CAMS

Exponential Average

Brian K. Schmidt

December 2015

Approved for Public Release; Distribution Unlimited. Case Number 15-3793

The author's affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply MITRE's concurrence with, or support for, the positions, opinions or viewpoints expressed by the author.

What Is the Exponential Average?

A new kind of weighted average for combining capability (or utility) scores in a Decision Analysis tree

$$eav_a(x_1, ..., x_n) = \log_a \left(\sum_{k=1}^n w_k \cdot a^{x_k} \right)$$

where "a" is a constant and $w_1, ..., w_n$ are weights

What's Wrong with the Old Average?

The Imbalance Problem

 "Optimal" portfolios derived using a weighted average may neglect some capabilities while over-developing ("gold plating") others

Example: Simple Capability Tree

- Search and rescue mission has been decomposed into four tasks
- Overall mission score is the weighted average of the scores of the tasks, with equal weights

Scale for Assessing Node Scores

Color	Interpretation	Numerical Range
	Exceeds requirements	75-100
	Fully meets requirements	50 - 75
	Partially meets requirements	25 - 50
	Does not meet requirements	0 - 25

Current Situation

We are considering buying one of two upgrades

Which Should We Buy?

Comparison of Overall Scores

Outcome

- So the "optimal" solution is gold plating
- This is disturbing
- This has happened in studies of real systems

Further Thoughts

We could avoid this problem if the overall score was the "min" (smallest value) of the task scores

- This eliminates gold plating, because if any task has score 0, the overall score is 0
- But min is too harsh
 - We don't get any credit for improving scores unless we improve the worst score
- What we want is something "between" an average and a min

Approach: Generalized Average

Definition

$$f(x_1, ..., x_n) = g^{-1} \left(\sum_{k=1}^n w_k \cdot g(x_k) \right)$$

g is called the "scaling function"

Motivation:

- We want low values of x_k to dominate the average. We can do this by "blowing them up" with g(x).

Examples of Generalized Averages

Scaling Function	Name of Average	Domain
g(x) = x	regular average	(-∞,∞)
$g(x) = x^2$	root mean square	[0 , ∞)
$g(x) = x^p$	power mean	[0 , ∞)
$g(x) = \log(x)$	geometric mean	(0,∞)
g(x) = 1/x	harmonic mean	(0,∞)

Generalized Average: Basic Properties

Stays in range

- The answer is between min and max of the x's

Associative

 $- f(f(x_1,x_2), y) = f(x_1, x_2, y)$ (when weights are adjusted)

Preferentially independent

- This is an important Decision Analysis property
- Definition: Pref. Ind. means that the preferences between x_j and x_k do not depend on the values of the other x's

Motivation for Choice of g(x)

We want "far smaller" values to dominate the average

- Suppose "far smaller" means "less by U"
- Suppose "dominate" means g(x) is twice as big
- Then we want g(x-U) = 2g(x), g(x-2U) = 4g(x), g(x-3U) = 8g(x), ...
- This suggests $g(x) = a^x$

Exponential Average

Select g(x) = a^x

Properties

- As $a \rightarrow 0$, eav \rightarrow min
- As a \rightarrow 1,

- eav \rightarrow regular weighted average
- As a → infinity, eav → max

Tradeoff Curves for Exponential Average

16

MITRE

Is This What We Are Looking For?

Maybe... because:

- We can tune it anywhere between min and average
- It has all the nice properties of generalized averages

Side benefit

- We can also tune it between max and average
 - Good for analyzing risk

Before we try it, let's get a better understanding of how it works

The Concept of Return

- Define the "return" of a task to be the partial derivative of overall score with respect to task score
- Ultimate problem with regular weighted average:
 - Task returns stay the same, regardless of excess capability in some areas

But with Exponential Average...

- Returns change as the portfolio changes
- Neglected tasks have high returns

(a = 0.955) See backup slides for the formula for computing returns

Result

With exponential average, the optimal solution is to fix what is broken

And Did You Notice?

Returns for tasks add up to 1

- Echoes a property of regular average
 - For regular average, the returns are the weights
- Is surprising (a type of linearity in a non-linear function)
- Makes the returns more meaningful
 - We can think of the return as the relative importance of improving the given task

But How Do I Set the Constant "a"?

Swing Weighting

- User specifies a table of child (task) scores, with the parent (overall) score for each
- From this data, we can solve for "a" and the weights

Example: Swing Weighting

x ₁	x ₂	X ₃	overall score
50	80	80	60
80	50	80	60
80	80	50	70

• After some algebra*, we get the equation:

$$2a^{30} - a^{20} - 2a^{10} + 1 = 0$$

Solution:

- Weights (3/7, 3/7, 1/7), a = 0.933

* See backup slides for details

Advantages of Swing Weighting

We get the weights as well as "a"

- Weights have always been hard to justify
- Swing weighting is a widely accepted Decision Analysis technique

But What Is So Special About THIS Average?

- Why not use some other concept?
 - We could create hundreds of other generalized averages by choosing arbitrary scaling functions g(x)

Uniqueness Theorem

The exponential average is the only generalized average (other than the regular average) satisfying either of the conditions below:

$$- f(x_1+u, ..., x_n+u) = f(x_1, ..., x_n) + u$$

- The returns add up to 1

$$\sum_{k=1}^{n} \partial f / \partial x_k = 1$$

These conditions pertain to rescaling and interpretation of returns, two important concepts

Exponential Average: Summary

- Still a kind of weighted average
- Behavior is continuously adjustable between weighted average and min
- Also adjustable to resemble max
- Only one additional parameter needed
- Associative
 - Several children (tasks) can be treated as one
- Preferentially independent
 - This is an important Decision Analysis property
- Behaves well under changes of scale (see backup slides)
- Parameter "a" and weights can be found by swing weighting
- Unique
 - No other generalized average has the same properties

Backup Slides

Returns for Exponential Average

Differentiating the formula for eav gives:

$$\partial f / \partial x_k = \frac{\mathbf{W}_k a^{x_k}}{\sum_{i=1}^n \mathbf{W}_i a^{x_i}}$$

Hence it is easy to confirm that

$$\sum_{k=1}^n \partial f / \partial x_k = 1$$

Some Properties of Exponential Average

Behaves well under changes of scale:

$$eav(x_1+u, ..., x_n+u) = eav(x_1, ..., x_n) + u$$

 $eav_a(r \cdot x_1, ..., r \cdot x_n) = r \cdot eav_{a^r}(x_1, ..., x_n)$

- This is important because:
 - Changing scale is common in practical situations
 - In Decision Analysis, "value" is defined on an arbitrary scale

Geometry of Rescaling

Relative position of average is maintained

- Requires adjusting "a" when we stretch

More on Rescaling

Behaves well under complement:

$$eav_{a}(100-x_{1}, \ldots, 100-x_{n}) = 100 - eav_{\frac{1}{a}}(x_{1}, \ldots, x_{n})$$

This is useful for relating two models:

- capability (rule is like min)
- risk (rule is like max)

Geometry of Complement

Relative position of average is maintained

- Requires taking reciprocal of "a"

Algebra of Swing Weights Example - 1

- These slides explain how to solve for the weights and the parameter "a" from a swing table
- To simplify the algebra, we add a row of all 80's at the beginning
 - This is valid, because the average of all 80's is 80

x ₁	x ₂	X ₃	overall score
80	80	80	80
50	80	80	60
80	50	80	60
80	80	50	70

Algebra Example - 2

The table gives us the equations:

Subtracting row 2 from row 1 gives: $(a^{80} - a^{50}) w_1 = a^{80} - a^{60}$ $w_1 = (a^{80} - a^{60}) / (a^{80} - a^{50})$

Similarly: $w_2 = (a^{80} - a^{60}) / (a^{80} - a^{50})$ $w_3 = (a^{80} - a^{70}) / (a^{80} - a^{50})$

Algebra Example - 3

Now:

 $w_1 + w_2 + w_3 = 1$

So: $(a^{80} - a^{60}) / (a^{80} - a^{50}) + (a^{80} - a^{60}) / (a^{80} - a^{50}) + (a^{80} - a^{70}) / (a^{80} - a^{50}) = 1$

This gives: $(a^{80} - a^{60}) + (a^{80} - a^{60}) + (a^{80} - a^{70}) = a^{80} - a^{50}$ $3^*a^{80} - 2^*a^{60} - a^{70} = a^{80} - a^{50}$ $2^*a^{80} - a^{70} - 2^*a^{60} + a^{50} = 0$

Algebra of Swing Weights - Theory

More generally, the equation is:

$$(n-1)^*a^{xregular} - \sum (a^{yreduced}) + a^{xreduced} = 0$$

- The solution always exists and is unique (if we ignore the trivial solution a=1)
- Numerical methods must be used to solve

Swing Weights - Extreme Cases

- In extreme cases, the solution for "a" may be too small or too large to be practical
- In these cases, changing the scale may correct the problem. Or we may use a different rollup function: e.g., min, max, or a different generalized average