a generalizable solution.  Using four manually annotated corpora of clinical text, we 
show that negation detection can be optimized in relatively constrained settings, but performance 
is not reliably generalizable unless in-domain training data is available – in which case fully-
supervised domain adaptation techniques may prove effective. Various factors (e.g., annotation 
guidelines, named entity characteristics, the amount of data, and lexical and syntactic context) 
play a role in making generalizability difficult, but none completely explains the phenomenon. 
This indicates the need for future work in domain-adaptive and task-adaptive methods for 
clinical NLP. 
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1 Introduction 
Negation in unstructured clinical text is a well-known phenomenon.  It is crucial for any 

practical interpretation of clinical text, since negation is common in clinical narrative. For 
example, the medical significance of “no wheezing” is quite different from that of “wheezing.” 
With the increasingly widespread use of electronic medical records (EMRs), computational 
methodologies for negation detection have also become well-known, most notably the early and 
strikingly straightforward NegEx algorithm [1]. In NegEx, simple regular expressions yield solid 
performance on detecting the negation of Findings, Diseases, and Mental or Behavioral 
Dysfunctions from the Unified Medical Language System (UMLS).  The success of NegEx (and 
other techniques) is attributable to the constrained pragmatics of clinical text: because physicians 
are writing the text in order to convey the health status of a patient, there is a limit to the ways 
that medically pertinent concepts can be negated. Since existing algorithms have performed well 
in many published studies [2-8], many clinical natural language processing (NLP) practitioners 
consider negation detection a solved problem (see Table 1) with a simple, generalizable solution. 
 However, our present work will show that this “solved” designation is premature because 
current solutions are easily optimizable but not necessarily generalizable. Negation detection is 
still a challenge when considered from a practical, multi-corpus perspective, i.e., one in which an 
algorithm is deployed in many clinical institutions and on many sources of text. As the NLP 
Attribute Discovery team for the Strategic Health IT Advanced Research Project on the 
Secondary use of the EHR (SHARPn), we attempted to detect negation in four corpora, using 
machine learning, rules, domain adaptation, and various evaluation scenarios.  These corpora 
include the new SHARPn NLP Seed Corpus of clinical text with multiple layers of syntactic and 
semantic information, including named entities (NEs) and polarity (i.e., negation).  We also used 
the 2010 i2b2/VA NLP Challenge corpus, the MiPACQ corpus, and the NegEx Test Set.  The 
SHARPn Attribute Discovery negation detection system used in our evaluation is currently 
available in Apache cTAKES (clinical Text Analysis and Knowledge Extraction System; 
ctakes.apache.org) as part of the ctakes-assertion project, including an integrated domain 
adaptation algorithm [9].  A thorough methodological treatment is described in a forthcoming 
publication.  

We conclude that practical negation detection is not reliable without in-domain training 
data and/or development.  “Benchmark” gold standard data sets differed sufficiently to have a 
profound effect on the viability of negation detection algorithms.  Furthermore, it is difficult to 
determine an optimal mix of training data, or to standardize a definitive “benchmark” metric, 
since both are influenced by corpus-specific annotation guidelines and data sources.  The results 
we report here should remind users of negation detection algorithms to be vigilant in tuning 
systems to their data, whether by training with local data or modifying rules. We also call for 
future work in domain-adaptive and task-adaptive methods. 

After a discussion of the extensive related work in negation detection, the remainder of 
this article will introduce the data and methods for corpus and system comparisons of negation 
detection, present the resulting performance of systems on the different corpora, and discuss 
implications for negation detection and annotation schema in the larger picture of clinical 
informatics. 
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2 Related Work 
Negation detection was a very practical early motivation for NLP adoption among the 

informatics community, and thus significant effort has gone into this task. While there have been 
many systems implementing negation detection, publicly available corpora for testing them are 
limited by patient privacy concerns, as is typical in clinical NLP.  

Negation detection systems have shown excellent performance in clinical text, beginning 
with the rule-based NegEx algorithm [1]. NegEx was originally evaluated on spans of text that 
matched UMLS Findings, Diseases, and Mental or Behavioral Dysfunctions among 1000 test 
sentences sampled from discharge summaries at the University of Pittsburgh Medical Center; a 
regression test set was released later with de-identified notes of 6 different types.  NegEx has 
produced numerous updated and customized systems, including the updated version released 
with ConText[10] which performed well on a benchmark NegEx Test Set (available at 
https://code.google.com/p/negex/wiki/TestSet). Our tests used the ytex version[11] of NegEx as 
a baseline and included the NegEx Test Set as a benchmark. 

Similar to NegEx, many other negation algorithms take a rule-based approach, with a 
variety of techniques: lexical scan with context free grammar [2], negation ontology [3], or 
dependency parse rules [4]. Some negation algorithms treat the problem as a machine learning 
classification task[5] or as some hybrid between rules and machine learning [6 7]. The 
performance of these systems and their data sources is summarized in Table 1 below. 
Table 1: Extensive successful previous work on negation detection in clinical text 
Algorithm  Data source  Prec.  Rec. F1 
Negfinder  [2] 10 surgery notes &  discharge 

summaries; UMLS concepts 
91.84 95.74 92.96 

NegEx [1] UPMC ICU discharge summaries; 
clinical conditions 

84.49 77.84 80.35 

Neg assignment 
grammar [3] 

Hopkins HNP notes; SNOMED concepts 91.17 97.19 93.90 

Negation Detection 
Module [7] 

Stanford radiology reports; unmapped 
text phrases 

98.63 92.58 94.91 

ConText [10] UPMC 6 note types; clinical conditions 92 94 93 
MITRE assertion [6] 2010 i2b2/VA; unmapped “problem” text 

phrases 
92 95 94 

DepNeg [4] Mayo clinical notes; symptoms & 
diseases 

96.65 73.93 83.78 

 
All these general approaches were represented in the 2010 i2b2/VA NLP Challenge task 

on assertions [8].  In addition to catalyzing innovation from multiple systems, this shared task 
produced a benchmark data set that is available for research with a simple data use agreement; it 
interprets negation on medical problem NEs as an assertion that the problem is absent.   

The four corpora used in our study all annotate named entities explicitly (though they 
differ on whether they are mapped to an ontology), but only include the scope of negation 
indicators implicitly (through the pertinent NEs).  Some efforts have reversed this, giving an 
implicit notion of named entities but an explicit notion of negation scope: notably the BioScope 
Corpus[12] that was used as part of the CoNLL 2010 Shared Task [13].  Bioscope annotates 
negation, uncertainty, and their scopes on de-identified clinical free text (1,954 radiology 
reports), biological full articles (9 articles from FlyBase and BMC Bioinformatics), and scientific 
abstracts (1,273 abstracts also in the GENIA corpus).  Here, the scope of negation is specified as 
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the maximum span within which the negation cue word could be applicable, and the scope 
cannot be disjoint from the cue word. This is in contrast to the work we present here, which 
focuses on named entities. We ignore scope for two reasons: First, the lack of gold standard 
named entity mentions is an additional source of error that no other corpus would have, making 
the comparison unfair. Second, while negation scope annotations overcome some recall issues 
for non-standard terminology (e.g., “patient is not feeling as much like a pariah today” would 
represent negation correctly despite finding no NE), they do not overcome issues in fine-grained 
annotation guideline distinctions (see Section 3.2 on Annotation Guidelines). 

3 Methods 
Here, we first describe the annotated NLP corpora used in training and testing, with 

salient information about the gold standard entity and negation annotation guidelines.  We then 
briefly discuss the new SHARPn Polarity Module and a rule-based baseline. 

3.1 NLP corpora with negation annotations 
Our work used four clinical NLP annotation efforts; the SHARPn NLP Seed Corpus, the 

2010 i2b2/VA NLP Challenge Corpus; the MiPACQ corpus; and the NegEx Test Set.  Statistics 
in Table 2 show their overall relative sizes, train/test splits, and proportion of negated concepts. 
Table 2: Characteristics of four corpora with negation annotations 

sharp i2b2 mipacq negex 

Train Test Train Test Train Test Test 

Num. Documents  140   22   477   349   2,443   324   120 

Num. Sentences  5,014   569  48,482°  33,022°   19,672   2,236  2,376
*
  

Num. Named Entities  10,575   1,154   18,550   11,968   23,249   1,721   2,371  

Num. Negated NEs  918   48   3,609   2,535   1,681   158   491  

% Negated NEs 8.7% 4.2% 19.5% 21.2% 7.2% 9.2% 20.7% 

Data Source(s) 
Mayo, Group 

Health 

Partners, BIDMC, 

UPMC 

Medpedia, NLM 

ClinQ, Mayo  
UPMC 

*subset selected manually; °automatic sentence detection on pre-whitespace-tokenized text 

 
First, the SHARPn NLP Seed Corpus consists of de-identified radiology notes related to 

Peripheral Arterial Disease (PAD) from Mayo Clinic, and de-identified breast oncology progress 
notes regarding incident breast cancer patients from Group Health Cooperative.  This multi-
layered annotated corpus follows community adopted standards and conventions for the majority 
of annotation layers, which include syntactic trees, predicate-argument structure, coreference, 
UMLS named entities, UMLS relations, and Clinical Element Models (CEM) templates [14].  
Negation is included in the CEM templates as an attribute of UMLS concepts. 

Second, the 2010 i2b2/VA NLP Challenge Corpus contained a total of 477 manually 
annotated, de-identified reports from Partners Healthcare, Beth Israel Deaconess Medical Center, 
and the University of Pittsburgh Medical Center.  The majority of notes were discharge 
summaries, but the University of Pittsburgh Medical Center also contributed progress notes. 

Third, the MiPACQ corpus[15 16] annotates multiple syntactic and semantic layers, 
similar to the SHARPn NLP corpus.  There are three major divisions to the sources of data: a 
snapshot of Medpedia articles on medical topics, written by clinicians, retrieved on April 26, 
2010; clinical questions from the National Library of Medicine’s Clinical Questions corpus 
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(http://clinques.nlm.nih.gov), collected by interviews with physicians; and sentences from Mayo 
Clinic clinical notes and pathology notes related to colon cancer. 

Finally, the NegEx Test Set is a set of manually-selected sentences from 120 de-
identified University of Pittsburgh Medical Center reports (20 each of radiology, emergency 
department, surgical pathology, echocardiogram, operative procedures, and discharge 
summaries).  This set was used to evaluate the ConText algorithm [10], while another 120 
reports of similar distribution (not publically available) were used for the development of the 
negation portion of ConText (i.e., an updated NegEx). 

 
Table 3: Named entities (NEs) and negated NEs in the MiPACQ and SHARP corpora 

 

mipacq sharp 

 

Train Test Train Test Train Test Train Test 

 

%type#type %type#type %neg#neg %neg#neg %type#type %type#type %neg#neg %neg#neg 

AnatomicalSite 20.36%(4591) 25.24%(428) 4.01%(184) 7.48%(32) 39.87%(4216) 50.69%(585) 0.43%(18) 0%() 

DiseaseDisorder 26.53%(5981) 23.29%(395) 7.82%(468) 11.65%(46) 27.54%(2912) 29.29%(338) 17.07%(497) 13.31%(45) 

Lab -

 

-

 

-

 

-  1.91%(202) 0.69%(8) 2.97%(6) 25.00%(2) 

Medication 14.74%(3324) 13.50%(229) 4.60%(153) 8.30%(19) 2.98%(315) -  6.35%(20) 0%() 

Procedure 19.62%(4424) 22.52%(382) 3.28%(145) 1.05%(4) 16.64%(1759) 11.01%(127) 3.01%(53) 0%() 

SignSymptom 16.28%(3671) 12.68%(215) 19.83%(728) 26.51%(57) 5.70%(603) 2.17%(25) 52.57%(317) 4.00%(1) 

Entity 0.35%(79) 0.06%(1) 1.27%(1) 0%() 2.96%(313) 3.73%(43) 0.64%(2) 0%() 

Event 2.10%(474) 2.71%(46) 0.42%(2) 0%() 2.40%(254) 2.43%(28) 4.42%(5) 0%() 

 

3.2 Comparison of annotation guidelines 
Manually annotated negation in one of these corpora is not strictly equivalent to that in 

other corpora. We cannot directly compare annotation guidelines because we do not have 
corpora that are multiply-annotated with different guidelines. However, we should note that all 
annotation projects reported high inter-annotator agreement within their respective projects. 
Here, we qualitatively analyze the annotation guidelines concerning the annotation of both NEs 
(concepts) and attributes (assertion status), hypothesizing that some differences in annotation 
guidelines may negatively affect the performance of negation algorithms across corpora. 

The primary difference between the annotation guidelines of the corpora appears to be in 
the definition of NEs, rather than direct indications of how negation should be handled. First, NE 
annotation guidelines differ in the semantic types that are allowed. The broadest is the MiPACQ 
corpus, which annotates 17 UMLS Semantic Groups. (However, in practice, some semantic 
groups have zero or negligible frequencies, and we have grouped them together in our analysis.) 
SHARP only annotates the 6 most clinically relevant groups, namely, Diseases and Disorders, 
Signs and Symptoms, Labs, Medications, Procedures, and Anatomical Sites.  The NegEx Test 
Set is much more narrow, including only Signs, Symptoms, Diseases, and Findings with 
qualitative values. The i2b2 corpus is similarly restrictive, only annotating “problems,” i.e., 
Diseases, Signs and Symptoms. 

The corpora also differ in the span to consider when identifying NEs.  NegEx Test Set is 
the most permissive, annotating whole clinically-relevant phrases as NEs regardless of their 
syntactic type (e.g., the statement “Right ventricular function is normal” is treated as a single 
entity as shown by the underlining).  i2b2/VA guidelines only consider whole noun and adjective 
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phrases as possible NEs (e.g., “her shortness of breath and coughing resolved” includes the 
modifier “her” in the NE). Similar to i2b2/VA, MiPACQ also indicates that whole noun phrases 
should be candidate NEs, but smaller units are typically used in practice (e.g., “her chest x-ray” 
leaves out the modifier “her”). SHARP predominantly annotates maximal strings that match 
UMLS terms as NEs, which often excludes long paraphrases and closed-class modifying 
adjectives (similar to MiPACQ), although there are some cases of CUI-less NEs and multi-span 
NEs. 

Another difference in NE annotation guidelines is the amount of overlap allowed between 
NEs. The NegEx Test Set has only one phrase annotated per sentence, hence no overlap in NEs; 
i2b2/VA only annotates full noun and adjective phrases, so fully subsumed NEs are not allowed. 
In contrast, SHARP annotates subspans as long as they are mapped from the UMLS and of a 
different semantic type (e.g., both “chest” (anatomical site) and “chest x-ray” (procedure) in “her 
chest x-ray”).  MiPACQ removes this restriction of different semantic types, but stipulates that 
some relationship must be shared between the subspan and the full span – this is in practice very 
similar to SHARP (e.g., there is a locationOf relationship between “chest” and “chest x-ray”).   

Overall, the four guidelines are not as precise with negation annotation definitions as they 
are with NEs. The SHARP, MiPACQ, and NegEx Test Set representations imply a relation 
between an explicit negation marker and the negated term (e.g., a cue word like “no” would be 
marked, and the following term “shortness of breath” would then set a 
negation_indicator=present). The i2b2/VA guideline assumes a pragmatic inference about the 
intent of the author in describing his/her observations (e.g., “no shortness of breath” would mark 
assertion=absent without marking the cue word).  This difference does lead to some minor 
morphology-related annotation differences. For example, “afebrile” is marked as “absent” for 
i2b2, but not in SHARP, MiPACQ, or NegEx Test Set since there is no external negation 
indicator.  

3.3 SHARPn Polarity Module and YTEX NegEx 
As with many existing approaches, the SHARPn Polarity module treats negation 

detection as a classification problem for NEs.  This module is implemented within the cTAKES 
system, leveraging feature extraction and machine learning programming interfaces available in 
the ClearTK suite of tools (available at https://code.google.com/p/cleartk/). Features such as co-
occurring bags-of-words, cue words, dependency regular expressions, and tree kernels served as 
input to a binary support vector machine (SVM) classifier. The polarity module used in our tests 
is currently available as a tagged branch of the Apache cTAKES source code repository, and will 
be part of a future cTAKES release.  

We trained the SHARPn Polarity module on each of the four corpora; train/test splits 
were provided for the SHARPn, i2b2/VA, and MiPACQ corpora; for these three corpora, 
training and testing in our evaluations uniformly respected these training and testing splits (e.g., 
even in cases like training on SHARP data but testing on i2b2 data).  Because the development 
set corresponding to the NegEx Test Set was not available, we used the Test Set as both training 
data and testing data; the tables presenting our results use hash shading to show when reuse 
training data invalidates the test performance measures.   

Additionally, we used frustratingly easy domain adaptation (FEDA)[17] to build some of 
our multi-corpus models.  This simple domain adaptation technique requires in-domain training 
data.  Treating the four corpora as domains, the feature space is five times as large – each feature 
repeated per corpus, plus one “general” feature.  At test time, the domain of the test sample is 
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supplied to the classifier, and instances are classified with a weighting of the domain-specific 
model against the “general” model. 

For both training and testing, we used gold standard NEs and negation annotations as 
defined in each of the corpora; we also used the default cTAKES pipeline and models (in the 
tagged version) to produce all other portions (e.g., sentence annotations, tokens, POS tags, 
dependency parses, constituency parses, semantic role labels).  While there is some risk for error 
propagation from these other components into negation detection, we believe this risk is 
minimized and can be “ignored” for the main precision, recall, and F-measure metrics, because 
systemic errors would appear in both training and testing data, and any impact on negation 
performance would be mediated through their representation in a machine learning feature 
vector. 

Our evaluations used the NegEx algorithm as a baseline, as implemented in the Yale 
cTAKES Extensions (YTEX) [11]. Because NegEx is a rule-based method, we would expect it 
to be immune to performance improvement or degradation based on training data.  However, it is 
well-known that customization of rules is likely necessary when applying NegEx in settings 
other than the one in which it was initially developed.  The YTEX negation module was used 
alongside the standard cTAKES pipeline. 

4 Results 
For simplicity in this section, we will consider each corpus as its own “domain,” though 

we recognize that each corpus bridges multiple medical domains.  

4.1 Single test corpus performance 
The practical question a user might ask is: “How can I maximize negation detection 

performance for my data?”  Table 4 below illustrates the difficulty of answering this question by 
showing performance on four corpora (columns) by various systems (rows).  We have grouped 
these systems to be representative of three strategies for negation detection that are used in the 
community: 1) the unedited, rule-based algorithms; 2) machine learning classifiers when only 
out-of-domain data (OOD) is available; 3) machine learning classifiers when some in-domain 
data is available.  Table 4 also includes significance bands down each column; pair-wise 
approximate randomization significance tests for F1 score, aggregated by document, are reported 
for p<0.05. Values in a column labeled with different successive superscripted letters (e.g., 93.9a 
and 92.6b) indicate that there is a significant difference between two systems.  
Table 4: Performance (F1 score) in practical negation detection situations 

 Test sharp i2b2 mipacq negexts 

Rule-based ytex (rules) 62.3
c
 82.1

d
 71.3

a,b 
95.3

a
 

ML with 

out-of-

domain 

(OOD) 

training 

 

sharp 
 

80.7
e
 61.2

b
 87.3

b
  

i2b2 74.7
b,c

 
 

71.9
a,b

  95.4
a
 

mipacq 72.9
b,c

 82.6
d
  59.3

d
 

negexts 58.6
c
  81.1

e
 70.6

a,b
 

 
All 3 OOD 79.0

b
 83.9

c
 69.1

a,b
 69.9

c
 

ML with     

in-domain 
In-Domain 93.5

a
 93.6

a
 73.6

a,b
 99.9 

All  89.7
a
 92.6

b
 75.3

a
 69.9

c
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training  All + FEDA 97.9
a
 93.9

a
 73.9

a
 58.0

d
 

 
First, the widely used rule-based NegEx algorithm (top row) performed quite well on the 

NegEx Test Set (F1=95.3%). When used without modification on other corpora, performance fell 
to unacceptable levels (e.g., F1=62.3% on SHARP data). As might be expected, we may 
conclude that widely-used rule-based algorithms need to be modified according to their target 
data.   

For situations in which only OOD data is available (common in clinical text), one 
strategy is to use a single OOD corpus as training data (rows 2-5).  Using a single OOD corpus 
has widely varying results, with models ranging from 59.3% to 95.4% F-score on the NegEx 
Test Set.  Another strategy is to “use all the (OOD) data you have” (row 6), but again the results 
are mixed.  With the highest OOD models in bold, it is not clear which strategy is optimal, and it 
is difficult to tell what pairs of corpora yield good performance (see below on “difficulty” and 
“usefulness”). 

The situation is much improved when in-domain data is available (rows 7-9).  Note that 
the performance of any OOD models are uniformly lower than training with in-domain data 
alone (row 7).  We still face the same problem of whether to use a single in-domain corpus or to 
“use all the data you have” – the choice differs by corpus (row 7 vs row 8).  However, we note 
that using domain adaptation (row 9) improves results over the in-domain data alone (row 7), 
though the results are not statistically significant at the p<0.05 level. 

Thus, whether there is in-domain data available or not, we cannot conclude a uniform 
policy such as “use all available data to train your model” or “train a model on a single most 
similar corpus.” However, we can conclude that, if in-domain data is available, adding additional 
corpora via fully-supervised domain adaptation techniques will not hurt performance. 

4.2 Corpus difficulty and usefulness 
The “difficulty” of a corpus and the “usefulness” of a corpus seem to vary, as evidenced 

by the second portion of Table 4. Testing on MiPACQ data has an average F1 score of 70.9% 
down the column of trained systems, indicating it is probably the most difficult to test on.  
Training on i2b2 data (row 3) achieved a macro-averaged F1 score of 80.7% across the row of 
test sets, indicating its training set is perhaps the single most useful for training.   

Difficulty and usefulness are not symmetric: i2b2 data is clearly the best out-of-domain 
training data for the NegEx Test Set (F1=95.4%); but the converse is not true (F1=81.1% for a 
NegEx-trained model on the i2b2 test set, significantly outperformed by MiPACQ with 
F1=82.6%).  Difficulty and usefulness also do not correlate directly with corpus size, number of 
NEs, or number of negated NEs (results not shown), confirming that the different domains have 
fundamentally different characteristics that are not overcome with more samples from a different 
domain. 

4.3 Average performance and NE characteristics 
We considered average performance of several models on multiple corpora.  In Table 5 

we include averages with and without FEDA (i.e., for rows 8-9 of Table 4), labeling pairwise 
statistical significance at p<0.05 between the domain adapted and non-domain adapted versions 
with an asterisk.  The NegEx Test Set is used for training rather than testing. 
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Table 5: Average F-score with and without frustratingly easy domain adaptation (FEDA) 

Test \Train All + FEDA 

sharp 89.66 97.87 

i2b2 92.57 93.93* 

mipacq 75.29 73.93 

negex     

macro-avg 85.84 88.58 

micro-avg 91.91 93.28* 

 
Here, we report both macro-averages (arithmetic mean of the three test sets) and micro-

averages (weighted by the number of instances in each test set). The micro-averaged scores are 
heavily weighted towards the i2b2 numbers because the i2b2 test set is the largest; macro-
averages, on the other hand, are much lower than has been previously reported in literature, in 
large part due to the difficulty of the MiPACQ corpus.  Overall, except for MiPACQ data, 
domain-adapted models outperform un-adapted models. 

Negation predictions were further analyzed to see if the differences in NE annotation 
guidelines influenced performance. Figure 1 shows that longer Named Entities are more difficult 
to negate correctly in all of the corpora; in the i2b2 corpus, single-word terms were easy to 
negate, whereas in other corpora single-word terms were substantially harder. This could be due 
to i2b2’s different accounting of inherently negated terms such as “afebrile,” yet as a whole there 
are insufficient examples of these terms to affect performance to the degree observed. 

 
Figure 1: The effect of length on the average F-score of 6 models 

As shown in Figure 2, this multi-corpus model (labeled “all” in the legend) also 
performed much more reliably on Labs, Symptoms, Events (including i2b2 “problems” and 
NegEx NEs), and Disorders than on other semantic groups.  This was consistent regardless of 
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which corpus was used to train a model.  (Note that because of the differing annotation 
guidelines surrounding NEs, all i2b2 and NegEx named entities were considered Events. SHARP 
and MiPACQ semantic groups were used as labeled.) 

 
Figure 2: The effect of named entity (NE) semantic group on the F-score of 6 models 

Training with the SHARP corpus had some of the worst performance, including near-
zero performance on anatomical sites, chemicals and medications, and procedures semantic 
groups, despite having training data in those groups.  Also, a MiPACQ-trained model did not 
outperform other models, despite that most of the test set NEs of minority semantic groups came 
from the MiPACQ corpus. 

5 Discussion 

5.1 Salient features  
From the foregoing tests, NE properties like length and semantic group (and thus, 

annotation guidelines) did not fully explain the discrepancy in performance between different 
models. Thus, we qualitatively examined the broader differences between corpora by looking at 
negation contexts in each corpus. We defined negation contexts as the features of the SHARPn 
Polarity module. 

Table 6 calculates and ranks the χ
2 statistic corresponding to each feature (i.e., on a 2x2 

grid of whether the NE was negated vs. whether the feature was present) within all four sets of 
training data. Thus, the ranking in Table 6 corresponds to the model trained on “All” training 
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sets, in row 8 of Table 4 and in the preceding section.  Table 6 also compares the rank of features 
in the “all” model to salient features in each individual corpus. 
Table 6: Top negation context features in a multi-corpus model, by chi-square value; and 
feature rank in domain-specific models 

  

Feature Rank in Training Data 

Feature Name Chi^2 all i2b2 mipacq negexts sharp 

Deppath_dt_nmod_mod 16713.1 1 5 1 2 1 

Bag_Preceding_0_5:no 15601.1 2 1 3 3 2 

TreeFrag_AL_Polarity:(DT no) 15263.2 3 3 2 4 3 

Bag_Preceding_0_10:no 14928.9 4 2 4 1 5 

Bag_Preceding_0_3:no 14207.4 5 4 5 5 4 

Preceding_0_5_0:no 10683.5 6 6 9 6 10 

ClosestCue_PhraseCategory:no 9848.3 7 7 6 12 6 

ClosestCue_Word:no 8866.9 8 9 7 7 15 

ClosestCue_PhraseFamily:negation 8110.7 9 10 8 8 9 

TreeFrag_AL_Polarity:(NP (DT no) (CONCEPT )) 8038.3 10 8 18 13 23 

Deppath_negverb->dobj_mod 3817.3 11 12 13 16 285 

TreeFrag_AL_Polarity:(VBZ semclass_deny) 3809.4 12 13 10 15 851 

Bag_Preceding_0_10:denies 3081.2 13 22 12 21 1195 

TreeFrag_AL_Polarity:(DT any) 2721.2 14 43 11 24 486 

Preceding_0_5_2:no 2672.9 15 15 28 22 53 

ClosestCue_PhraseCategory:deny 2479.0 16 16 19 38 327 

Bag_Preceding_0_5:denies 2380.3 17 28 16 26 2070 

Bag_Following_0_5:or 2350.9 18 25 30 9 46 

TreeFrag_AL_Polarity:(NP (DT no) (NML )) 2247.9 19 27 44 34 19 

Bag_Following_0_10:or 2242.1 20 26 29 10 39 

 
It is evident that the most important features were consistent across all the corpora, 

representing the “easy cases” of negation: namely, when the word “no” is related to a concept by 
proximity or by syntax.  The SHARP corpus differs somewhat, likely due to the sources of data 
for the SHARPn Seed Corpus: Mayo Clinic radiology reports (do not directly report a patient 
interaction) and Seattle Group Health breast cancer-related notes (only one example of a patient 
“denying” smoking). This distinction does not explain why MiPACQ, rather than SHARP, is a 
more “difficult” corpus. 

5.2 The Big Picture for Negation Detection  
Because of the relatively constrained pragmatic uses of negation in clinical text, negation 

detection algorithms are easy to optimize for specific corpora, as illustrated in Table 1.  
However, we believe the research community has at times conflated this with being immediately 
effective off-the-shelf.  Evaluation of systems is artificially inflated by the ad hoc development 
of training and testing corpora and their differing annotation guidelines.  When in-domain, 
consistently-annotated training data is scarce or nonexistent, negation detection performance 
remains unimpressive (middle portion of Table 4), just as in other NLP problems like parsing or 
named entity recognition. Furthermore, it is difficult to simply characterize the differences 
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between domains, e.g., by NE length (Figure 1), semantic group (Figure 2) or lexical and 
syntactic context (Table 6). 

To ensure excellent negation performance for a machine learning model, it appears that 
we still need to annotate examples of negation on the target corpus for fully supervised training 
(or domain adaptation). Similarly, rule-based methods need a development set and experts who 
can develop domain-specific rules.  Thus, we conjecture that negation is not “solved” until 
negation is tailored to specific applications and use cases, or until the more general problem of 
semi-supervised domain adaptation is solved.   

6 Conclusion 
While a review of published work may suggest that the negation detection task in clinical 

NLP has been “solved,” our multi-corpus analysis of negation detection indicates that it is easy 
to optimize for a single corpus but not to generalize to arbitrary clinical text.  Though negation 
detection can be straightforward in constrained settings, both rule-based and machine-learning 
approaches have mixed results in heterogeneous corpora.  Furthermore, more training data was 
not necessarily better for the common case in which no in-domain data is available. However, 
training on all available data was a good strategy when some in-domain data was available and 
domain adaptation techniques were used.  Future work includes task-adaptive negation detection 
algorithms and semi-supervised domain adaptation. 
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