
Data & Knowledge Engineering 43 (2002) 261–280 

www.elsevier.com/locate/datak 

Consistent policy enforcement in distributed systems 
using mobile policies q,qq 

Susan Chapin *, Don Faatz, Sushil Jajodia, Amgad Fayad


The MITRE Corporation, 1820 Dolley Madison Boulevard, McLean, VA 22102-3481, USA 


Received 9 February 2002; received in revised form 9 February 2002; accepted 19 June 2002 

Abstract 

This paper briefly traces the evolution of information system architectures from mainframe-connected 
terminals to distributed multi-tier architectures. It presents the challenges facing developers of multi-tier 
information systems in providing effective consistent data policy enforcement, such as access control in 
these architectures. Finally, it introduces ‘‘Mobile Policy’’ (MoP) as a potential solution and presents a 
framework for using mobile policy in the business logic tier of multi-tier information systems. 
� 2002 Elsevier Science B.V. All rights reserved. 

Keywords: Security; Access control; Mobile policy; n-Tier architecture 

1. Introduction 

Multi-tier architectures separate application functions into three or more tiers, a presentation 
tier that handles interface with the user, one or more business logic tiers, and a data tier. Typi
cally, the client or presentation tier is reduced to no more than a Web browser and the database 
management system (DBMS) is returned to its primary function of storing data (see Fig. 1). 
Business logic is moved from the client and the database to a middle tier, which consists of a Web 
server and application code [3,4,11,14]. The application code is hosted on a different platform 

q This work was funded by the MITRE technology program under project number 51MSR871. 
qq A preliminary version of this paper has appeared in the Proceedings of the 14th IFIP WG11.3 Working 

Conference on Database and Application Security, Schoorl, The Netherlands, August, 2000. 
* Corresponding author. 
E-mail addresses: schapin@mitre.org (S. Chapin), dfaatz@mitre.org (D. Faatz), jajodia@mitre.org (S. Jajodia), 

afayad@mitre.org (A. Fayad). 

0169-023X/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved. 
PII: S0169-023X(02)00128-3 

mail to: schapin@mitre.org


262 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

Fig. 1. Multi-tier architectures. 

from the DBMS. The application code may request data from many DBMSs and may implement 
functions much more complex than satisfying requests by clients to access data in the DBMS. 
Support for multiple clients and databases is shown in Fig. 2. 

Multi-tier architectures require changes in the way security and other policies are managed. 
Mechanisms are needed that can achieve consistent policy across elements of a distributed en
vironment and that support flexible policies that address needs other than access control. The 
need for consistent policy management across distributed components is analogous to the need for 
consistent transaction management across distributed components. The need for flexible policies 
arises from the complex functionality of many multi-tier applications. While control over access 
to data remains a very important policy, support for other types of policies, such as requiring 
certain files to have a copyright notice or be sanitized in some way before they are returned to 
certain clients, is also needed. 

Specific requirements for making policies consistent across different components include 
making policies mobile, so that they may travel with the data from one component to another 
rather than being applied before the data are released from the DBMS, and making security 
contexts mobile, so that references to users and roles have the same meaning to all components. 
Making policies flexible requires enabling those who manage data to define the kinds of policies 
supported, rather than relying on DBMS vendors. Traditional data tier policy management does 
not support these needs well, for several reasons: policies defined by DBMS vendors, are limited 
to access control policies; access control is applied by the DBMS at the time access to the data is 
requested, requiring that the source of the request be known to the DBMS; and traditional data 
tier users, roles, and policies are all locally defined within the DBMS based on local security 
context. 

We propose an application framework that extends the capabilities for policy management in 
multi-tier applications without interfering with existing DBMS-based access controls. In our 

Fig. 2. Multi-tier architectures for multiple clients and databases. 



S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 263 

framework, policy management is decomposed into three separable functions: defining policies, 
associating policies with data, and applying policies. Security context management is enhanced by 
including third-party mechanisms, such as digital certificates provided by a public key infra
structure (PKI) and attribute certificates, that can be referred to by all components. Almost any 
policy can be supported, limited only by the ability of developers to implement the policy in 
software. The proposed framework does not interfere with existing access control policy mech
anisms. The framework allows policies to be applied in any tier of the application, determined by 
the application developers in conjunction with the database administrators. As of this writing we 
have developed our proposed framework design in sufficient detail to support a proof-of-concept 
prototype. 

The rest of this paper is organized as follows. Section 2 describes the components of multi-tier 
architectures and the needs for policy management in multi-tier architectures. Section 3 describes 
the limitations of existing mechanisms for dealing with policy management in multi-tier archi
tectures. Section 4 presents an overview of our proposed framework and the functions of the 
components, standardized vocabularies and method interfaces, and how the framework separates 
duties among development subgroups. It also describes how security contexts, as well as policies, 
can be shared among application components. Section 5 summarizes what we have achieved and 
what we want to achieve in the future. 

2. Multi-tier architectures 

Multi-tier architectures are an evolution of approaches to connecting a user to services in-
formed by data. Architectures for such applications must provide three functions: data storage 
and retrieval, application business logic, and interface with the user. 

The first approach, historically speaking, was for clients to connect to servers using dumb 
terminals. All three functions were provided by the server, usually in a single integrated appli
cation. Terminal to server architecture is shown in Fig. 3. Later the availability of intelligent 
workstations allowed the application to be split between the client and the server. Data storage 
was provided by the server, client interface was provided by the client component, and application 
business logic was provided by both components, with functionality divided according to the 
needs of the application. Client/server architecture is shown in Fig. 4. 

More recently, a third approach has become common, largely in response to the development 
of Web capabilities. Application-specific client components that support business logic, called fat 
clients or thick clients, are difficult and expensive to deploy and maintain. Administrators would 
like to replace them with thin clients that can be deployed once and used to support multiple 
applications. In multi-tier architectures thin clients are responsible for interfacing with the user, 

Fig. 3. Terminal to server architecture. 



264 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

Fig. 4. Client/server architecture. 

but do not themselves determine what information to display. All business logic is offloaded to 
server components. Multi-tier architectures are shown in Figs. 1 and 2. 

Web browsers are the most typical of these thin clients; they are automatically available on 
most user workstations and can be used to support many different applications. While it is true 
that Web browsers also support the automatic download of thick client software, in the form of 
mobile code such as ActiveX and Java Applets, many enterprises prefer to turn off mobile code 
functionality in response to concerns about security and network bandwidth. 

Thin clients are responsible only for presentation, which consists of displaying information to 
users and collecting information from users. Web browser thin clients are connected to Web 
servers, instead of directly to a DBMS server. The Web server is associated with an application 
server capability, which supports the application business logic that determines what the Web 
browser should present to and collect from the user. This application server environment is the 
business logic tier. 

At the data store end, the data tier, there are good reasons for moving business logic out of the 
data storage systems, the DBMSs, into the business logic tier. As long as you have a Web ap
plication server, you have a platform that supports business logic. Moving all the business logic 
to this platform, instead of developing it within the DBMS, has a number of advantages for 
development support and run-time effectiveness. 

Advantages for development support include: 

•	 One application can access multiple databases on multiple DBMSs, without requiring coordi
nation among developers of code based on the multiple DBMS platforms. 

•	 An application can call legacy applications and databases without requiring the legacy systems 
to be extensively modified. 

• One database can be referenced by more than one application. 
•	 The business logic application can be a coordinated, single application written on a single plat-

form. 
•	 DBMSs were developed to store data and provide it on request. They do this extremely well. 

They are less praiseworthy as application development platforms. Compared to integrated de
velopment environments that support C++, Visual Basic, Enterprise Java Beans (EJB), and 
other component or object-oriented environments, DBMS development environments are lim
ited in developer support and language capabilities. 

Advantages for run-time effectiveness include: 

• enhanced scalability by supporting many clients with few resources, 
• enhanced efficiency through the use of database connection sharing. 



S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 265 

Fig. 5. Multi-tier architecture policy management. 

The downside of multi-tier application architectures is that they can be quite complex. The 
presentation tier can consist of any one of a number of browser products on any one of a number 
of platforms. The data tier can consist of multiple databases in different DBMSs on different 
platforms. The business logic tier can consist of multiple components on multiple different plat-
forms. 

The problem is that all these different components need to be composed together into a single 
application. Where security is involved, the composition must be seamless and reliable. Com
posing policies in multi-tier applications can be an issue, because the developers of the different 
components of the business tier and the different databases have different responsibilities and 
knowledge about the policies that should apply. The distribution of knowledge and responsibil
ities is illustrated in Fig. 5. We address policy composition in multi-tier architectures by providing 
a framework that allows the developers of each component to concentrate on the policy man
agement functions that are properly their responsibilities. 

We develop our solution for policy composition in Sections 2.1.–2.3. We discuss aligning the 
authority for policy with the responsibility, managing identity credentials, and making security 
contexts mobile. We then discuss how with our solution policies can be extended beyond access 
control. 

2.1. Aligning the authority for policy with the responsibility 

An architecture that reserves policy application to the DBMS requires extensive communica
tion among various subgroups within the enterprise. Managing a policy has three components, 
and each component is, ultimately, the responsibility of different enterprise subgroups: 

• Policy specification is properly the responsibility of enterprise management. 
•	 Policy association is the process of associating enterprise policy with data. It is properly the 

responsibility of the data owners, usually represented by the database administrator (DBA). 
•	 Policy application is the process of applying the policy to data at the appropriate time. It 

is properly the responsibility of the business logic developer or whoever is in charge of the 
point(s) at which the data are used. Applying the policy at time of use is an ongoing activity; 
the data may be considered to be ‘‘used’’ when it is accessed within the DBMS, but it is also 
‘‘used’’ within the application, whether the application code is located within the DBMS or 



266 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

in a separate middle tier component, and whether the application uses the data immediately or 
holds on to it for several days before use. 

Policy enforcement is only complete when all three elements, definition, association, and ap
plication, work harmoniously together. The problem is that building a coordinated response to 
policies can require close cooperation among those responsible for each component. It is not that 
any of the policy management problems are inherently impossible to solve. The problem is that 
they require cooperative design decisions affecting application code in both the middle tier and the 
DBMS, and these two portions of the application may be developed by different groups of people 
on different time schedules. The result is a greater risk of miscommunication and decreased as
surance that the resulting product will correctly implement the policy. 

A mechanism is needed that decouples the development of software that implements the policy 
from the process of associating the policy with data and the development of software that applies 
the policy at time of use. 

2.2. Managing identity credentials 

Management of identity credentials may present design problems because in multi-tier appli
cations the client does not connect directly to the DBMS. Most typically, such application ar
chitectures are built from a Web browser on the client, a Web server and one or more applications 
in the middle tier, and one or more data stores in the data tier. Problems with authentication in 
the middle tier include communicating user credentials from the client through the middle tier to 
the DBMS, authenticating all applications in the chain from the client to the DBMS, and sup-
porting high-performance architectures. 
Communication of user credentials is a problem because, if authentication in the DBMS is to 

be based on the identity of the user who originates a request for access, then a mechanism is 
needed to pass the credentials from the originating client through the business logic tier(s) to the 
DBMS. 

One possible mechanism for communicating credentials is for the middle tier to impersonate the 
client. With this mechanism, the middle tier opens a connection to the DBMS while impersonating 
the originating client, and the DBMS uses traditional DBMS authentication and authorization 
mechanisms. Requirements for this mechanism are (a) the DBMS must trust the middle tier both 
to authenticate the actual client and to impersonate the actual client and not some other entity, 
and (b) the client, the middle tier, and the DBMS must share a security context. 1 

Another possible mechanism is for the middle tier to pass the client’s digital certificate to the 
DMBS. With this mechanism the middle tier and the DBMS both trust the PKI to authenticate 
the actual client, in effect sharing the same security context, and the DBMS trusts the middle tier 
to pass it the certificate belonging to the actual client and not some other identity. 

1 A security context defines the semantic meaning of an identity and its attributes. Without a shared security context, 
the DBMS might understand the identity ‘‘Jenny Blaise’’ to point to a sales manager in the enterprise, while the middle 
tier understands the identity ‘‘Jenny Blaise’’ to point to a reporter for a tabloid newspaper. 



S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 267 

With either mechanism, chain of delegation is a problem because, in architectures where the 
DBMS and the client are not in direct communication, the DBMS has no choice but to trust 
intermediary applications either to transmit the credentials presented by the actual client or to 
impersonate the client. For this reason, the DBMS must authenticate all intermediary applica
tions as well as the originating client. 
Performance can be a problem because traditional DBMS authentication occurs when a con

nection is established and the authentication identity persists only as long as the connection is 
maintained. However, establishing and maintaining a connection to a DBMS is expensive in terms 
of time and resources. In systems where support for a large number of simultaneous connections is 
important, such as e-commerce systems, any authentication/authorization mechanism that de
pends on a dedicated connection to the DBMS for each originating user is an unacceptable so
lution. High-performance multi-tier architectures typically rely on opening a dedicated connection 
between the middle tier and the DBMS, and using that connection to access the DBMS as re
quired to satisfy requests from multiple clients. 2 

For these reasons, many currently fielded multi-tier systems do not attempt to authenticate the 
originating client in the DBMS, or even to inform the DBMS of the identity of the originating 
client. Instead, the middle tier connects to the DBMS under its own identity, and the DBMS trusts 
it with a set of authorizations associated with the middle tier application rather than the origi
nating client. 

To deal with these two problems, a mechanism is needed that allows a more granular level of 
control in multi-tier architectures, even though that control may not be as strong as traditional 
access control applied to client/server architectures, because it will be stronger than the practical 
alternatives for multi-tier architectures. 

2.3. Making security contexts mobile 

Traditional DBMS policies depend on the DBMS identifying and proving the unique identity 
of the client who is requesting access to the data. The client usually represents a user, though it 
may be an application running under its own identity. In either case, the authenticating system has 
prior knowledge of all potential clients. In our area of discussion, DBMS authentication, this 
knowledge is traditionally stored directly in the DBMS. Other possible implementations include 
storing the identities and authorizations of potential clients in an external trusted directory and 
developing code in the DBMS to use this external information for authentication. 

There are two problems with this approach: 

•	 The pool of potential clients may include clients whose identity is not known to the system 
managers before the clients attempt to connect. 

•	 If a chain of impersonation is involved, then the DBMS concept of user identity must be syn
chronized with the middle tier’s concept of user identity. 

2 To be more accurate, we should discuss connections from individual components of the middle tier, rather than the 
middle tier as a whole. However, this distinction is not relevant to the argument being presented, however significant it 
may be to middle tier application developers. 



268 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

2.3.1. Pool of potential clients 
For some applications, the pool of potential clients may be unknowable because expansion of 

the Internet has led to expansion of application client bases. Many e-commerce applications 
more-or-less consider everyone in the world to be a potential client; this set of potential clients is 
simply too large to predefine each potential identity. Extranet applications include employees of 
other enterprises in the potential client base; employees of other enterprises are not readily known 
to database administrators. Even within an enterprise, the pool of predefined clients needs to be 
synchronized with the enterprise’s master file; solutions exist for this but they may be restrictive. 

Because for many applications the number of potential clients can be too large to predefine, a 
mechanism is needed that associates the client with some characteristic that can be known before 
the client makes a request that requires access to data. This characteristic might be identity if the 
client is a previous customer, or it might be some other attribute that places the customer in a 
predefined group or role. 

2.3.2. Synchronizing concepts of user identity 
To deal with these problems, a mechanism is needed that identifies users consistently in all tiers. 

Today the most promising such mechanism is use of identity and attribute digital certificates 
validated by a trusted PKI. Attribute certificates facilitate role-based access control (RBAC) by 
providing a digitally signed list of user attributes [5,6]. Other mechanisms may be developed in the 
future. Whatever mechanisms are available, system architectures need the flexibility to make use 
of them. 

One way to maintain security context support is to have a mapping between the identity and 
attributes that the DBMS requires for access to a particular piece of data and the identity and 
attributes that the application logic understands. For example, if the DBMS requires the attribute 
‘‘manager’’ for data access and the application logic’s equivalent term for ‘‘manager’’ is ‘‘super-
visor’’, then a mapping between ‘‘manager’’ and ‘‘supervisor’’ can insure that context is maintained 
between the DBMS tier and the application server tier (see [5,6] for additional details). 

2.4. Making policies general 

‘‘Policy’’ is often taken to mean ‘‘security policy’’, and ‘‘security’’ is often taken to mean 
‘‘access control’’, and all access control is often expected to be handled by the same mechanisms. 
Although security policies are important policies, and access control is important to an enter
prise’s overall security, these are not the only policies that an enterprise may want to enforce, and 
not all policies, access control or other types, are equally important. 

2.4.1. Different types of policies 
A substantial part of most middle-tier application development involves implementing various 

kinds of policies. Some policies are enterprise policies that are specified by enterprise management 
as rules that must be followed. Examples of enterprise policies include requirements for ensuring 
that files have the proper copyright notice before they are released outside the enterprise, de-
grading the resolution of certain images before they are released to specified classes of clients, and 
scanning files for viruses before they are used. 



S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 269 

Other rules are local to the application but span both the business logic tier and the data tier. It 
is a bit of a stretch to call these application rules ‘‘policies’’, but it is convenient for our discussion 
because they share many of the characteristics of enterprise policies. In particular, they may be as 
critically important and as much in need of assurance that they are working correctly as enterprise 
policies, and can equally well be handled by our proposed framework. 

An example of one of these other ‘‘policies’’ is a rule that defines the confidence that the middle 
tier application can have in the accuracy of a data item retrieved from a DBMS. Imagine an 
application that controls airplane takeoffs. One of the data items it needs is the amount of fuel in 
the plane’s tank. The rule might be that the confidence level of this type of data is a function of 
metadata, such as the time since the data elements were last updated, rather than something that 
can be derived from the data value itself. The application as a whole, including both the middle 
tier and the DBMS, needs a mechanism to calculate the confidence factor and get that infor
mation to the middle tier before the middle tier releases the plane for takeoff, or some considerable 
unpleasantness might ensue. 

A mechanism is needed that supports any policies that may be applicable to data, using the 
same techniques for any policy, without requiring that the set of policy types be predefined by 
DBMS vendors. 

2.4.2. Different levels of criticality 
A characteristic of this expanded definition of policies is that not all policies are equally critical. 

Some types of policies may be less critical than others in an enterprise; for example, the need to 
check files for copyright notice may be less critical than protecting write access to the salary file. 
Even within access control, some data may need to be protected more carefully than others. For 
example, the author of a document may wish it to be restricted to only a small group of people 
while it is under development, but the accidental release of the partially written document to other 
employees would not have as severe consequences as the accidental release of the company’s 
product source code to the general public. 

Therefore, a mechanism that is not deemed sufficiently secure for one policy may still be ac
ceptable, and very valuable, for other policies. The requirement is that the mechanisms must not 
interfere with each other. 

3. Related work 

As information system architectures have moved from client-server to multi-tier, administra
tion of security policy has become difficult. Generally, each component in a multi-tier architecture 
that has policy enforcement responsibilities maintains its own policy information that must be 
manually configured. Hence, it becomes the responsibility of system administrators to assure that 
all policies are consistent. 

Several research efforts are currently under way to centralize the administration of policy. The 
Open Group’s Adage project [12,17] is a typical example of this research. A central policy defi
nition and storage capability is used by administrators to define and store all the policies needed 
throughout the distributed system. These policies are then translated into policy information 
suitable for the various enforcement mechanisms used throughout the system. Systems like Adage 



270 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

assume a single central authority that defines all policy. Further, they assume that this single 
authority has administrative control of all elements of the multi-tier distributed system. 

Mobile policy takes a different view, assuming a much more distributed definition of policy and 
administrative control of the system. Mobile policy allows policy to be defined by an authority 
close to the system element that is responsible for the information being controlled. Then, that 
system element shares the policy with other system elements that use its data. 

The notion of mobile policy is not particularly new. Several approaches to sharing policy in-
formation have been developed. However, none is as general as the approach proposed here. 

One problem common to all attempts to centralized policy definition and storage is the need for 
a semantically rich policy specification language capable of representing all policies that may 
apply within the multi-tier system. Such a language is very difficult to define and has so far eluded 
researchers. Mobile policy tries to avoid this problem by encapsulating policy in an executable 
module. These modules can be coded using any programming or policy definition language that 
the policy administrator chooses. Instead of defining an all-powerful magic policy language, the 
problem is transformed into defining a shared vocabulary of inputs to and outputs from policy 
modules. These vocabularies should be more tractable than a general-purpose policy language. 

Information labeling, as typified by NIST FIPS PUB 188 [13], is a mechanism for sharing with 
data consumers the policy that should be applied to data. However, when using labels, it is as
sumed that all system elements that exchange data already share a common definition of policies 
that might apply to data. The label is a pointer to the particular policy to be applied to a piece of 
data. For example, a label of classified does not define policy for a piece of data but instead tells 
the recipient to enforce his policy for classified data when using this piece of information. 

The policy server in Secure Computing Corporation’s (SCCs) Distributed Trusted Operating 
System (DTOS) [1,7,8] is an example of mobile policy similar to the approach proposed here even 
though it requires a central policy specification authority. DTOS is a high-assurance version of the 
Mach microkernel operating system. In microkernel operating systems, a very small kernel is built 
(the microkernel) and many of the services associated with traditional operating systems are 
added as servers on top of the microkernel. SCC wanted to implement discretionary access control 
as a server outside the kernel. The kernel would enforce policy, but the policy being enforced 
would be defined outside the kernel by a policy server and could be easily modified. Each time a 
server running on the microkernel attempted to access a microkernel-controlled resource, the 
microkernel would consult the policy server to determine if the requested access was allowed. 

As might be expected, the need for the microkernel to check with the policy server on every 
resource access request introduced significant overhead and severely degraded performance of the 
operating system. To deal with this, SCC added an ‘‘access vector cache’’ to the microkernel. 
When a process first requests access to a microkernel-controlled resource, the microkernel con
tacts the policy server and gets an access vector for that process from the policy server. The access 
vector defines all of the resources that the subject process is allowed to use. On subsequent re-
quests from that process for access to microkernel-controlled resources, the microkernel consults 
the cached access vector instead of contacting the policy server. This significantly improves 
performance. 

Access vectors are a form of mobile policy and were the first approach considered in this work. 
However, access vectors are well suited for use in an operating system but not as a policy 
mechanism for data in a multi-tier information system. Access vectors in DTOS are a fixed-length 



S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 271 

bit field. This is possible because the set of resources being controlled by the microkernel is static 
and completely defined before the system begins operation. Unfortunately, in a distributed system 
the set of data available for use or the set of potential users is not static nor is it predefined before 
the system begins operation. 

SCC did provide a capability not addressed in the mobile policy framework presented here that 
may be useful and should be considered for future work. Access vectors are considered cached 
copies of actual policy information. The policy information in the policy server is the definitive 
definition of the policy to be enforced. As such, the policy in the server could change during system 
operation invalidating one or more cached access vectors. SCC provided a mechanism for the 
policy server to notify the microkernel that policy changes have occurred. When this happens, the 
microkernel invalidates the entries in the access vector cache and contacts the policy server on 
the next request for access to a resource to get a new access vector consistent with the new policy. 
The framework for mobile policy presented here does not yet address policy changes. 

While the mobile policy framework presented here was being developed, the Object Manage
ment Group’s (OMGs) Common Object Request Broker Architecture (CORBA) medical systems 
(CORBAmed) domain task force (DTF) was developing a framework for access control decision 
making within business objects called Resource Access Decision (RAD) [9,10]. CORBA business 
objects are essentially business logic tier components. RAD deals only with access control deci
sions and does not define either where access control policy comes from or how it is administered. 
However, the RAD framework does include several of the elements found in the mobile policy 
framework presented here. 

The next section describes the framework for use of mobile policy in multi-tier information 
systems. 

4. The proposed framework 

We call our proposed framework MoP, for mobile policies. MoP allows the separation of 
policy definition, policy association, and policy application into separate operations that can be 
performed by different people without requiring them to share the details of the policy with each 
other. Policies, once defined, are associated with data in the database. When data move from one 
component or tier to another, any associated policies travel along with the data until the policies 
are applied. Mobile policies are shown in Fig. 6. 

4.1. System overview 

The primary goal of the framework is to support separation of duty among application 
component developers by moving policy from the database to the application along with the data 
while minimizing the knowledge that must be shared between data tier developers and business 
logic tier developers. Secondary goals are to minimize effort on the part of application developers, 
support assurance that the system works as intended, work harmoniously alongside existing 
policy mechanisms, support multiple application and DBMS platforms, and minimize the impact 
on performance. 



272 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

Fig. 6. Mobile policy. 

Fig. 7. MoP component types. 

The framework consists of five code component types and a set of standards for how they are 
used and developed. The component types are: 

• Policy module. Policy modules implement policy rules. 
•	 Policy composition module. Deals with issues such as the order in which policies are to be ap

plied. Bonati et al. [2] propose an algebra for security policies with a translation mechanism to 
logic programs in order to facilitate policy composition even in the case where the policies are 
expressed in different formats. 

•	 Conflict resolution module. Conflict resolution modules resolve conflicts among policy mod
ules. 

•	 MoP stored procedures. The MoP stored procedures implement MoP framework component 
logic that resides within each DBMS. 

•	 MoP framework component. The MoP application component implements the mechanisms for 
using the framework within an application. 

The component types are shown in Fig. 7. 
Standards for the use and development of the components are the glue that makes the system 

work. MoP specifies two kinds of standards, interface standards that specify how one component 
may call another, and vocabulary standards that represent the minimal knowledge that must be 
shared among the developers of systems that use MoP. 

4.2. Function of components 

This section describes the MoP component functions. 



S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 273 

4.2.1. Policy module 
A policy module is an executable code module written for the platform of choice of the ap

plication. Each policy module implements one specific policy rule. For example, a policy module 
may determine whether a requested access is granted based on user identity, or whether access is 
granted based on the type of connection between the client and the application, or it may add the 
correct copyright notice to a file. Thus, each policy module is a self-contained package with a 
limited, specific function, which has the nice benefit that it simplifies validation of correct be
havior. 

Policy modules are classified into types by the end function they perform, not by the rule that 
governs how they perform it. The three examples above include only two policy types: determine 
whether access is granted and add a copyright notice. The two access granting rules, one of which 
looks at user identity and the other of which looks at the client connection, would be implemented 
in two separate policy modules, both of which are of type ‘‘access grant.’’ 

All policy modules of the same function type return the same output parameters with the 
same syntax and semantics. An application programmer needs to know what the module does in 
order to determine whether the module is applicable to the planned use of the data, and what 
output parameters the module returns and what they mean in order to code an appropriate re
sponse, but the application programmer does not need to know the policy rule the module im
plements. 

In contrast, not all policy modules of the same type require the same input parameters. All 
policy modules implement a method that returns a list of input parameters. The application must 
be able to accept a list of parameters selected from a predefined set and return a value for each. 

The scope of a policy module may vary. It may be developed and used within a single appli
cation, department, or enterprise, or eventually there may be well-known policy module com
ponents that are widely available. 

We envisage that policy modules will come from three sources. At first, policy modules will be 
custom-built by enterprise developers to implement enterprise policies. Later, if MoP becomes 
widely used, policy modules that implement common policies may become commodity items. 
Finally, we plan to investigate automatically extracting existing DBMS access control specifica
tions from the DBMS and creating MoP policy modules dynamically when access to data is re-
quested. 

To summarize, a policy module is an executable code module that implements a single rule, has 
a well-known type and set of output parameters, and produces a list of required input parameters. 

4.2.2. Conflict resolution module 
Multiple policy modules may be associated with the same data set. If it should happen that 

more than one policy module of the same type is associated with the same dataset, then any 
conflicts must be resolved before the correct single output parameter set is defined. This conflict 
resolution is performed by a conflict resolution module. 

Conflict resolution modules can be simple or complex, depending on the policy module type 
(see [2]). For example, a conflict resolution module for access grant policy modules might be very 
simple, just the logical AND of Boolean values meaning OK or Not OK, while the conflict re-
solution module for copyright notices might be very complex, requiring choosing among several 
sets of alternative copyright statements based on some external information. 



274 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

We assume that different policy module types are independent of each other. Any interactions 
between, say, a copyright notice rule and an access grant rule we consider to be idiosyncratic, 
complex, and outside the scope of the MoP framework. MoP, of course, does not prevent the 
application developer writing code to resolve any such conflicts. 

Conflict resolution module development is closely linked to policy module development. Con
flict resolution modules implement the resolution of conflicts among policy rules, and therefore 
conflict resolution rules are in effect policy rules. 

The scope of conflict resolution modules can vary as widely as the scope of policy modules, 
from application-specific to well-known published conflict resolution module components. 

4.2.3. DBMS stored procedures 
When data are accessed, the MoP application component needs to retrieve the policy modules 

associated with the data. Two DBMS stored procedures provide this capability. One receives a 
SQL request and returns identifiers associated with relevant policies, the other receives a policy 
module identifier and returns the specified policy module. 

MoP therefore requires three or more database queries instead of one for each data request: 
access the data, request relevant policy module identifiers, and request each needed policy module. 

The MoP application component makes all these requests within the same transaction, thereby 
eliminating potential synchronization difficulties. 

The separation of function not only supports flexibility but also decreases performance over-
head by allowing the application to make only those requests it actually needs and to make them 
in any order. For example, for READ requests the policy may be run before the data are re
trieved, because the result of the policy may make retrieving the data unnecessary, or the ap
plication may first retrieve data and review it to determine which of the associated policies are 
relevant to its intended use of the data before requesting the policy modules. 

Separating the request for policy module identifiers from the request for specific policy modules 
allows the application to cache policy modules and to request only those policy modules it ac
tually needs, a potentially significant performance enhancement. 

4.2.4. Application framework component (MoP) 
The MoP application framework component encapsulates the MoP implementation details that 

are not application dependent. The MoP component exposes methods that support accessing 
data, identifying relevant policy modules, retrieving relevant policy modules, and running selected 
policy types. 

As of this writing, the application is responsible for setting up pointers to permanent objects 
(in the current version, the permanent objects are caches and connections to databases), providing 
an object that actualizes parameters, and calling the MoP retrieve time and MoP apply time 
methods. 

4.3. MoP shared vocabularies 

MoP shared vocabularies are the heart of our solution for sharing policy among developers 
responsible for different application tiers while minimizing the knowledge they must share with 



S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 275 

each other. Encapsulating policy rules into components allows us to reduce the semantics that 
must be shared from understanding policy logic, which requires a ‘‘magic language’’ and is 
very difficult, to understanding a small set of shared vocabulary items, which is a relatively easy 
and familiar technology. Each vocabulary item has an identifier, a syntax, and a semantic 
meaning. 

MoP uses three shared vocabularies: policy module types, output parameters, and input para-
meters. 

In the policy module types vocabulary, each term specifies what the policy module does, such as 
add a copyright notice or determine whether access is granted. The policy module type vocabulary 
is the most pervasive of the MoP vocabularies. Module type terms must be understood by all 
participants in policy management except for DBMS developers, including policy makers and 
policy module developers, conflict resolution module developers, data store administrators, and 
application developers. The policy module type is important to DBAs determining the applica
bility of policy modules to data and to application programmers determining the applicability of 
policy modules to their intended use for the data. 

In the output parameters vocabulary, each term specifies both syntax and meaning of a pa
rameter returned from a policy module. Output parameters are the same for all policy modules of 
the same type. The application uses the output parameters to apply the policy. Output parameter 
terms must be understood by policy makers and policy module developers, conflict resolution 
module developers, and application developers. The output parameter vocabulary is important 
because for many policy types, such as access control, the application must be prepared to take 
action based on returned output parameters. 

In the input parameters vocabulary, each term specifies an input parameter needed by the policy 
module. The application provides a method that accepts a list of input parameters and returns 
a list of matching values. Input parameter terms must be understood by developers of policy 
modules and by application developers. The input parameter vocabulary is important because two 
modules with the same function may have different input parameters. 

The scope of the shared vocabularies can vary in the same way the scope of a policy module can 
vary. Vocabulary terms can be shared among developers of a single application, developers within 
a department or an organization. If MoP becomes widely available, some vocabulary term de
finitions may be standardized across the industry. 

4.4. Allocation of responsibilities 

Supporting separation of duty by allocating specific policy management responsibilities to 
different development groups is MoP’s prime benefit. With MoP, each group of developers 
needs to understand only the subset of policy management that falls properly within the group’s 
purview. 

MoP allocates responsibilities to policy makers, database administrators, DBMS developers, 
and application developers. MoP does not impose any requirements on the client tier. 
Policy makers specify the policy rules that are implemented by MoP policy modules. They also 

have the ultimate responsibility for locating or creating policy modules that implement the rules 



276 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

and conflict resolution modules that implement the resolution of conflicts among policy rules. 
Policy makers must understand: 

• policy module function type semantics, 
• policy module input and output parameter semantics and syntax, 
• policy and conflict resolution rules, 
• policy module and conflict resolution module interfaces. 

DBMS developers create stored procedures that implement the two DBMS functions required 
by MoP, returning identifiers for the policy modules associated with a data access request and 
returning a policy module on request. Database administrators must understand: 

• policy module function type semantics, 
• which policy modules are to be associated with which data. 

Database administrators create and install the MoP stored procedures into the DBMS, insert 
policy modules identified by the policy makers, and associate policy modules with data. Mech
anisms for these functions will vary from DBMS to DBMS. This process is out of the scope of 
MoP. DBMS developers must understand: 

• DBMS development environment, 
• stored procedure interfaces. 

Application developers call the MoP application component, pass it required parameters, and 
use policy module outputs to apply policy. Application developers must understand: 

• policy module function type semantics, 
• policy module input and output parameter semantics and syntax, 
• MoP application component interfaces. 

4.5. The implementation 

We are using a prototype implementation of the MoP components to validate our framework 
design as we develop it. We do not consider any portion of our design complete until it has been 
included in the prototype. 

The current prototype uses Microsoft Visual Basic Enterprise 6.0, the Common Object Module 
(COM) and Microsoft Access 8.0. Early work has focused on building the MoP application 
component, using stubs for database support and policy modules, and a demonstration appli
cation that exercises each feature of the MoP application component. 

Our target databases are Oracle and SQL Server. Access does not provide stored procedures or 
sophisticated policy management mechanisms, but its functionality is adequate to support work 
on the MoP application component. 

The current demonstration application, showing interior functions of the MoP application 
component, is shown in Fig. 8. 



S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 277 

Fig. 8. MoP demonstration application. 

5. Conclusions and future work 

This paper proposes the use of mobile policy in multi-tier information systems. Specifically, it 
separates policy administration from policy enforcement. Policy is specified and administered at 
the element of a distributed system where the data being controlled by policy is defined. That 
policy is then shared with consumers of the data so that they can enforce the appropriate policy 
when using the data. 

In this paper, mobile policy is proposed as a means for making DBMSs more composable. This 
is analogous to the capability provided by the X/Open Distributed Transaction Processing (DTP) 
model [15,16]. X/Open DTP allows DBMSs to participate in transactions managed by an external 
transaction monitor. It essentially opens up the DBMSs transaction processing protocol to allow 
two-phase commit across the DBMS and other software components. Mobile policy attempts to 



278 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

provide the same capability to the access control mechanisms of the DBMS while simultaneously 
extending it to handle a broader collection of data handling policies beyond access control. 

Although we have not completed work on the basic MoP framework, we have identified a 
number of enhancements that we would like to add once the basic framework is complete: dy
namically generated policy modules, dynamic determination of conflict resolution metadata, a 
policy composition module that manages relationships among different policy modules, and 
support for associating policy modules with subsets of retrieved data. 

Dynamically generated policy modules are interesting because they would eliminate parallel 
implementations of the same policy. DBMS systems already have a mechanism that associates 
access control policies with data. We would like to develop a mechanism that extracts the access 
control information relevant to an SQL query and packages it as a MoP policy module. In ad
dition to convenience value, automatic generation of MoP policy modules potentially could en
hance assurance because the information would not have to be associated with the data twice, 
once as a policy module and once as DBMS access control lists. 

Dynamic determination of conflict resolution metadata is interesting because it would simplify 
the task of policy module developers. As it stands today, MoP requires linked code development 
in policy modules on one type and their associated conflict resolution modules. We think it would 
be desirable to provide a cleaner interface so that policy module and conflict resolution module 
development can be more independent. 

Support for associating policy modules with subsets of retrieved data is interesting because it 
would support applications, such as data warehouses, where a large block of data is retrieved all 
at once and stored internally in database table format. Later, when the data are to be used, the 
application extracts subsets of the data for each specific use. MoP as currently designed does not 
support this kind of application. 

Before our framework can be shown to be useful in production environments, a number of 
issues need to be addressed: performance, multi-platform application support, and assurance. 

Performance is an issue, because a prime reason for using multi-tier architectures is to gain 
enhanced scalability and efficiency. If making policies mobile slows processing down any ap
preciable amount, any benefits will not be worth the cost. 

Multi-platform support is an issue because another prime reason for using multi-tier architec
tures is to gain application development flexibility. If the MoP application component can be called 
only by COM applications, and not by EJB or CORBA applications, its usefulness will be limited. 

Assurance is an issue because many MoP policies are security policies. A mechanism for im
plementing security policies that cannot itself be shown to meet enterprise requirements for se
curity will not be very useful. 

References 

[1]	D.L. Black, D.B. Golub, D.P. Julin, R.F. Rashid, R.P. Draves, R.W. Dean, A. Forin, J. Barrera, H. Tokuda, G. 
Malan, D. Bohman, Microkernel operating system architecture and mach, Journal of Information Processing 14 
(1995) 4. 

[2]	P. Bonati, S. De Capitani di Vimercati, P. Samarati, A Modular Approach to Composing Access Control Policies, 
in: Proceedings of the ACM Computer and Communications Security Conference, 2000. 



S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 279 

[3] B.J. Cox, Object Oriented Programming: An Evolutionary Approach, Addison-Wesley, 1986. 
[4] T. Digre, Business object component architecture, IEEE Software 15 (5) (1998). 
[5]	V. Doshi, A. Fayad, S. Jajodia, R. MacLean, Using attribute certificates with mobile policies in electroniccom

merce applications, in: Proceedings of 16th Annual Computer Security Applications Conference, New Orleans, 
LA, December 2000, pp. 298–307. 

[6]	A. Fayad, S. Jajodia, D. Faatz, V. Doshi, Going beyond MAC and DAC using mobile policies, in: Proceedings of 
16th IFIP International Conference on Information Security, Paris, France, June 2001. 

[7]	S.E. Minear, Providing Policy Control Over Object Operations in a Mach Based System, Secure Computing 
Corporation, Roseville, MN, April 1995. 

[8]	S.E. Minear, Controlling Mach Operations for use in Secure and Safety-Critical Systems, Secure Computing 
Corporation, Roseville, MN, June 1994. 

[9]	Object Management Group (OMG), Resource Access Decision (RAD), OMG document corbamed/99-03-02, 
March 1999. 

[10] Object Management Group (OMG), Transaction Service Specification. 
[11] B. Plotkin, S. Garone, Apple’s WebObjects: Innovative Engineering + Internet Standards ¼ Industrial-Strength 

Web Application Server, IDC, Framingham, MA. 
[12]	R. Simon, M.E. Zurko, Separation of duty in role-based environments, in: Proceedings of the 10th Computer 

Security Foundations Workshop, June 1997. 
[13]	US Department of Commerce/National Institute for Standards and Technology, Standard Security Label for 

Information Transfer, FIPS PUB 188, September 1994. 
[14] G. Wiederhold, Mediators in the architecture of future information systems, IEEE Computer 25 (3) (1992) 38–49. 
[15]	X/Open Company Ltd., Distributed Transaction Processing: The TxRPC Specification, X/Open document P305, 

Reading, UK. 
[16]	X/Open Company Ltd., Distributed Transaction Processing: The XATMI Specification, X/Open document P305, 

Reading, UK. 
[17]	M.E. Zurko, R. Simon, T. Sanfilippo, A user-centered, modular authorization service built on an RBAC 

foundation, in: Proceedings of IEEE Symposium on Security and Privacy, May 1999. 

Susan Chapin is a Lead INFOSEC Engineer at The MITRE Corporation, where she has worked for the 
Center for Integrated Intelligence Systems since 1992. She has degrees from Harvard University and San 
Diego State University, and has worked as a software developer and information systems security engineer 
since 1976. Her e-mail address is schapin@mitre.org. 

Don Faatz is a Principal Information System Security Engineer with The MITRE Corporation in McLean 
Virginia. His work is focused on architectures for secure distributed information systems. He has a BS and 
ME in Computer Systems Engineering from Rensselaer Polytechnic Institute and is pursuing a Ph.D. in 
Information Technology at George Mason University. 



280 S. Chapin et al. / Data & Knowledge Engineering 43 (2002) 261–280 

Sushil Jajodia is Principal Scientist at The MITRE Corporation in McLean, Virginia. He is also the BDM 
Professor and Chairman of the Department of Information and Software Engineering and Director of Center 
for Secure Information Systems at the George Mason University, Fairfax, Virginia. He received his Ph.D. 
from the University of Oregon, Eugene. His research interests include information security, temporal data-
bases, and replicated databases. He has authored four books, edited seventeen books, and published more 
than 250 technical papers in the refereed journals and conference proceedings. He received the 1996 Kristian 
Beckman award from IFIP TC 11 for his contributions to the discipline of Information Security, and the 2000 
Outstanding Research Faculty Award from GMUs School of Information Technology and Engineering. Dr. 
Jajodia has served in different capacities for various journals and conferences. He is the founding editor-in-
chief of the Journal of Computer Security, and serves on the editorial boards of ACM Transactions on 
Information and Systems Security and International Journal of Cooperative Information Systems. He is the 
consulting editor of the Kluwer International Series on Advances in Information Security. The URL for his 
web page is http://isse.gmu.edu/�csis/faculty/jajodia.html. 

Amgad Fayad leads the advanced security research section at the MITRE Corporation. His interests include 
security service application programming interfaces (API), suspicious user confinement, access and release 
control, and penetration testing methodologies. He recently taught courses at George Mason University on 
C++ programming and discrete mathematics. He holds an M.S. degree in computer sciences from Purdue 
University, West Lafayette, Indiana. 


	Consistent policy enforcement in distributed systems using mobile policies
	Introduction
	Multi-tier architectures
	Aligning the authority for policy with the responsibility
	Managing identity credentials
	Making security contexts mobile
	Pool of potential clients
	Synchronizing concepts of user identity

	Making policies general
	Different types of policies
	Different levels of criticality


	Related work
	The proposed framework
	System overview
	Function of components
	Policy module
	Conflict resolution module
	DBMS stored procedures
	Application framework component (MoP)

	MoP shared vocabularies
	Allocation of responsibilities
	The implementation

	Conclusions and future work
	References


