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ABSTRACT

A review of published work in clinical natural language processing (NLP) oggest that the
negation detection task has been “solved.” This work contends tbpti anzable solution does
not equal ageneralizable solution. Using four manually annotated corpora of clinical text, we
show that negation detection can be optimized in relatively constrained sdftingerformance
is not reliably generalizable unless in-domain training data is ava#ahlg/hich case fully-
supervised domain adaptation techniques may prove effective. Various factoen(@tation
guidelines, named entity characteristics, the amount of data, and lexicgh#actis context)
play a role in making generalizability difficult, but none completely erplthe phenomenon.
This indicates the need for future work in domain-adaptive and task-adaptive methods for
clinical NLP.
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1 Introduction

Negation in unstructured clinical text is a well-known phenomenon. It is cruciahjor
practical interpretation of clinical text, since negation is common in dinaraative. For
example, the medical significance of “no wheezing” is quite different frobotliavheezing.”
With the increasingly widespread use of electronic medical records (Ekdsputational
methodologies for negation detection have also become well-known, most notabiptlaaea
strikingly straightforward NegEx algorithm [1]. In NegEX, simple regebgrressions yield solid
performance on detecting the negation of Findings, Diseases, and Mental or Bghavio
Dysfunctions from the Unified Medical Language System (UMLS). Theesgaof NegEx (and
other techniques) is attributable to the constrained pragmatics of clextabécause physicians
are writing the text in order to convey the health status of a patient, thermmista the ways
that medically pertinent concepts can be negated. Since existing algohnidven performed well
in many published studies [2-8], many clinical natural language procesdifg fxactitioners
consider negation detection a solved problem (see Table 1) with a simple, gableraliution.

However, our present work will show that this “solved” designation is prematuresgeca
current solutions are easibptimizable but not necessarilgeneralizable. Negation detection is
still a challenge when considered from a practical, multi-corpus penrgpdati.,, one in which an
algorithm is deployed in many clinical institutions and on many sourcestofi&ethe NLP
Attribute Discovery team for the Strategic Health IT Advanced ReseaogtcPon the
Secondary use of the EHR (SHARPN), we attempted to detect negation in four corpora, using
machine learning, rules, domain adaptation, and various evaluation scenarios. Tp@se cor
include the new SHARPN NLP Seed Corpus of clinical text with multiple lafesgntactic and
semantic information, including named entities (NEs) and polarity (i.e., negatiangalsé/used
the 2010 i2b2/VA NLP Challenge corpus, the MiPACQ corpus, and the NegEx Test Set. The
SHARPN Attribute Discovery negation detection system used in our evaluationeistiyur
available in Apache cTAKES (clinical Text Analysis and Knowledge EtiaSystem;
ctakes.apache.org) as part of the ctakes-assertion project, includinggrated domain
adaptation algorithm [9]. A thorough methodological treatment is described iteoioihg
publication.

We conclude that practical negation detection is not reliable without in-domaingra
data and/or development. “Benchmark” gold standard data sets differeiestiffito have a
profound effect on the viability of negation detection algorithms. Furthermore, ificuldifo
determine an optimal mix of training data, or to standardize a definitive “berichmeiric,
since both are influenced by corpus-specific annotation guidelines and datssolhe results
we report here should remind users of negation detection algorithms to be vigilamnhg
systems to their data, whether by training with local data or modifyieg.rWe also call for
future work in domain-adaptive and task-adaptive methods.

After a discussion of the extensive related work in negation detection, thexdemai
this article will introduce the data and methods for corpus and system comparisegstadn
detection, present the resulting performance of systems on the different carbdiscuss
implications for negation detection and annotation schema in the larger picture @il clinic
informatics.



2 Related Work

Negation detection was a very practical early motivation for NLP adoption among the
informatics community, and thus significant effort has gone into this taske\tfieite have been
many systems implementing negation detection, publicly available coqrdesfing them are
limited by patient privacy concerns, as is typical in clinical NLP.

Negation detection systems have shown excellent performance in clinichlegixining
with the rule-based NegEx algorithm [1]. NegEx was originally evaluatespans of text that
matched UMLS Findings, Diseases, and Mental or Behavioral Dysfunctions amon@4i000 t
sentences sampled from discharge summaries at the University ofiigittdlbedical Center; a
regression test set was released later with de-identified notes of értitiggzes. NegEx has
produced numerous updated and customized systems, including the updated version released
with ConText[10] which performed well on a benchmark NegEx Test Set (aeadabl
https://code.google.com/p/negex/wiki/TestSet). Our tests used the yseonyet] of NegEx as
a baseline and included the NegEx Test Set as a benchmark.

Similar to NegEx, many other negation algorithms take a rule-based appnoidca
variety of techniques: lexical scan with context free grammar [2], negation on{8loor
dependency parse rules [4]. Some negation algorithms treat the problem asne teaching
classification task[5] or as some hybrid between rules and machine le@@nihgdhe
performance of these systems and their data sources is summarized ih Gelbls.

Table 1. Extensive successful previouswork on negation detection in clinical text

Algorithm Data source Prec. Rec. F1

Negfinder [2] 10 surgery notes & discharge 91.84 95.74 92.96
summaries; UMLS concepts

NegEXx[1] UPMC ICU discharge summaries; 84.49 77.84 80.35
clinical conditions

Neg assignment Hopkins HNP notes; SNOMED concepts | 91.17 97.19 93.90

grammar [3]

Negation Detection | Stanford radiology reports; unmapped 98.63 92.58 94.91
Module [7] text phrases

ConText [10] UPMC 6 note types; clinical conditions 92 94 93

MITRE assertion [6] | 2010 i2b2/VA; unmapped “problem” text | 92 95 94
phrases

DepNeg[4] Mayo clinical notes; symptoms & 96.65 73.93 83.78
diseases

All these general approaches were represented in the 2010 i2b2/VA NLP Chall&nge tas
on assertions [8]. In addition to catalyzing innovation from multiple systemsh#risdstask
produced a benchmark data set that is available for research with a sitaplselagreement; it
interprets negation on medical problem NEs as an assertion that the probleemis abs

The four corpora used in our study all annotet®ed entities explicitly (though they
differ on whether they are mapped to an ontology), but only includeape of negation
indicators implicitly (through the pertinent NEs). Some efforts have reversed thisg@n
implicit notion of named entities but an explicit notion of negation scope: notablydBedpe
Corpus[12] that was used as part of the CoNLL 2010 Shared Task [13]. Bioscope annotates
negation, uncertainty, and their scopes on de-identified clinical free text (1cbélbgy
reports), biological full articles (9 articles from FlyBase and BBlGinformatics), and scientific
abstracts (1,273 abstracts also in the GENIA corpus). Here, the scope amigsiecified as
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the maximum span within which the negation cue word could be applicable, and the scope
cannot be disjoint from the cue word. This is in contrast to the work we present here, which
focuses on named entities. We ignore scope for two reasons: First, the lack chrydadst

named entity mentions is an additional source of error that no other corpus would havg, makin
the comparison unfair. Second, while negation scope annotations overcome some recall issues
for non-standard terminology (e.g., “patient is not feeling as much like ahgaday” would
represent negation correctly despite finding no NE), they do not overcome issnesgrained
annotation guideline distinctions (see Section 3.2 on Annotation Guidelines).

3 Methods

Here, we first describe the annotated NLP corpora used in training and, testfing
salient information about the gold standard entity and negation annotation guidelindsenwWe
briefly discuss the new SHARPnN Polarity Module and a rule-based baseline.

3.1 NLP corpora with negation annotations

Our work used four clinical NLP annotation efforts; the SHARPn NLP Seed Corpus, the
2010 i2b2/VA NLP Challenge Corpus; the MiPACQ corpus; and the NegEx Test Set. cStatisti
in Table 2 show their overall relative sizes, train/test splits, and proportion ¢édegamcepts.
Table 2: Characteristics of four corpora with negation annotations

sharp i2b2 mipacq negex
Train Test Train Test Train Test Test
Num. Documents 140 22 477 349 2,443 324 120
Num. Sentences 5,014 569 | 48,482° 33,022° | 19,672 2,236 2,376*
Num. Named Entities 10,575 1,154 | 18,550 11,968 | 23,249 1,721 2,371
Num. Negated NEs 918 48 3,609 2,535 1,681 158 491
% Negated NEs 87% 42% | 19.5% 21.2% 7.2% 9.2% 20.7%

Mayo, Group Partners, BIDMC, | Medpedia, NLM
Data Source(s) Health UPMC ClinQ, Mayo upMcC

*subset selected manually; “automatic sentencetiteon pre-whitespace-tokenized text

First, the SHARPn NLP Seed Corpus consists of de-identified radiology natesi riel
Peripheral Arterial Disease (PAD) from Mayo Clinic, and de-identifiedgirencology progress
notes regarding incident breast cancer patients from Group Health Coopefdtisenulti-
layered annotated corpus follows community adopted standards and conventions footitg maj
of annotation layers, which include syntactic trees, predicate-argumentisywcreference,
UMLS named entities, UMLS relations, and Clinical Element Models (CEMplates [14].
Negation is included in the CEM templates as an attribute of UMLS concepts.

Second, the 2010 i2b2/VA NLP Challenge Corpus contained a total of 477 manually
annotated, de-identified reports from Partners Healthcare, Beth Isaebess Medical Center,
and the University of Pittsburgh Medical Center. The majority of notes wettadge
summaries, but the University of Pittsburgh Medical Center also contributeggsawptes.

Third, the MIPACQ corpus[15 16] annotates multiple syntactic and semantic, layers
similar to the SHARPN NLP corpus. There are three major divisions to the soudeea: Gf
snapshot oMedpedia articles on medical topics, written by clinicians, retrieved on April 26,
2010;clinical questions from the National Library of Medicine’s Clinical Questions corpus



(http://clinques.nim.nih.gov), collected by interviews with physicians; and sestémen Mayo
Clinic clinical notes and pathology notes related to colon cancer.

Finally, the NegEx Test Set is a set of manually-selected senteoce20 de-
identified University of Pittsburgh Medical Center reports (20 each of mglipemergency
department, surgical pathology, echocardiogram, operative procedures, and discharg
summaries). This set was used to evaluate the ConText algorithm [10], whileraliz
reports of similar distribution (not publically available) were used for thelal@vent of the
negation portion of ConText (i.e., an updated NegEXx).

Table 3: Named entities (NEs) and negated NEsin the MiPACQ and SHARP corpora

mipacq sharp

Train Test Train Test Train Test Train Test

%typeitype %typetitype %negtineg %negineg | %type#type %type#itype %neg#neg %negineg

AnatomicalSite | 20.36%(4591) 25.24%(428) | 4.01%(184) 7.48%(32) | 39.87%(4216) 50.69%(585) | 0.43%(18) 0%()
DiseaseDisorder| 26.53%(5981) 23.29%(395) | 7.82%(468) 11.65%(46) | 27.54%(2912) 29.29%(338) | 17.07%(497) 13.31%(45)

Lab - - - - 1.91%(202)  0.69%(8) 2.97%(6)  25.00%(2)
Medication 14.74%(3324) 13.50%(229) | 4.60%(153) 8.30%(19) | 2.98%(315) - 6.35%(20) 0%()
Procedure 19.62%(4424) 22.52%(382) | 3.28%(145) 1.05%(4) | 16.64%(1759) 11.01%(127) | 3.01%(53) 0%()

SignSymptom | 16.28%(3671) 12.68%(215) | 19.83%(728) 26.51%(57) | 5.70%(603)  2.17%(25) | 52.57%(317)  4.00%(1)
Entity 0.35%(79) 0.06%(1) 1.27%(1) 0%() 2.96%(313)  3.73%(43) 0.64%(2) 0%()

Event 2.10%(474) 2.71%(46) 0.42%(2) 0%() 2.40%(254) 2.43%(28) 4.42%(5) 0%()

3.2 Comparison of annotation guidelines

Manually annotated negation in one of these corpora is not strictly equivalent to that i
other corpora. We cannot directly compare annotation guidelines because we do not have
corpora that areultiply-annotated with differentguidelines. However, we should note that all
annotation projects reported high inter-annotator agreement within theirtrespeojects.

Here, we qualitatively analyze the annotation guidelines concerning tb&afon of both NEs
(concepts) and attributes (assertion status), hypothesizing that sosnendiéfs in annotation
guidelines may negatively affect the performance of negation algsrélcnoss corpora.

The primary difference between the annotation guidelines of the corporasafgpka in
the definition of NEs, rather than direct indications of how negation should be handledN[Eirst
annotation guidelines differ in tleemantic types that are allowed. The broadest is the MIiPACQ
corpus, which annotates 17 UMLS Semantic Groups. (However, in practice, somesemanti
groups have zero or negligible frequencies, and we have grouped them together itysist)ana
SHARP only annotates the 6 most clinically relevant groups, namely, Dsssmag®isorders,
Signs and Symptoms, Labs, Medications, Procedures, and Anatomical Sites. ERETHsQ
Set is much more narrow, including only Signs, Symptoms, Diseases, and Findings with
gualitative values. The i2b2 corpus is similarly restrictive, only annotatiradplgmms,” i.e.,
Diseases, Signs and Symptoms.

The corpora also differ in thgpan to consider when identifying NEs. NegEx Test Set is
the most permissive, annotating whole clinically-relevant phrases asi#islless of their
syntactic type (e.g., the statement “Right ventricular function is ndbisnabated as a single
entity as shown by the underlining). i2b2/VA guidelines only consider whole noun antivaedjec
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phrases as possible NEs (e.g., “her shortness of breath and coughing resolvees ithe
modifier “her” in the NE). Similar to i2b2/VA, MIiPACQ also indicates that whole nouaggy
should be candidate NEs, but smaller units are typically used in practice (a.ghébex-ray”
leaves out the modifier “her”). SHARP predominantly annotates maximagstithat match
UMLS terms as NEs, which often excludes long paraphrases and closechathfysng
adjectives (similar to MiPACQ), although there are some cases of CG3INES and multi-span
NEs.

Another difference in NE annotation guidelines isah®unt of overlap allowed between
NEs. The NegEx Test Set has only one phrase annotated per sentence, hence na dieslap i
i2b2/VA only annotates full noun and adjective phrases, so fully subsumed NEs are nat.allowe
In contrast, SHARP annotates subspans as long as they are mapped fronLShandh\of a
different semantic type (e.g., both “chest” (anatomical site) and “chast’ Xprocedure) in “her
chest x-ray”). MIPACQ removes this restriction of different semdgges, but stipulates that
some relationship must be shared between the subspan and the full span — this iservpractic
similar to SHARP (e.qg., there is a locationOf relationship between “chest’chest x-ray”).

Overall, the four guidelines are not as precise with negation annotation defingitmesy
are with NEs. The SHARP, MIPACQ, and NegEx Test Set representationsamgibtion
between an explicit negation marker and the negated term (e.g., a cueke/éndb’liwould be
marked, and the following term “shortness of breath” would then set a
negation_indicator=present). The i2b2/VA guideline assumes a pragmatica&fetgout the
intent of the author in describing his/her observations (e.g., “no shortness of breathfvaokil
assertion=absent without marking the cue word). This difference does |eaddarsnor
morphology-related annotation differences. For example, “afebrile” ikedas “absent” for
i2b2, but not in SHARP, MIPACQ, or NegEx Test Set since there is no externabnegati
indicator.

3.3 SHARPnN Polarity Module and YTEX NegEx

As with many existing approaches, the SHARPN Polarity module treatsaregati
detection as a classification problem for NEs. This module is implemented tiighc TAKES
system, leveraging feature extraction and machine learning progranmtarfgces available in
the ClearTK suite of tools (available at https://code.google.com/pldledrtatures such as co-
occurring bags-of-words, cue words, dependency regular expressions, andieéedawved as
input to a binary support vector machine (SVM) classifier. The polarity moduleruser tests
is currently available as a tagged branch of the Apache cTAKES source cod@mngpasd will
be part of a future cTAKES release.

We trained the SHARPN Polarity module on each of the four corpora; train/test spli
were provided for the SHARPN, i2b2/VA, and MIPACQ corpora; for these three corpora
training and testing in our evaluations uniformly respected these training &ing $gdits (e.g.,
even in cases like training on SHARP data but testing on i2b2 data). Because the dmtelopm
set corresponding to the NegEx Test Set was not available, we used the &sdi@bkttraining
data and testing data; the tables presenting our results use hash shading to sh@ausghe
training data invalidates the test performance measures.

Additionally, we used frustratingly easy domain adaptation (FEDA)[17] to baoittesof
our multi-corpus models. This simple domain adaptation technique requires in-domang traini
data. Treating the four corpora as domains, the feature space is five tiargg asdach feature
repeated per corpus, plus one “general” feature. At test time, the domairiedtth@mple is
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supplied to the classifier, and instances are classified with a weighting ddmain-specific
model against the “general” model.

For both training and testing, we used gold standard NEs and negation annotations as
defined in each of the corpora; we also used the default cTAKES pipeline and models (in the
tagged version) to produce all other portions (e.g., sentence annotations, tokenssPOS tag
dependency parses, constituency parses, semantic role labels). Whiig sbeme risk for error
propagation from these other components into negation detection, we believe this risk is
minimized and can be “ignored” for the main precision, recall, and F-measuresirigtcause
systemic errors would appear in both training and testing data, and any anpegation
performance would be mediated through their representation in a machine |éaating
vector.

Our evaluations used the NegEx algorithm as a baseline, as implemented ifethe Ya
CTAKES Extensions (YTEX) [11]. Because NegEXx is a rule-based method, we @xqéct it
to be immune to performance improvement or degradation based on training data. However, it is
well-known that customization of rules is likely necessary when applyiggENm settings
other than the one in which it was initially developed. The YTEX negation module was used
alongside the standard cTAKES pipeline.

4 Results

For simplicity in this section, we will consider each corpus as its own “domain,” though
we recognize that each corpus bridges multiple medical domains.

4.1 Single test corpus performance

The practical question a user might ask is: “How can | maximize neggtention
performance for my data?” Table 4 below illustrates the difficulty of anag this question by
showing performance on four corpora (columns) by various systems (rows). Wgrbaped
these systems to be representative of three strategies for negatioonl¢tattare used in the
community: 1) the unedited, rule-based algorithms; 2) machine learnindietasshen only
out-of-domain data (OOD) is available; 3) machine learning classifiees wome in-domain
data is available. Table 4 also includes significance bands down each columnisgair-w
approximate randomization significance tests fosé¢ére, aggregated by document, are reported
for p<0.05. Values in a column labeled with different successive superscripted(eiers3.9
and 92.8) indicate that there is a significant difference between two systems.

Table 4: Performance (F; score) in practical negation detection situations

Test | sharp i2b2 mipacq negexts
Rule-based | ytex (rules) |62.3° 82.1% 71.3*" 953°
ML with | sharp 80.7° 61.2° 87.3°
out-of- | 12 74.7°¢ 71.9**  95.4°
domain . y g
(ooD) | mipacq 72.9”° 82.6 59.3
training | negexts 58.6° 81.1° 70.6°°
All 300D 79.0° 83.9° 69.1%° 69.9°
ML with | In-Domain | 93.5° 93.6° 73.6°°
in-domain | 89.7° 926° 753° K99




— 72
training | All + FEDA 97.9° 93.9° 73.9° o

First, the widely used rule-based NegEx algorithm (top row) performed qulterwtae
NegEx Test Set (E95.3%). When used without modification on other corpora, performance fell
to unacceptable levels (e.g:762.3% on SHARP data). As might be expected, we may
conclude that widely-used rule-based algorithms need to be modified according tartjeti
data.

For situations in which only OOD data is available (common in clinical text), one
strategy is to use a single OOD corpus as training data (rows 2-5). dJsimgie OOD corpus
has widely varying results, with models ranging from 59.3% to 95.4% F-score on the NegEXx
Test Set. Another strategy is to “use all the (OOD) data you have” (row &g&utthe results
are mixed. With the highest OOD models in bold, it is not clear which strategynsag@ind it
is difficult to tell what pairs of corpora yield good performance (seabeh “difficulty” and
“usefulness”).

The situation is much improved when in-domain data is available (rows 7-9). Note that
the performance of any OOD models are uniformly lower than training wdbnmain data
alone (row 7). We still face the same problem of whether to use a single imdmr@aus or to
“use all the data you have” — the choice differs by corpus (row 7 vs row 8). Howevasteve
that using domain adaptation (row 9) improves results over the in-domain data alone (row 7),
though the results are not statistically significant apt@05 level.

Thus, whether there is in-domain data available or not, we cannot conclude a uniform
policy such as “use all available data to train your model” or “train a modesimgla most
similar corpus.” However, we can conclude that, if in-domain data is available, adidiignal
corpora via fully-supervised domain adaptation techniques will not hurt performance.

4.2 Corpus difficulty and usefulness

The “difficulty” of a corpus and the “usefulness” of a corpus seem to vary, aseegile
by the second portion of Table 4. Testing on MiIPACQ data has an aversga ¢ of 70.9%
down the column of trained systems, indicating it is probably the most difficelsttomn.
Training on i2b2 data (row 3) achieved a macro-averageddfe of 80.7% across the row of
test sets, indicating its training set is perhaps the single most usefalifamng.

Difficulty and usefulness are not symmetric: i2b2 data is clearly tsteood-of-domain
training data for the NegEx Test Set{£85.4%); but the converse is not trueS&L1.1% for a
NegEx-trained model on the i2b2 test set, significantly outperformed by MP&th
F1=82.6%). Difficulty and usefulness also do not correlate directly with corpus sizbenoi
NEs, or number of negated NEs (results not shown), confirming that the differenhddraae
fundamentally different characteristics that are not overcome with mopesafrom a different
domain.

4.3 Average performance and NE characteristics

We considered average performance of several models on multiple corpora. el® Tabl
we include averages with and without FEDA (i.e., for rows 8-9 of Table 4),ngledirwise
statistical significance g<0.05 between the domain adapted and non-domain adapted versions
with an asterisk. The NegEx Test Set is used for training rather thangytesti



Table5: Average F-score with and without frustratingly easy domain adaptation (FEDA)

Test \Train | All + FEDA
sharp 89.66 97.87
i2b2 92.57 93.93*

mipacq 75.29 73.93

negex W

macro-avg | 85.84 88.58
micro-avg |[91.91 93.28*

Here, we report both macro-averages (arithmetic mean of the threet$¢stral micro-
averages (weighted by the number of instances in each test set). Thevaraged scores are
heavily weighted towards the i2b2 numbers because the i2b2 test set is therzagest
averages, on the other hand, are much lower than has been previously reported ie literatur
large part due to the difficulty of the MIiPACQ corpus. Overall, except for MR AlGta,
domain-adapted models outperform un-adapted models.

Negation predictions were further analyzed to see if the differences iniiEation
guidelines influenced performance. Figure 1 shows that longer Named Emétresr@ difficult
to negate correctly in all of the corpora; in the i2b2 corpus, single-word termsaggroe
negate, whereas in other corpora single-word terms were substantiady. Admd could be due
to i2b2’s different accounting of inherently negated terms such as “afelyetegs a whole there
are insufficient examples of these terms to affect performance to treeddgserved.

93.00 - S o
B=—— N <-- sharp
-=- i2b2
88.00 - mipacq
% —<—negex
283.00 - - all
- all+feda
78.00 -
73.00 . . . . .
0 1 2 3 4 5

Number of words
Figure 1: Theeffect of length on the average F-score of 6 models
As shown in Figure 2, this multi-corpus model (labeled “all” in the legend) also
performed much more reliably on Labs, Symptoms, Events (including i2b2 “problems” and
NegEx NEs), and Disorders than on other semantic groups. This was consistergssgdrd|
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which corpus was used to train a model. (Note lbleatuse of the differing annotation

guidelines surrounding NEs, all i2b2 and NegEx mhergtities were considered Events
and MiIPACQ semantic groups were used as labeled.)

. SHARP

100

80

60

F-score

msharp
#12b2

= mipacq
¥ negex
=all
Oall+feda

ANAT CHEM EVENT DISO LAB
Semantic Groups

S

AN

IS

IS

PTINS

IS

NS

NN

NN

P

s

s s s s s G G s s s s 3 s S S s s s s s S S

55

PROC SYMP ALL

Figure 2: The effect of named entity (NE) semantic group on the F-scor e of 6 models
Training with the SHARP corpus had some of the tyesformance, including near-

zero performance on anatomical sites, chemicalsyauications, and procedures semantic
groups, despite having training data in those gsoudso, a MiPACQ-trained model did not
outperform other models, despite that most of ¢éisé set NEs of minority semantic groups came

from the MiPACQ corpus.

5 Discussion

5.1 Salient features
From the foregoing tests, NE properties like lereytd semantic group (and thus,

annotation guidelines) did not fully explain theaepancy in performance between different

models. Thus, we qualitatively examined the broaliféerences between corpora by looking at
negation contexts in each corpus. We defined negatntexts as the features of the SHARPNn
Polarity module.

Table 6 calculates and ranks jfiestatistic corresponding to each feature (i.ea @2

grid of whether the NE was negated vs. whethefdhtire was present) within all four sets of
training data. Thus, the ranking in Table 6 coroesfs to the model trained on “All” training
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sets, in row 8 of Table 4 and in the preceding section. Table 6 also compares the raokesf fea
in the “all” model to salient features in each individual corpus.

Table 6: Top negation context featuresin a multi-cor pus model, by chi-square value; and
featurerank in domain-specific models

Feature Rank in Training Data
Feature Name Chin2 all i2b2 mipacq negexts sharp
Deppath_dt nmod_mod 16713.1 1 5 1 2 1
Bag_Preceding_0_5:no 15601.1 2 1 3 3 2
TreeFrag_AL Polarity:(DT no) 15263.2 3 3 2 4 3
Bag_Preceding_0_10:no 14928.9 4 2 4 1 5
Bag Preceding 0 _3:no 14207.4 5 4 5 5 4
Preceding_0_5_0:no 10683.5 6 6 9 6 10
ClosestCue_PhraseCategory:no 9848.3 7 7 6 12 6
ClosestCue_Word:no 8866.9 8 9 7 7 15
ClosestCue_PhraseFamily:negation 8110.7 9 10 8 8 9
TreeFrag_AL_Polarity:(NP (DT no) (CONCEPT )) 8038.3 10 8 18 13 23
Deppath_negverb->dobj_mod 3817.3 11 12 13 16 285
TreeFrag_AL_Polarity:(VBZ semclass_deny) 3809.4 12 13 10 15 851
Bag Preceding 0 10:denies 3081.2 13 22 12 21 1195
TreeFrag_AL_Polarity:(DT any) 2721.2 14 43 11 24 486
Preceding 0 5 2:no 2672.9 15 15 28 22 53
ClosestCue_PhraseCategory:deny 2479.0 16 16 19 38 327
Bag Preceding_0_5:denies 2380.3 17 28 16 26 2070
Bag_Following_0 5:or 2350.9 18 25 30 9 46
TreeFrag_AL Polarity:(NP (DT no) (NML)) 22479 19 27 44 34 19
Bag_Following_0_10:or 22421 20 26 29 10 39

It is evident that the most important features were consistent acrdss atirpora,
representing the “easy cases” of negation: namely, when the word “no” &rielad concept by
proximity or by syntax. The SHARP corpus differs somewhat, likely due to theesanfrdata
for the SHARPnN Seed Corpus: Mayo Clinic radiology reports (do not directly repdréatpa
interaction) and Seattle Group Health breast cancer-related notes (onhyaor@eegf a patient
“denying” smoking). This distinction does not explain why MiPACQ, rather thanF§MAs a
more “difficult” corpus.

5.2 The Big Picture for Negation Detection

Because of the relatively constrained pragmatic uses of negation inldixicanegation
detection algorithms are easy to optimize for specific corpora, as ilediraTable 1.
However, we believe the research community has at times conflated thisewiyg immediately
effective off-the-shelf. Evaluatioof systems is artificially inflated by the ad hoc development
of training and testing corpora and their differing annotation guidelines.n Wrdomain,
consistently-annotated training data is scarce or nonexistent, negatiorodgiediormance
remains unimpressive (middle portion of Table 4), just as in other NLP problemsriskaegpar
named entity recognition. Furthermore, it is difficult to simply charexete¢he differences
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between domains, e.g., by NE length (Figure 1), semantic group (Figure fical #ad
syntactic context (Table 6).

To ensure excellent negation performance for a machine learning model, it dpbpears
we still need to annotate examples of negation on the target corpus for fully seghénaiising
(or domain adaptation). Similarly, rule-based methods need a development set aisddxmpe
can develop domain-specific rules. Thus, we conjecture that negation is not “soitied”
negation is tailored to specific applications and use cases, or until the moa gestdem of
semi-supervised domain adaptation is solved.

6 Conclusion

While a review of published work may suggest that the negation detection taskaal clini
NLP has been “solved,” our multi-corpus analysis of negation detection indicatéisis easy
to optimize for a single corpubut not togeneralize to arbitrary clinical text. Though negation
detection can be straightforward in constrained settings, both rule-based anuenteaiming
approaches have mixed results in heterogeneous corpora. Furthermore, mogededa was
not necessarily better for the common case in which no in-domain data is aveitatéser,
training on all available data was a good strategy when some in-domainadaa@aiable and
domain adaptation techniques were used. Future work includes task-adaptive negatiiom dete
algorithms and semi-supervised domain adaptation.
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