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Abstract. We define information leakage in terms of a “difference” be-
tween the a priori distribution over some remote behavior and the a
posteriori distribution of the remote behavior conditioned on a local ob-
servation from a protocol run. Either a maximum or an average may
be used. We identify a set of notions of “difference;” we show that they
reduce our general leakage notion to various definitions in the literature.
We also prove general composability theorems analogous to the data-
processing inequality for mutual information, or cascading channels for
channel capacities.
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1 Introduction

One of us recently [11] introduced the Frame Model for studying information
disclosure in distributed systems. Frames represent systems by directed graphs;
their arcs represent the channels of communication permitted by the system.
Disclosure occurs when the local behavior of one portion of the system (the
“source”) affects what local behaviors may be observed at another portion of the
system. That paper shows that limitations on disclosure respect a cut principle:
Each limit on the disclosure from a source to a cut set of channels in the graph is
also enforced on disclosure from the source to any more distant set of channels.
This result furnishes a kid of compositionality for limited disclosure. However,
the notion of limited disclosure in [11] was “possibilistic,” i.e. non-quantitative.

The purpose of this paper is to take key steps toward adapting its results to
a quantitative treatment of disclosure. Given a probability distribution over the
local behaviors of the system, we can generalize the cut principle to include a
probabilistic analysis for quantifying leakage. As in the motivating example be-
low, a quantitative analysis may capture insecurities that a possibilistic approach
may overlook.

To focus our work, however, we have decided to omit one aspect of this
problem. Namely, the frame model allows non-determinism. Generally, to obtain
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probability distributions on runs of a non-deterministic system, one must intro-
duce a “scheduler” that chooses what events happen when different alternatives
exist. Specifying these schedulers is subtle, essentially because a scheduler sensi-
tive to the system’s secrets can signal them to the observer through its choices.
In this paper, we ignore the resolution of non-determinism. Our analysis here
applies in any case in which a probability distribution on executions is well-
defined. In future work we will define methods for resolving non-determinism
without giving the scheduler unfair ways to signal secrets.

A Motivating Example. David Chaum first introduced the Dining Cryptogra-
phers’ Protocol (DCP) as a means to study secure multi-party boolean-OR com-
putation [5]. Chaum describes a scenario where a group of three cryptographers
are at dinner, and either the Spymaster (their boss) or one of the cryptogra-
phers at the table pays for the meal. The protocol guarantees that each party
can determine whether the Spymaster or one of the cryptographers at the table
paid; and in the latter case, the identity of the payer remains hidden from the
non-payers.

Let A, B, and C denote the three cryptographers. Without loss of generality,
let us assume that A is a non-paying cryptographer, and consider her viewpoint.
A flips a coin with B to get rAB and flips another coin with C obtaining rAC . She
computes mA = rAB ⊕ rAC , and announces mA to the table. (As the payer, she
would have announced mA ⊕ 1.) From B and C’s announcements, she surmises
the overall parity m = mA ⊕mB ⊕mC , from which she can determine whether
the boss paid.

If m is odd, A learns that one of the other cryptographers paid but can-
not know for sure which. Possibilistically, we say that the identity of the payer
remains undisclosed to A. Further, no information is disclosed since the set of
possibilities remains the same before and after a protocol run.

Despite provable non-disclosure, information (quantified in a certain way)
can still leak if the coins are biased: Suppose that the payer is chosen from a
fixed distribution. Conditioned on either B or C paying, the payer identity is
a Bernoulli random variable XA ∼ Bern(p) with probability p that player B is
the payer, and probability (1 − p) that player C is the payer. Suppose further
that the coin flips are independent and identically distributed Bernoulli random
variables: RAB , RBC , RCA ∼ Bern(q).

The set of A’s sent and received messages is another (multi-dimensional) ran-
dom variable: OA = RAB , RCA,MA,MB ,MC , where MA, MB , and MC denote
the cryptographers’ respective m-messages. Rather than merely confirming that
the set of possible payers remains the same, we can compare the distributions
of XA pre- and post- protocol run. One way to do this is by computing the
difference between the entropies of the a priori and a posteriori distributions:

I(XA;OA) = H(XA)−H(XA|OA), (1)

where I(·; ·), H(·), and H(·|·) denote mutual information, entropy, and condi-
tional entropy, resp. (All are formally defined in Sect. 2.1).
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In the special case when there is an equal chance of B or C paying (p =
0.5), and the coin flips are fair (q = 0.5); the unconditional and conditional
distributions OA and OA|XA are uniform, and there is no leakage. However,
this is not generally true as shown by Chatzikokolakis et al. [4]. This example
illustrates that information may leak even in scenarios where there is provably
no disclosure. In this paper, we show how to generalize the results of [11] to
include quantitative analyses such as the type presented above.

Other Related Work. In contrast to the possibilistic approach in [11], there are a
number of well-cited papers that use information theoretic definitions for quan-
tifying anonymity, information flow, or non-interference in distributed systems:
Dı́az et al. [9] and Serjantov and Danezis [9] use Shannon entropy; Clarkson et
al. [7] and Deng et al. [8], relative entropy; Köpf and Basin [12], guessing entropy;
Chatzikokolakis, Malacaria, Zhu, and others [4, 6, 13, 15], (conditional) mutual
information or channel capacity; and Palamidessi, Smith, and others [1–3,10,14],
min-entropy leakage. This list is not exhaustive.

Of these information theoretic concepts, we show that our leakage notion
is reducible to mutual information and channel capacity [4, 6, 13, 15]. As seen
in our motivating example, mutual information is a measure of reductions in
uncertainty, where uncertainty is defined as the entropy of a distribution. For
a specified a priori distribution, there is no leakage provided that the mutual
information between X and O is zero. This idea is generalized by allowing for
some intentionally revealed information (represented as a reveal random vari-
able), such that security is achieved with zero conditional mutual information or
capacity. This is the approach taken in by Chatzikokolakis et al. [4] and Clark
et al. [6] and summarized in Sect. 2.1.

Reduction in uncertainty can also be measured by min-entropy leakage, which
is defined as the difference between the min-entropy of the a priori distribu-
tion and the conditional min-entropy of the a posteriori distribution. Currently,
there is no consensus on how conditional min-entropy should be defined. Indeed,
Cachin [3] defines the conditional min-entropy H∞(X|Y ) of X|Y as

H∞(X|Y ) = −
∑
y∈Y

P(Y = y) · log max
x∈X

P(X = x|Y = y). (2)

whereas Palamidessi, Smith, and others [1,2,10,14] define it with the logarithm
and summation reversed. In Sect. 2.1, we provide a summary of min-entropy
leakage as defined in [3], and we show how min-entropy leakage derived from this
former conditional min-entropy also relates to our notion of leakage in Sect. 4.

Our Contributions. As in [11], we describe whether and (how much) information
can leak from one portion of a distributed system to another. We also identify
scenarios where the leakage provides an upperbound on information flow to more
remote portions of the network. In these cases, compositions of local leakages
bounds are meaningful globally.

In addition to providing a generalization of the cut-blur principle in [11], the
contributions of this paper are the following:
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– We define information flow in a distributed system very generally: Leakage
is defined as the max (for worst-case) or average (for average-case) “differ-
ence” between the a priori distribution over some remote behavior and the
a posteriori distribution of the remote behavior conditioned on a possible
local observation from a protocol run.

– We identify a set of distribution differences that relate this unified notion of
leakage to accepted definitions in the literature: namely mutual information,
min-entropy leakage, and limited or non-disclosure.

– We also prove equivalence and implication relations between different leakage
definitions. For zero leakage, we prove that zero mutual information provides
the strongest security and implies zero leakage under all distribution differ-
ences satisfying the coincidence axiom.

– We identify a sufficient property (convexity) of distribution differences for
the composability of leakage bounds analogous to one of the bounds in the
data-processing inequality for mutual information, or cascading channels for
channel capacities: Given a Markov chain X → Y → Z, the leakage from
X to Z is bounded by the leakage from X to Y . If the leakage under the
distribution distance is additionally symmetric, then we get the other bound:
The leakage from X to Z is also bounded by the leakage from Y to Z. The
composability property can also be seen as a generalization of the cut-blur
principle for limited disclosure.

Road map of paper. Leakage definitions using mutual information, min-entropy
leakage, and limited disclosure are described in Sect. 2. In Sect. 2.2, we provide
informal descriptions of limited disclosure and the cut-blur principle (the main
composability result of [11]). In Sect. 2.3, we formally define distribution differ-
ences, which are used in our leakage definitions in Sect. 4. Sects. 3-5 contain our
problem statement, leakage definitions, and results. We conclude with extensions
to our results in Sect. 6.

2 Preliminaries

2.1 Mutual Information, Capacity, and Min-Leakage

Chatzikokolakis et al. [4] use conditional channel capacity for quantifing infor-
mation leakage in anonymity protocols given intentionally revealed information.
Below is their leakage definition, preceded by some information theoretic defini-
tions.

Definition 1 Let X : X → [0, 1], Y : Y → [0, 1], and Z : Z → [0, 1] be discrete
random variables.

1. The entropy of X, denoted H(X), is given by

H(X) = −
∑
x∈X

P(X = x) · logP(X = x),

where P(·) denotes probability.
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2. The conditional entropy of X|Y , denoted H(X|Y ), is given by

H(X|Y ) =
∑
y∈Y

P(Y = y) · H(X|Y = y)

3. The mutual information between X and Y , denoted I(X;Y ), is given by

I(X;Y ) = H(X)−H(X|Y )

4. The mutual information I(X;Y |Z) between X and Y , conditioned on Z, is
given by

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) =
∑
z∈Z

P(Z = z) · I(X;Y |Z = z)

In [4], an anonymity protocol is modeled by a conditional distribution pO|X(·|·)
over the space O×X , where X and O are the domains of a secret random vari-
able X : X → [0, 1] and an observable random variable O : O → [0, 1], resp.
Every run of the protocol produces an independent observable sampled from
this conditional distribution. Anonymity is achieved with zero capacity.

If the protocol intentionally reveals some information R, represented as a
random variable, then the protocol is secure if it achieves relative anonymity,
defined below.

Definition 2 (Informal) Given an anonymity protocol pO|X(·|·), we say it achieves
relative anonymity if

max
pX(·)

I(X;O|R) = 0, (3)

where the maximization is over all input distributions pX(·) on X . In other
words, I(X;O|R) = 0 for all possible pX(·).

See [4] for a formal treatement. Min-entropy leakage in [3] is defined analogously
using min-entropy and conditional min-entropy:

Definition 3 Let X : X → [0, 1], Y : Y → [0, 1], and Z : Z → [0, 1] be discrete
random variables.

1. The min-entropy of X, denoted H∞(X), is given by

H∞(X) = − log max
x∈X

P(X = x) (4)

2. The conditional min-entropy of X|Y , denoted H∞(X|Y ), is given by

H∞(X|Y ) =
∑
y∈Y

P(Y = y) · H∞(X|Y = y) (5)
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3. The min-entropy leakage from X to Y , denoted M(X;Y ), is given by

M(X;Y ) = H∞(X)−H∞(X|Y ), (6)

where H∞(X|Y ) is as defined in Def. 2.1

4. The min-entropy leakage M(X;Y |Z) between X and Y , conditioned on Z,
is given by

M(X;Y |Z) = H∞(X|Z)−H∞(X|Y, Z) (7)

2.2 Limited Disclosure in the Frame Model

The Frame Model was introduced in [11] as a means for studying composable in-
formation disclosure. Communication is modeled as point-to-point, and messages
are delivered synchronously. Partial ordering on the message deliveries models
true concurrency within a protocol run.

A frame F = (LO, CH,D, ends, traces) consists of a set of locations LO, a set
of channels CH, a set of data D, and methods ends(·) and traces(·) defined on
` ∈ LO. Graphically, a frame F can be represented as a directed graph, where
the nodes are the locations, and the (directed) edges are the channels. Each edge
is labeled. The label represents the data that can be transmitted along that edge
from the exit node to the entry node.

A channel endpoint is either an entry or an exit point of a channel; so ends(`)
returns the set of all endpoints that either enter into or exit from `. A trace is
an ordered sequence of local events that represents a location’s interactions with
the other locations; where calling the chan(·) method on an event object returns
a channel, and calling the data(·) method returns a data. So traces(`) returns all
possible local sequences representing all the ways in which ` might participate
in a (potentially incomplete) run of the protocol.

The authors of [11] provide a mathematical notion of an execution (a run
of a protocol) within the Frame Model and define the portion of an execution
relevant to a set C of channels as a C-run.

Definition 4 (Informal) A function blur : P(S)→ P(S) is a blur operator if it
satisfies the properties:
1. Inclusion: T ⊆ blur(T )
2. Idempotence: blur(blur(T )) = blur(T )
3. Union property: ∀Σ ⊆ P(S) . blur

(⋃
T ∈Σ T

)
=
⋃
T ∈Σ blur(T ), where P(·)

denotes the powerset.

Given a frame F = (LO, CH,D, ends, traces), a set src ⊆ CH of source channels,
and a set obs ⊆ CH of observable channels; let S be the set of source-runs (i.e.,
S = src-runs), and let O be the set of observable-runs (i.e., O = obs-runs).

Information disclosure is restricted by a blur operator blur(·) if, for every
observable o ∈ O, the set T ⊆ S of completed source-runs compatible with the
observable o is blur-blurred, i.e., T = blur(T ), where blur(·) is a blur operator.

1 There is an alterative definition for conditional min-entropy [1,2,10,14]. We will not
be dealing with this alternative definition here.
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The main result of the paper is the so-called cut-blur principle below. See [11]
for a formal treatment.

Theorem 1 (Cut-blur principle, informal) Given a frame

F = (LO, CH,D, ends, traces), (8)

a set src ⊆ CH of source channels, a set cut ⊆ CH of cut channels, and a
set obs ⊆ CH of observable channels, such that cut is a cut-set partitioning src
from obs, the source information disclosed at cut limits the source information
disclosed at obs.

2.3 Distribution Differences

In our motivating example, we compared the a priori and a posteriori distri-
butions in order to quantify how much information leaked. Intuitively, if the
distributions are the same under some specified way of measuring, there is no
measurable leakage. Stated as such, leakage is expressed in terms of “distribution
differences,” which we define formally below.

Definitions 6-8 are distribution differences, which we use later on to relate our
unified leakage notion in Sect. 4 to accepted leakage definitions in the literature,
namely: conditional mutual information, min-entropy leakage, and limited infor-
mation disclosure from [3, 4, 11]. These leakage definitions are also summarized
in Sects. 2.1-2.2.

Definition 5 Let XX denote a family of random variables defined over the same
alphabet X . A distribution difference 4 : XX ×XX → R is a function that takes
two random variables defined over the same alphabet and returns a real number.
In discussing this definition, we are often interested in the following properties:

1. Coincidence axiom: ∀X , ∀X ∈ XX .4(X,X) = 0

2. Nonnegativity: ∀X , ∀X1, X2 ∈ XX .4(X1, X2) ≥ 0

3. Convexity: ∀X , ∀X,X1, X2 ∈ XX , ∀α ∈ [0, 1] .

4(X, (αX1 + (1− α)X2)) ≤ α · 4(X,X1) + (1− α) · 4(X,X2) (9)

Definition 6 For any random variables X1 and X2 over the same alphabet X ,
we say that the Shannon-difference between X1 and X2, denoted 4S(X1, X2), is
given by

4S(X1, X2) = H(X1)−H(X2). (10)

Definition 7 For any random variables X1 and X2 over the same alphabet X ,
we say that the minH-difference between X1 and X2, denoted 4min(X1, X2), is
given by

4min(X1, X2) = H∞(X1)−H∞(X2). (11)
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Definition 8 For any random variables X1 and X2 over the same alphabet X ,
we say that the maxH-difference between X1 and X2, denoted 4max(X1, X2), is
given by

4max(X1, X2) =

{
0 supp(X1) = supp(X2)

∞ otherwise,
(12)

where supp(X) denotes the support of a random variable X.

Note that Shannon-, minH-, and maxH-differences all satisfy the coincidence
axiom and convexity. MaxH-difference additionally satisfies nonnegativity.

3 Problem Statement

While [11] presents purely set theoretic ideas, we generalize the cut-blur results
to include information theoretic analyses. To do this, we shift from a possibilistic
view of local behaviors to a probabilistic perspective. To begin with, we consider
local behaviors from only completed executions, where a completed execution is
the partially ordered entire set of messages from a completed protocol run. Our
results in Sects. 4 and 5 cover leakages from complete observations. This allows
us to present our work using cleaner notation. Extension to leakages from partial
observations is covered in Sect. 6.

Below, we borrow the formalism from the Frame Model [11] to make our
problem statement explicit. Our problem statement is defined with respect to
a frame F = (LO, CH,D, ends, traces), a fixed set src ⊆ CH of source channels,
and a fixed set obs ⊆ CH of observable channels.

Definition 9 Given a frame F = (LO, CH,D, ends, traces) and a location ` ∈
LO, let chans(`) be the set of channels adjacent to `:

chans(`) = {c ∈ CH : entry(c) ∈ ends(`) ∨ exit(c) ∈ ends(`)}, (13)

where entry(·) and exit(·) return the entry and exit points of a channel, resp.

Definition 10 Given a frame F = (LO, CH,D, ends, traces) and a location ` ∈
LO, let T (`) ⊆ traces(`) be defined by

T (`) = {tr ∈ traces(`) : ∃tr′ ∈ traces(`), tr is a proper prefix of tr′} (14)

(T (`) is the set of traces of ` that are proper prefixes of other traces of `.) Let
traces∗(`) = traces(`) \ T (`), and call it the completed traces of `.

Definition 11 An event set E = (E,�) is a well-founded, partially ordered set
E of events and is generally denoted by the name of the set and in curly-font.

Definition 12 Given an event set E = (E,�) and a set C of channels, the
restriction E � C of E to C is the event set (Ec,�c), where:

1. Ec = {e ∈ E : chan(e) ∈ C}, and
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2. �c=� ∩Ec × Ec.

Definition 13 An event set E = (E,�) is a completed execution in a frame
F = (LO, CH,D, ends, traces), if for all ` ∈ LO:

1. (E � chans(`)) is totally (linearly) ordered, and
2. (E � chans(`)) ∈ traces∗(`).

We call the set of all completed executions in a frame F the completed execution
set, denoted Exe∗(F).

Definition 14 Given a frame F = (LO, CH,D, ends, traces) and a set of chan-
nels C ⊆ CH, let C-runs∗ be the set of restrictions of completed executions to
C:

C-runs∗ = {E � C : E ∈ Exe∗(F)} (15)

Let S be the finite set of completed source-runs (i.e., S = src-runs∗), and let
O be the finite set of completed observable-runs (i.e., O = obs-runs∗).

We are also provided a partitioning function f(·, ·) which is a deterministic
function over the joint space S ×O and a joint probability mass function (pmf)
pS,O(·, ·) over S × O, such that the supports for the corresponding marginal
probabilities are S and O, resp. In other words, pS,O(·, ·) written as a matrix
has no all zero rows or columns. The partitioning function additionally has the
property that for any s1, s2 ∈ S and o ∈ O such that pS,O(s1, o), pS,O(s2, o) > 0;
f(s1, o) = f(s2, 0).

Definition 15 S : S −→ [0, 1] is the random variable on the completed source-
runs, which maps to the marginal probabilities of the source-runs.

S(s) =
∑
o∈O

pS,O(s, o). (16)

S represents the a priori remote behavior.

Definition 16 (S|O = o) : S −→ [0, 1] is the conditional random variable on
the completed source-runs, which maps to the probabilities of the source-runs
conditioned on the observable-run O = o.

(S|O = o)(s) =
pS,O(s, o)∑
ω∈S pS,O(ω, o)

. (17)

S|O represents the a posteriori remote behavior.

Definition 17 Let f : S × O −→ R be any deterministic function on the joint
space. Rf : R −→ [0, 1] is the random variable over the range of f(·, ·) whose
probabilities are given by

Rf (r) =
∑

(s,o)∈Rr

pS,O(s, o), (18)

where Rr = {(s, o) ∈ S×O : f(s, o) = r}. Any intentionally revealed information
may be represented by some Rf .
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Given this set-up, we are interested in defining information flow in F from
source channels to observable channels. In this sense, this work is meant to
generalize the main results of [11].

4 Leakage from Distribution Differences

Given a partitioning function f(·, ·) and a pmf pS,O(·, ·) over the joint space S×O;
let S, O, and Rf representing remote behavior, local behavior, and intentionally
revealed information be as defined in Sect. 3 above. Further, let V denote the
support of Rf , and for any r ∈ V, let

Or = {o ∈ supp(O) : ∃s ∈ S, f(s, o) = r}. (19)

The definitions, theorems, and corollaries in Sect. 4 are with respect to this
set-up. In Defs. 18 and 19, leakage is defined very generally as the max or av-
erage difference between the a priori and a posteriori distributions. These are
definitions of leakage conditioned on some reveal random variable Rf . Note that
unconditional leakage is captured by any all-to-one function f(·, ·).

Definition 18 (Worst-case leakage) The worst-case leakage LS;O|Rf
condi-

tioned on Rf , is given by the maximum difference between the a priori distri-
bution on (S|Rf = r) and the a posteriori distribution (S|Rf = r,O = o) over
r ∈ V and o ∈ Or:

LS;O|Rf
= max

r∈V
max
o∈Or

4 ((S|Rf = r), (S|Rf = r,O = o)) , (20)

for some notion of distribution difference 4. This is the worst-case leakage over
all partitions. We say that there is zero conditional worst-case leakage when
LS;O|Rf

= 0.

Definition 19 (Average-case leakage) The average-case leakage LS;O|Rf
con-

ditioned on Rf is given by average difference between the a priori distribution
on (S|Rf = r) and the a posteriori distribution (S|Rf = r,O = o) over r ∈ V
and o ∈ Or:

LS;O|Rf
=
∑
r∈V

P(Rf = r)·∑
o∈Or

P(O = o|Rf = r) · 4 ((S|Rf = r), (S|Rf = r,O = o)) , (21)

for some notion of distribution difference 4. This is the average-case leakage
over all partitions. We say that there is zero conditional average-case leakage
when LS;O|Rf

= 0.

We chose to study nonstandard distribution differences instead of standard
distribution distances, such as the Kullback-Leibler divergence (relative entropy)
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or statistical-closeness, because our general leakage definitions above reduce to
accepted leakage notions in the literature under these distribution difference.
Lems. 1 and 2 and in Thm. 2 illustrate these equivalences.

Below, we show that average leakage under Shannon-difference is equiva-
lent to mutual information between remote and locally observable behaviors.
Likewise, average leakage under minH-difference is equivalent to min-entropy
leakage.

Lemma 1 Average-case conditional leakage under Shannon-difference is equiv-
alent to conditional mutual information between S and O.

Proof. Average leakage under Shannon-difference can be converted to condi-
tional mutual information by pulling H(S|Rf = r) out from the summation and
from the definitions of conditional entropy, mutual information, and conditional
mutual information. ut

Lemma 2 Average-case conditional leakage under minH-difference is equivalent
to conditional min-entropy leakage from S to O.

Proof. Same proof as above. ut
Zero leakage occurs when the a priori and a posteriori situations are equiv-

alent under some specified distribution difference. Whereas unconditional zero
leakage corresponds to no leakage in an absolute sense, conditional zero leak-
age corresponds to a somewhat weaker notion: Other than some intentionally
revealed information, there is no leakage.

In Thm. 2 below, we prove that zero conditional worst-case leakage under
maxH-difference is equivalent to limited disclosure, where the blur operator is re-
lated to the partitioning function. (Note that the equivalence is up to completed
runs. See Sect. 6 for the extended results over partial observations.)

Theorem 2 (Non-disclosure over blur-sets) Zero conditional leakage un-
der maxH-difference is equivalent to information disclosure restricted by a blur-
operator blurf,o : P(S) −→ P(S), given by

blurf,o(T ) =
⋃
t∈T
{s : f(s, o) = f(t, o) ∧ (S|Rf = f(t, o))(s) > 0}. (22)

Proof. Clearly, blurf,o(·) is inclusive, idempotent, and satisfies the union prop-
erty. So blurf,o is a blur-operator.

Let To = supp(S|O = o). For any fixed o ∈ O, ∀s ∈ S where pS,O(s, o) > 0,
f(s, o) maps to the same value, which we denote by ro; thus, To = supp(S|Rf =
ro, O = o).

( =⇒ ) For any T ⊆ To, blurf,o(T ) = supp(S|Rf = ro) by construction of the
blur-operator; and supp(S|Rf = ro) = supp(S|Rf = ro, O = o), by equality in
the maxH-difference. So, blurf,o(T ) = To as desired.

(⇐=) Given any fixed r ∈ V where Rf (r) > 0 and any o ∈ Or, To =
supp(S|Rf = r) by definition of blur-limited disclosure. So, supp(S|Rf = r) =
supp(S|Rf = ro, O = o). In the case where Rf (r) = 0, this is vacuously true.

ut
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It can be shown that average zero leakage under Shannon-difference is equiv-
alent to worst-case zero leakage under Shannon-difference.

Theorem 3 Zero conditional worst-case leakage under Shannon-difference is
equivalent to zero conditional mutual information between S and O:

max
r∈V, o∈Or

[H(S|Rf = r)−H(S|Rf = r,O = o)] = 0 ⇐⇒ I(S;O|Rf ) = 0 (23)

So from Lem. 1, both definitions are equivalent to zero mutual information
between the remote and local behaviors.

Below, we prove that zero leakage under Shannon-difference is the strongest
form of zero leakage, which trumps leakages under all other distribution dif-
ferences that satisfy the coincidence axiom. Thus, while min-entropy captures
a stronger notion of randomness compared with Shannon entropy and is often
toted as the “correct” entropic notion for security analyses, zero mutual infor-
mation capture a stronger notion of security than zero min-entropy leakage.

Corollary 1 Zero conditional leakage under Shannon-difference implies: (i) zero
conditional worst-case leakage LS;O|Rf

under4, and (ii) zero conditional average-
case leakage LS;O|Rf

under 4, for any distribution difference 4 satisfying the
coincidence axiom.

Proof. Zero conditional leakage under Shannon-difference is equivalent to zero
conditional mutual information between S and O (Lem. 1 and Thm. 3). For all
r ∈ V and for all o ∈ Or, the distributions (S|Rf = r) and (S|Rf = r,O = o)
are the same; and

4((S|Rf = r), (S|Rf = r,O = o)) = 0, (24)

by the coincidence axiom. ut

In Thm. 2, we proved that zero worst-case leakage under maxH-difference
is equivalent to limited disclosure restricted by a blur operator. Thm. 4 below
states that zero worst-case leakage is equivalent to zero average-case leakage
for non-negative distribution differences. Since maxH-difference is non-negative,
Thm. 4 establishes the equivalence of worst-case and average-case zero leakages
under maxH-difference.

Theorem 4 Zero conditional average-case leakage is equivalent to zero condi-
tional worst-case leakage under any reasonable, non-negative distribution differ-
ence 4.

It can also be shown that worst-case leakage under minH-difference implies
average-case leakage under minH-difference which, from Lem. 2, is equivalent to
min-entropy leakage.

Theorem 5 Zero conditional worst-case leakage under minH-difference implies
zero conditional min-entropy leakage from S to O. (Note that the reverse impli-
cation does not hold, however.)
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Proof (of Thm. 5). From Lem. 2, it suffices to prove that zero worst-case condi-
tional leakage implies zero conditional average-case leakage.

For a fixed r ∈ V, let p′ denote the largest probability mass in the a priori
distribution, so that H∞(S|Rf = r) = − log p′. By the hypothesis, the difference
between the a priori H∞(S|Rf = r) and a posteriori H∞(S|Rf = r,O = o), for
any o ∈ Or, is bounded by zero

H∞(S|Rf = r)−H∞(S|Rf = r,O = o) ≤ 0 (25)

Thus, the largest probability mass in each of the a posteriori distributions is
at most p′. Suppose that there exists an a posteriori distribution for which the
largest probability mass is strictly less than p′. Then, in order for the largest
probability mass in the marginals to be p′, there must exist another a posteriori
distribution for which the largest probability mass is strictly greater than p′ to
compensate. This contradicts our earlier claim, and so the largest probability
mass of every a posteriori distribution must be exactly p′. This is true over all
r’s and o’s. ut

5 Composing Leakage Bounds

In order to generalize the cut-blur principle and more generally for compos-
ing leakage bounds, we desire a result similar to the data-processing inequality
for mutual information, or cascading channels for channel capacities: Given a
Markov chain of random variables X → Y → Z, we wish to bound the leakage
from X to Z by the leakage from X to Y , as well as the leakage from Y to Z.

We prove that a sufficient property for achieving the first bound is the con-
vexity of the distribution difference. If the leakage is also symmetric, we obtain
the second bound.

Theorem 6 Let X : X → [0, 1], Y : Y → [0, 1], and Z : Z → [0, 1] be discrete,
finite random variables; such that X → Y → Z form a Markov chain in that
order. Leakage from X to Z is upper bounded by leakage from X to Y under any
convex distribution difference 4.

Proof (Worst-case leakage). By definition of worst-case leakage, there exists y′ ∈
Y, such that

4(X, (X|Y = y′)) = LX;Y (26)

Let Dist(·) denote distribution. For any z ∈ Z,

Dist(X|Z = z) =
∑
y∈Y

P(Y = y|Z = z) · Dist(X|Y = y, Z = z)

=
∑
y∈Y

P(Y = y|Z = z) · Dist(X|Y = y) (27)

4(X, (X|Z = z)) ≤
∑
y∈Y

P(Y = y|Z = z) · 4(X, (X|Y = y)) (28)

≤ 4(X, (X|Y = y′)) = LX;Y , (29)
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(27) holds from the conditional independence of X and Z by the definition of a
Markov chain; so for all (x, y, z) ∈ X × Y × Z

P(X = x|Y = y) = P(X = x|Y = y, Z = z). (30)

(28) holds from the convexity of 4. (29) follows from y′ defined above. From
(29), LX;Z ≤ LX;Y . ut

Proof (Average-case leakage).

LX;Z ≤
∑
z∈Z

P(Z = z)
∑
y∈Y

P(Y = y|Z = z) · 4(X, (X|Y = y)) (31)

=
∑
y∈Y

P(Y = y) · 4(X, (X|Y = y)) = LX;Y (32)

(31) holds from (28). ut

Theorem 7 Let X, Y , and Z be discrete, finite random variables; such that
X → Y → Z form a Markov chain in that order. Leakage from X to Z is upper
bounded by leakage from Y to Z for any symmetric leakage defined under any
convex distribution difference 4. (Symmetry is achieved when leakage computed
in one direction is always equal to leakage in the opposite direction.)

Proof. The proof follows the symmetry of the leakage and Thm. 6 above. ut

5.1 Generalized Cut-Blur Principle

We extend our original problem statement to the following scenario:
Given a frame F = (LO, CH,D, ends, traces), let src, cut, obs ⊆ CH be any

three subsets of CH, such that cut is a cut-set partitioning src from obs. Let S,
C, and O be the sets src-runs∗, cut-runs∗, and obs-runs∗, resp. We are given a
partitioning function f(·, ·) and a pmf pS,C(·, ·) over the joint space S × C, and
so the a posteriori distributions are now conditioned on C = c for c ∈ C. We
assume that there are no all zero rows or columns in pSC(·, ·); and we define
the random variables S, S|C, and Rf , representing the a priori remote behavior,
the a posteriori remote behavior at the cut set, and information intentionally
revealed at the cut channels as before.

We can apply Thms. 6 and 7 to obtain a generalization of the cut-blur
principle, since a cut-set naturally imposes a Markov chain on the source, cut,
and observable random variables. The leakage bounds below hold for any pmf
pS,C,O(s, c, o) over the joint space S ×C×O. In other words, the leakage bounds
hold for any conditional distribution pO|C(o|c).

Corollary 2 The leakage of the source behavior at the observable channels is
bounded by the leakage of the source behavior at the cut when leakage is defined
under a convex distribution difference 4. If the leakage is additionally sym-
metric, it is also bounded by the leakage of the cut behavior at the observable
channels.
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Corollary 3 Suppose that the secret information X is not the remote behavior,
but determined by the source behavior; so X = g(S).

In this case, the leakage of X at the cut is bounded by the leakage of X at the
source channels when leakage is defined under a convex distribution difference
4. If the leakage is additionally symmetric, it is also bounded by the leakage of
the cut behavior at the observable channels.

Corollary 4 Given a leakage which is symmetric and defined under a convex
distribution difference; zero leakage of the source behavior at the cut implies
zero leakage of the source behavior at the observable channels, zero leakage of
X = g(S) at the cut, and zero leakage of X at the observable channels 4.

Since leakage under maxH-difference is symmetric and defined under a convex
distribution difference, Thms. 6 and 7 and Cors. 2-4 apply; in particular, the cut-
blur principle is obtained from Cor. 4 under maxH-difference.

Cor. 3 bounds the leakage from X to C. Suppose we wish to compute the
leakage from X to C instead, rather than merely obtaining a bound for it. Since
we are given the function g(·) which relates S to X, we can compute the a priori
and a posteriori distributions of X and X|C = c from g(·) and the pmf pSC(·, ·),
and leakage is computable as the max or average difference between the a priori
and a posteriori distributions.

6 Extensions to Our Results

Only completed runs were considered in Sects. 3-5: Zero leakage under maxH-
difference and limited disclosure were proven equivalent only up to completed
runs. Likewise, the generalization of the cut-blur principle applies only to com-
pleted runs.

Suppose that we are provided a function ht : O → Ot mapping the completed
observations to partial observations at some relativistic time t, so that every
completed run maps to the unique partial run at time t from which it can
progress to completion. Then, we can define a random variable Ot = ht(O),
and S → C → O → Ot form a Markov chain. Thus the leakage to the partial
observations Ot is bounded above by the leakage to the completed observations,
assuming that the leakage is symmetric and defined under a convex distribution
difference. Moreover, we can compute a tighter bound on the leakage to Ot given
ht(·), in much the same way that we computed the leakage from X to C given
g(·) in Sect. 5.1.

Suppose that we were provided the conditional probability pC|S(·|·). Then,
leakage can be defined as the maximum (over all possible a priori distributions
pS(·)) of the maximum or average (over the r’s and o’s) difference between the
a priori and a posteriori distributions; and the results from the Sects. 4 and 5.1
trivially carry through. Under Shannon-difference, these correspond to channel
capacity and cascading channel bounds.
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