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Abstract- The digitization of pollen grain images would perthe creation of a semi-automated system thatdcaid the
expert palynologists in pollen classification. lbwd reduce cost and time-to-answer as well as anpranalyst productivity.
These issues are particularly critical in forensjgplications. There are numerous factors that stidnd considered when
establishing a digital database intended for sentbanated pollen classification. This paper explagsimber of these issues
through computer vision and machine learning assesss. The main topics evaluated are morphologicathilar species-
level classification, optimal training data sizegvin best to utilize three-dimensional data, accurelegnges due to the
availability of metadata, i.e., fluctuations in dysts’ confidence in taxa labelling, and using fbdata to classify modern data.
This is the first known application of training @ossil data to classify modern taxa. Performanc@®f% and 93.8% correct
classification were achieved on two distinct sétsiorphologically similar species-level data, suspig previous records. We
determined that a minimum of 5-10 training images@ass was required to yield reasonable perforacgardditionally, we
established that all depth dimension slices as$ediaith each grain were required to yield the h@=tformance possible.

Lastly, the error rate doubles due to decreasinglygst confidence and almost triples when using diata grains of varying

ages, further solidifying the importance of commesive metadata.

Index Terms—computer vision, 3D classification, automation, lpolidentification, forensics, feature vector, S|EBP,

Hessian-Affine, GIST, pattern recognition, bioimfi@tics,geolocation

1. INTRODUCTION

The association of goods or people to place-ofimigya term broadly referred to in forensics asgyaphic attribution or

simply geolocation. However, here we will use thert geo-historical location to differentiate itrfinaeal-time tracking. For

years, palynologists have studied pollen grairiafer information that can be applied to geo-histrlocation locating
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applications [1] such as fair trade [2], validatimgtory [3], allergy research [4], agriculture [Hting rocks for petroleum [6],
mining [7] and coal analysis [8Pollen is a useful tool in the forensics domaioauese it has the potential to provide substantial
amounts of information about an item’s age [7,8pvenance [10] and travel path [11]. Additionalhpllen is resilient to
damage [8,12].

Current classification methods rely heavily onlgkilexpert palynologists. Given the limited numbgkthese experts in the
world, classification can be a long and costly pss Past studies have shown that palynologisisians can be subjective
[13] and that their knowledge can be localizedpecsfic world regions.

We hypothesize that the creation of a semi-autodnsystem via computer vision could provide a cdpglthat will allow
more data to be analysed in a fraction of the timerder to build a successful system, carefukateration needs to be given
to what makes a strong database. Currently, tame unified global database of pollen types tbabants for both
morphological attributes, as well as geo-historioahtion information. Limited data sources maysean expert palynologist
to use multiple data sources as a basis of congra@hen considering combining multiple data sosre® understanding is
required as to which metadata fields contain patars¢hat could degrade performance in pollen gelassification (and
associated geo-historical location predictionsYhinfuture, metadata could allow the expert tigasa level of confidence to
the classification result. The metadata paramebtgukored in this study were pollen age and andlgsisfidence in their own
identification of training samples. Additionallynderstanding the potential and limits of automatiothe pollen domain is
critical.

Routine analysis typically identifies pollen gramisthe genus level and rarely classifies at themfiner species level.
Although species-level classification can be alehgle for even a seasoned palynologist, the gebgragformation that can
be recognized with species-level classificatiorvigies much greater spatial accuracy and precisiampared to genus-level
classification [14]. Additionally, analysts use neod data to classify fossil data. Modern data gghyooriginate from
herbarium sheets or directly from plants in thé&dfi& herefore, the metadata (i.e., labels) of tluzga provide ground truth.
Fossil data are normally extracted from a core $anvpile in forensics data may be extracted fromlas from an article of
clothing or a package. The labels associated withet data are opinions based on the knowledge éduindm modern data
samples. Given the potential for limitations in teeresentation of taxa within training, tests wele® performed using fossil
data to classify modern data. These tests exantie¢her it is possible to use high confidence fadsih to classify unknown
pollen grains.

With this in mind, we performed assessments on halggically similar data from thBinaceaefamily (see figure 1 top)

at both genus and species levels. Rodriguez-Dafhiah6] also performed similar studies on morphalally similar species,
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focusing on theJrticaceaefamily. Furthermore, gaining an understandingraining data size on performance is critical when
establishing a database. It is well accepted thasifying morphologically similar species is orfete most difficult problems
in pollen analysis and the 3-D nature of the pofjeain further increases this complexity. Nguyealef17] addressed this
issue by counting grain surface spikes on the pahain at various angles; in contrast, Allen [48H Boucher [19] had vast
representations of each taxon, which they useth$erve the effects of accuracy given decreasingjrigarepresentations.
Ronneberger et al. [20] address this issue by usipgnsive confocal-microscopy hardware to perf8fhreconstruction.
Similar to Allen and Boucher, we have addresseglifisiue by representing pollen grains at abundentpoint angles in the
training data then observing the effects of deénggisaining size. Each pollen grain was represebie23-84 images, which
we will refer to as an image stack (see figure ttdms). More salient features may be prevalent ec#j regions of the image
stack. If utilizing specific regions yields complleor superior results to using the entire imagels this discovery would be

extremely beneficial when considering memory steragitations.

Figure 1.(Top) Morphologically similar genus-leyslllen grains of th€inaceagfamily (from left to right:Abies Piceg Pinug. Image data from [21].

(Bottom) Image stack (left image) of one grain alarith its summed 2D representation (top right). Imagelsrepresentation (bottom right) taken from [22].

This paper will begin by discussing a high-leveéaew of how we believe our proposed semi-autothaystem would

function (section 2). Section 3 describes the t@awere used for our study. Section 4 definesnwethodology, providing
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details on the computer vision methods applied @lsawange of classifiers that were explored. i8ad displays the results of
our various studies followed by section 6, whicbyides further discussion on these results. Las#gfion 7 assesses these

studies, providing insight on how these studiesven®ur hypothesis, and concludes with recommeaodsfior future tests.

2. SYSTEM OVERVIEW

One intended application for pollen classificatisfior forensic geo-historical location, using ollto determine where an item
originated. Figure 2 gives a high-level overvienwhofv we visualize this system functioning. When neages are introduced
into the system, the classifier (step one) detegsimatches for this new image based upon its prs\powledge provided by
the database. Once the pollen grains have beesifiddsa probabilistic distribution model is credt(step 2) by utilizing
occurrence data from plant or pollen databases fioidel estimates the possible regions of itemiraigpn and produces
associated maps (see yellow in step 2). As thetsffe collection parameters and morphological petars are better

understood, they should be incorporated into a nmocte detailed diagram.

“Global Unified Massive
Pollen” Database

New Image

1) Compare new
image(s) with databaseto
obtain likelihood score

Semi-automated System:
Deliver likelihoods of location based on:

1) Likelihood of species
2) Distribution of species in specified
areas

2) Geolocation
Probabilistic Distribution

Figure 2. Flow diagram of semi-automated systemew pollen image stack is introduced to the sysims image is then compared to a set of database

images for classification. The estimated clashés tused to create a geo-historical location pridisab distribution model.

3. DATA DESCRIPTION
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Two datasets, consisting of modern and fossil grairere used for our studies. All data were cadl@aetith a light
microscope. The modern dataset contained 641 goéiwkich 442 were from spruc®icea marianaP. glauca andP.
rubeng, 96 were from fir Abies balsaméaand 103 were from pin®inus banksiangP. strobusP. resinosaandP. rigida).
The fossil dataset contained 264 grains of which8re fromPicea marianaand 161 were frorRicea glaucaBecause we
used morphologically similar grains, challenginge¥or expert palynologists to classify, all fodsiage stacks were
accompanied by metadata that were labelled witlysisaconfidence level (CL) based subjective,sefforted confidence in

their judgements. These CL'’s for modern and fasmihples were 99% angd50%, respectively. Although CL’s range from
50% to 99%, our analyses were performed on twoetaluf the data: grains with CE95% and grains with CL between 70

and 95%. It is important to note that lower confide data tends to be morphologically ambiguouss<ifiging these grains can

be fairy challenging for both an analyst as welhaomputer. Table 1 provides an overview of the daed for this study.

Data Categol Number of class¢ | Number of grains per cls
Moderr-Genu: 3 96, 103, 44
Moderr-Specie 5 48,96,102 192 201
Fossi-Confidenc>70% 2 307 374
Fossi-Confidenc=>95% 2 108 152

Table 1. Overview of data characteristics
4. METHOD

We describe automation by computer vision algorghwhich have gained popularity in a wide varigtyntage applications
by achieving good performance, sometimes with mahiparameter tuning. Similar methods for automdgicdassifying
pollen grains have been developed by FilipovycB] ghd Dahme [24]. One of the challenges of compuiggon is finding a
way to describe images in a simple yet optimal Vildys is done by using feature vectors. A featwetar is an n-dimensional
vector of numerical values that represent an imBgeeducing the dimensionality of the image, pssieg becomes easier.
There are two types of feature vectors explorefiisistudy: global and local. Global features diégcan image from a holistic
point of view while local features are selectivebaracteristics within an image it finds to beewint. After an image has been
converted into a representative vector, it is tfeady for the classification. A range of class#iare explored in this study and
further discussed in 4.3.3. A number of researchave explored nearest neighbor classifiers, S\@dpgort vector machine)
and decision trees for pollen classification [15, 26]. Our study explored all of these methoddevhiso comparing a range of
nearest neighbor alterations. Exploring a variétyearest neighbor classifiers is believed to beeho

4.1 Global Feature Vector Description
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As stated above, global feature vectors descrilEnéire image. They provide compact representatibrise texture and to a
lesser degree spatial shapes in an image. One ofidin advantages of these global features ighibgitare computationally
simple yielding a low computational cost. The disattages are that they do not typically perform welimages with objects
in the presence of clutter or occlusion. The datduin this study was segmented from the backgrandchad neither clutter
nor occlusion. Two global feature extractors wesedi LBP-HF (Local Binary Pattern Histogram Feagufg7] and GIST

[28].

Local Binary Pattern: LBP is a simple yet effectie&ture descriptor. Given that this algorithm acas for both local spatial
patterns as well as gray-scale contrast, it capgraze similar patterns despite variations in lugsitence. The LBP-HF
transformation is described in figure 4. We seedttiginal image as the first image in the flow dag. We then transform this
image into a higher contrast texture map of thgioal image, which results in the second imagé&énftow diagram. We then
take this texture map and perform a 2D FFT (FastiEo Transform) on this high contrast image, résglin the third image of
the flow diagram. Lastly, the resultant pixel irgén values from the FFT image are binned intosadgram (see the fourth

image). The counts of each bin comprise the fieeure descriptor.

Histogram '
Pixel

intensitiss

LBP-HF descriptor
[8 66 130 184.)

Figure 4: Flow diagram of LBP-HF (Local Binary Ratt- Histogram Fourier Features)

Taking the magnitude of the FFT of the texture nempijmage is advantageous because this makes auipdesinvariant to
rotation. Because the phase of the FFT is disdattie features are locally rotation invariant whieeping their highly
discriminative attribute.

GIST: GIST captures the “gist” or overall spatialelope of the scene into a low-dimensional sigratector. This algorithm
uses wavelet scale-space image decomposition tputenits texture features. The main advantaged®T @re its
computational speed and it low-dimensionality.ded so while preserving perceptually relevant apatiormation.

4.2 Local Feature Vector Description
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A local feature vector represents only a small paetn image, and is constructed independentlytiegrgportions of the image.
In contrast to the global case, initially an imédnges many local features extracted from it. Forlléeatures, an unsupervised
clustering step is required that is also discus§bhd.main advantages of local features are thattihmcally perform well with
occlusion and clutter [30]. They may also providereased discrimination power over global features.

SIFT (Scale Invariant Feature Transform): SIFT [30), generates local features that are robustatiesiges such as changes

in rotation, frequency-scale and illumination irgéies. SIFT operates in two steps: first, thedeats detected, and then it is
described. A SIFT feature is detected as a loda¢éeyum in a Difference of Gaussian (DOG) spacectwig an estimate of the
Laplacian of Gaussian (LOG) scale-space. The Lépianf Gaussian space is beneficial due to itsesoafariance properties
[30]. Figure 5 depicts an example of SIFT featuletected on a single z-slice of a pollen grain ienstgck. The center of each
circle defines the area where the feature was @eteehile the radius of each circle defines théescehe arrows inside of each
circle define the dominant orientations. SIFT digecare typically found in regions of high contrasich as edges and
corners.

Figure 4 (top) demonstrates where the featuredetexted. After areas of interest are establisthedalgorithm
describes these images in a vector representdtimmmagnitudes of the image gradient are sampledratus normalized
orientations in a local region. An array of 16 bggams, each quantized to 8 orientation bins,da tsed to create a 128
(16*8) element vector. Typically, many thousandshefse 128 vectors are created for each imagezibglall of these vectors
would be both memory intensive and time consumiimgaddress this issue, a vector quantization, oy 8€p is performed. In
this step, we quantize by comparing each inputovegith a precomputed quantizer value, or codewdetiermining its closest
match in 128-dimensional space. The establishedf setdewords, or our codebook, is derived froneaternal dataset that has
similar morphological features to the input datasghe morphological traits of the external codek and the testing dataset
do not overlap, the vectors will not quantize prtypand the resultant feature vectors will not beated properly. This will
result in an inaccurate feature vector represemtatnd a decrease in accuracy. In the case of tkdemm dataset, a mangrove
dataset was utilized to establish external codesvortle fossil dataset proved advantageous becaalt@ned us to allocate
subsets of this data, based on analysts’ confidghoetesting and training purposes. Since testewerformed on data where
analysts’ confidence wa95% and>70, the remainder of the data could be used to tai VQ codebook. The counts of how
often each input vector matches each VQ codewdideléinal SIFT feature vectors. It is importantrtote that the locations of
where salient features occur are discarded andssat to define the final feature vectors. A vigegresentation of these

codewords can be seen in figure 4 (bottom).
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Figure 4: (Top) Overlay of SIFT regions of one iz&slof a pollen grain image stack. (Bottom) Viswegdnesentation of how SIFT bins its features.
One interesting observation of these codewordsasrtumerically close SIFT vectors tend to repreaesas of the image
that contain visually similar information. Codewdrdbinl) appears to describe coral-like shapesevduideword 2 (bin 2)
appears to be describing corners. Codeword 3 (biteScribes circles and ovals well. It's importamhote that these
codewords have been trained without human intemacth most studies, SIFT performs well by distiishing images based on
the relative occurrences of shapes or features. fikiogram of clustered vectors is what defineditial local feature vector.

Hessian Affine SIFT: Hessian Affine SIFT [31] haamy of the same components of SIFT. The mainrdiffee lies with the

detection part of the algorithm, where a scale spltermines the local maximum and minimum. WSIET detects local
extrema in DOG scale-space, Hessian-Affine SIFEalstlocal extema in Hessian-Laplacian scale-spdeeHessian space
proves beneficial in detecting blob-like structuj@2]. Once an extremum is determined, the algoritssumes the region of
interest is elliptical in shape (whereas SIFT assithe area of interest is circular).

4.3 Classifier Overview

One factor that makes the classification of poltaages so unique and challenging is the three-diinaal aspect. Recall that
each test grain is represented with multiple twaetisional images, where each represents a sltbe ihird dimension. These

image stacks can be conceivably used in a varfetiassification strategies. The particular strgtiy utilizing the three-
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dimensional image data has a significant effedherclassification accuracy. However, the foundatball such strategies is a
conventional machine learning algorithm. Therefore briefly review these before moving on to theethdimensional issues.
In computer vision and related data mining applicet, a wide variety of supervised machine lear@ilggrithms or classifiers
have been explored over the years (e.g., see Apdubms and Tsotsos [32]). Especially popular hosé based on k-nearest
neighbor (K-NN) and support vector machines (SVM)addition to these two, we also report the penfmnce of several other
well-known supervised classifiers: linear discriamih analysis, quadratic discriminant analysis, @exision trees. All of these
can be considered as discriminant classifiers {elast al.33]), as opposed to generative classiech as PLSA (Probablistic
Latent Semantic Analysis). The discriminant classif estimate/learn either a conditional probabdistribution of the class
label given the observation (image) for the paraimetassifiers or a nonlinear classification maygpfunction for the
nonparametric cases. Because all classifiers eegbloere are well known, we provide brief overviewms refer the reader to
standard references. For K-NN classifiers we previtbre detail because of the relative ease of jrecating them into more
complicated classification strategies involving theee-dimensional image stacks.

SVMs are ubiquitous in machine learning applicagiand especially in computer vision. These geremdliinear methods
attempt to separate classes on the basis of hgmerqleven for the situation where the classesoverjap and are not
separable by a linear boundary. We use the pubticaih implementation (Chang and Lin [34]), where thdial basis function
is selected to allow possible non-linear classlapst SVMs can be considered generalizations eélimiscriminant analysis.
The latter relies on a parametric multi-variablau€aan framework with shared covariance. Quaddaissifiers relax this
shared covariance assumption. For implementatibbsta the linear discriminant and quadratic clss we used built-in
Matlab functions available in the Statistical tamttf35]. A decision tree is an example of a graphclassifier, with the trees’
nodes and branches partitioning the feature spaiceséparate rectangular regions. A different narametric classification
method is tailored to each region. We use the sdaribinary tree classifier available in the Mat&thtistical toolbox.

K-NN methods are special cases of instance-bas#ubage Assume for now that each image is repreddijt®ne feature
vector. Let a test feature vecfr  exist in a Q-digienal feature space, so tia€ R?. This feature vector is compared to N

training feature vectors;Yi =1:N, YeR? stored in a library. The comparison is done by sealected distance measure,

D(X,Y;). Each feature vector in the training library hasassociated class Iabéjl, j=1,2... N . Each class Ihbebneis

of a set of V classes, SIOD{ 12... ,V} . The nearest neighli@is to estimate for a query the closest k trajniectors

*

Y, Y; \Z , Where hereYJ-* represents thecjosest training vector, with associated classli&h, |, ... lx. The final class

decision is just the majority vote or mode of thKdabels. The bias and the variance of the clesdibn error can be traded
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off by adjusting the value of K in the K-NN classif When K = 1 the bias is lowest but varianckighest. Typical choices for

D(') include those based on the Minkowski norm:

where xand yrepresent the values of X and Y along thelimension, respectively. Familiar special castadises are for p=1
(cityblock), p=2 ( Euclidean) , and pe  (Chebyshe\M) studies were performed using a grain-foldvie@ane out cross
validation. During training all images from thettggain were left out; the images of the remairgngins were used as training
images. In addition, the effect of accuracy omiraj was explored by using fossil data to train eladsify modern data, and
conversely.

4.4 Three-Dimensional Nearest Neighbor Classifaatbtrategies

A number of nearest neighbor classification methedrse explored in this study to accommodate theetfdtimensional (3D)
nature of the data. All classification methods waeeformed on the feature vector representatiotkeofmages (see figure 5).
As a new pollen grain (represented by a stack oii2&yes) is introduced to the system, it is fimtwerted into a feature
vector. This feature vector is then compared ttufeavectors in the training database resultingrnirestimate of the taxon
classification. Moreover, when discussing our raofyelassifiers, our references to both trainind sasting data used for
classification are feature vector representatidribese data not the 2D images.

Apply global feature
extraction for each z-slice

Taxa Classification
Decision

(99 52 16 2a.) —> LR

8.
Ll@-4

Detect and extract Bin similar
Local features for each features/shapes

Z-slice Grain n+20: 2slicel: (150 2 16 72.}

if global

Test pollen grain

Figure 5. Overview of algorithm: A new pollen grdiepresented by an image stack) is introducedeaystem. It's then converted to a feature vector
representation (also called a descriptor). Lagitlg,compared to training feature vectors in orteestimate its classification value. Figure isdified from
[36].

Mode of mode
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For each z-slice of each test image, we determtimedlosest matching z-slices among all z-slicesldfaining images. The
label for a testing z-slice was estimated to bentloee of the true labels of its closest K-NN tragi-slices, e.g. by
conventional K-NN classification. Once each testirglice was assigned an estimated label, we thlenlated the mode of all

the testing z-slice labels of the test grain: thizel was the final label estimate of the testirgjrg as shown in figure 6.

Test Image (x total
slices per grain)

! Estimated
Classification
- ) ~ ofTest Image
l Kth Nearest T
) ) Neighbor ]
Feature Test Vectors Calculate (comparing Mode of
Vector Training Ve cto’ rs pairwise > eachtest > estimated
Transformation > " distances slice 1:x to labels(1:x)
) ' ' all training ’
T slices 1:n*x)

Training Image Database

! ‘ 5 ‘ Sessss e ! ‘
~ - ~ o ~ o

Training  Training Training
Image#1 Image #2 Image #n

Figure 6. Flow diagram of 3D nearest neighbor dfiassion. Image stack representation taken fro2y.[2

Mode of Mode of Smallest Distances

This method modifies the previous technique byngknto account pair-wise distances. Specificallyses the mode of the
labels related to the lowest distance values. iit@thod was performed for the lowest 10% and 50%ekample, if a test
grain has 50 z-slices and therefore 50 label estisnanly the labels related to the smallest 2ofor the 50% method)
distances were utilized.

Mean of Class

When a test grain is compared with a training §grains, we average the distances between thagrais z-slice versus all
training z-slices related to a particular classctEst z-slice is then assigned a label basetiearhallest mean. This is

essentially a kernel method of classification. Aftee test grain has been assigned estimated Igbkeish should equal the
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length of the number of z-slices in the testingrgtahe mode of these label estimates is then coed) yielding a label
estimate for the test grain itself.

Tapered Mean of Claks

This method is an alteration of the Mean of Classhwod. Instead of comparing a test z-slice toralhing images of each
class, we compared the test z-slice to the top &0&aop 50% of each class based on lowest distaioes.

Nearest neighbor (grain-level, each grain qetsllaaeia

This method computes one distance between thgr@stand each training grain. Conventional K-NHrttproceeds from
here.

Summing Z-slices

This method sums or averages all z-slices so teaire left with only one image per grain (see fgaytop right), followed by
conventional K-NN classification.

Slide-level bias study

This method insures that data from the testingusenot taken from the same slide as data fronrai@ng set. A mode of
mode nearest neighbor approach was used for théssment.

4.5 Other Experiments

Aside from classification experiments we also peried the following studies.

Location vs. Accuracy

Tests were performed in order to determine whetiee3-D pollen imagery had specific “sweet spolsit tonsistently yielded
high levels of accuracy. Note that the number-sfiaes per grain was not consistent across thesdgtwhich prevented a one-
to-one comparison based on the location of the slithin the image stack. Therefore, we averagedcompiled image stack
error rates into 20 bins to gain a relative regiemalerstanding of which areas of the image stgpically result in higher error
rates.

Additionally, to better understand why these erroesy be heightened at specific areas of the imgd swe created an image
montage which displayed visual representationsohelesignated bin. To compute these images, thgeiswithin each bin
were summed then divided by the number of imagebipe For simplicity, we observed image stacks tuamtained 60 total z-

slice images, allowing us to allocate 3 imagesaithebin. An example of this montage can be se#meatottom of figure 7.

! These methods yielded universally poor resultstherkfore are not further discussed in this paper.
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Determining Training Size

A reverse k-fold method was used to understaneffieets of decreasing training size on accuracyisAsmmon in machine
learning, stratified k-fold cross-validations ratithe data into k subsets [37].0ne k-subset is feetdsting while the
remaining subsets are used for training. This m®ceperformed k-times so that each subset is arsesl for testing and k-1
times for training. For reverse k-fold experimemats the value of k increased, the size of theitrgiget decreased while the
size of the testing set increased. Recall thanhtimber of images per class within each datasehwiasonsistent. Considering
this issue, the k-values ranged from 1 to the ssatlass representation size per test, ensur@#eh class had at least one

potential match in the training set. One test wergomed for each k-fold analysis.

5.RESULTS
5.1 Overview of Accuracy Assessment

Table 2 is an overview comparing our current argt peror rates.

Definition of Analysis % Erroi (this study % Erroifrom prior stud [21]
Modein data/Gent-level Analysis 1.7 4.8

Modern data/Speci-level Analysis 6.2 6.7

Fossil data/Speci-level/Confidenc>95% 46 5.8

Fossil data/Speci-level/Confidenc>7C% 10.€ 22.F

Fossil data/Confiden>95% 46 6.2
*slide-level leave one out

Classifying modern data uyg fossil data: query stuc 13.7 Not performe:
Classifying fossil data using modern data: queudy 12.1 Not performe:

Table 2: Summary of best accuracy

5.2 Comparing nearest neighbor methods

Table 3 compares the error rates for a varietyeaf@st neighbor methods for the modern dataské aenus level:

Table 4 compares the error rates for various neasgghbor methods for the modern dataset at teeisg-level:

Percent Error for Modern Data: Genus-level Study

Mode of | Mean of | Mode of | Mode of
K-NN Class Smallest | smallest
(K=1) distance | distance

(10%) (50%)

LBP 1.7 54.3 10.1 3.1

GIST 4.5 38.8 11.5 7.0
SIFT 12.3 83.8 24.0 11.0
Hessian-Affine 11.9 46.7 37.8 18.7

SIFT

Table 3: Modern data: Genus-level study
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Percent Error for Modern Data: Species-level Study
Mode of | Mean of | Mode of | Mode of
K-NN Class Smallest | smallest
(k=1) distance | distance
(10%) (50%)
LBP 6.2 63 36 12.5
GIST 15.¢ 67.4 24 19.2
SIFT 13.¢ 70.7 41.¢ 22
Hessia- 25.% 62.1 54.¢ 40.4
Affine
SIFT

Table 4: Modern data: Species-level study
Table 5 compares the error rates for a varietyeaf@st neighbor methods for the fossil dataset whatysts’ confidence is

greater than or equal to 95%. For all fossil lesteties, only species-level analysis was performed.

Percent Error for Fossil Data with Analysts’ Coelide>95%
Mode of | Mean of | Mode of | Mode of smallest
K-NN Class Smallest | distance (50%)
(K=1) distance
(10%)
LBP 7.6 36 9.85 9.1
GIST 15.2 34.1 20.8 18.6
SIFT 4.6 55.7 12.9 8.7
Hessian- 8.3 17.8 235 9.1
Affine
SIFT

Table 5: Fossil data with analysts’ confider®@5%

Table 6 compares the error rates for a varietyeaf@st neighbor methods for the fossil dataset whatysts’ confidence is

greater or equal to 70%.

Percent Error for Fossil Data with Analysts’ Coefite>7C%
Mode of | Mean of | Mode of Mode of
K-NN Class Smallest smallest
(K=1) distance distance
(10%) (50%)
LBP 14.6 44.7 17.8 14.0
GIST 24.3 45.1 30.0 26.8
SIFT 10.9 54.0 21.0 15.0
Hessian- 17.5 20.2 38.0 20.1
Affine
SIFT

Table 6: Fossil data with analysts’ confider@®%
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5.3 Comparing Our Best Nearest-Neighbor ClasstiielNon-NN Classifiers




Table 7 provides an overview of performance oftmest K-NN classifier to other classifiers for geitexgel evaluations. For

tables 7 through 10, the computer vision methodsyielded the best K-NN results were used fordt@assifiers. For table 7,

LBP vectors were utilized.

Classification Metho % Errol
Mode of modeK-NN 1.7
SVM-radia 43
Pseudo Linear Discriminal 43
Analysis

Pseud Quadratic 5.8
Discriminant Analysis

Decision Tree 5.8

Table7: Modern-genus comparison

Table 8 provides error rates for our modern speeiesl evaluations. As with the modern genus-lestatly, LBP was utilized

for each classifier.

Classification Method % Error
Mode of mode K-NN 6.2
SVM-radial 19.7
Pseudo Linear Discriminant 16.0
Analysis

Pseudo Quadratic 16.0
Discriminant Analysis

Decision Tre 13.4

Table 8: Modern-species comparison

Table 9 provides error rates for the fossil speldes| evaluation using SIFT vectors. These studiese performed on data

where analysts’ confidence was greater than orlequ@5%

Classification Methao % Error
Mode of modeK-NN 46
SVM-radial 10.0
Pseudo Linear Discriminal 7.7
Analysis

Pseudo Quadratic 8.9
Discriminant Analysis

Decision Tree 8.5

Table 9: Fossil confidence95%
Table 10 provides error rates for the fossil spetégel evaluation using SIFT vectors. These studiere performed on data

where analysts’ confidence was greater than orlequé%
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Classification Method % Error
Mode of mode K-NN 10.9
SVM-radial 16.5
Pseudo Linear Discriminant] 15.4
Analysis

Pseudo Quadratic 18.6
Discriminant Analysis

Decision Tre 14.0

Table 10: Fossil confidence&’0%
5.4 Comparing error rates when analyzing image ls$ao 2D rendered images
Table 11 compares error rates when utilizing thegenstack, a set of 2D image slices, versus cosipgethe image stack by

summing all images to yield a single 2D represériatf the stack.

Feature Vector Image stack % 2D % Error
Method Error

LBP 1.7 13.6
GIST 4.5 7.5
SIFT 12.3 19.8
Hessian-Affine 11.9 24.5
SIFT

Table 11: Comparison of utilizing all z-slices ofdge stack vs. summing image stack into a singleT2ige.
5.5 Z-slice Location versus Accuracy
Figure 7 (left) shows the relationship between iensigick region and percent error for species-welies on modern data.

Figure 7 (right) depicts the relationship betwemage stack region and percent error for the spéeiest studies on fossil data.

© 2014 — The MITRE Corporation. All rights reserved



Percent Error based on Z-Slice Location (Modern-Species Study) 25 Percent Error based on Z-Slice Location (Fossil-Species Study)
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Bins 16-20 Bins 16-20

Figure 7: (Top, left) Percent error versus z-sbaelocation for modern data: Species-level stushttom, left) montage of binned z-stack imagest(fiin
located at top left, last (¥ bin located at bottom right) for the modern dattady. (Top, right) Percent error based on z-déication for the fossil-species
study (bottom, right) montage of binned z-stackgesa(first bin located at top left, last (3®in located at bottom right) for the fossil-specitudy.

5.6 Training Data Size versus Accuracy

Figure 8 shows the relationship between trainiag aind error for the best methods for both modests tas well as the fossil

tests when analysts’ confidence is greater or epu@$%. The method for this test is discussecetatisn 4.5.
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Size of Training Data vs. Percent Error
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Figure 8: Percent error versus training data size.
6. DISCUSSION

6.1 Accuracy Results

When comparing our level of accuracy with our poergi results [21] (see table 2), it is importantdte that in the current
study the only data analyzed were the images theeseOur previous study utilized both pollen grsire (which was
indirectly estimated by accounting for the arearfganually created bounding boxes) as well as thgésén order to classify
the data. With the exception of the query testfassifying modern data using fossil data, a néar@ghbor classifier using
the mode of all label estimates gave the best paefnce (see tables 3-10). For that particular queitizing only 50% of the
z-slice estimates (labels related to the smalleistyise distances) yielded a percent error of 13at¥ite using the entire image
stack produced an error of 16.8%. It is not suipgishat a basic nearest neighbor classifier ofysakled the best
performance. Given the 3D nature of the trainingges, some training images may not closely resethblematching grains
due to their difference in aspect angle. The neéaeighbor classifier allows the algorithm to chedise grain with the closest
morphological features and the closest angle. Aaiditly, we found that using the image stack ireitsirety yielded better
results than rendering the image stack into a 2IPesentative image.

For the modern data studies, LBP yielded the leesstlts using a minimum pairwise city block distafaregenus and

Euclidean distance for species. Also, the modeta staowed slightly increased accuracy when date wexdian filtered
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(kernel size 6) prior to applying the LBP transfation. For the fossil data study, SIFT yieldedltlest results with a minimum
pairwise Euclidean distance. In contrast to LB#lyging a median filter slightly degraded perforrmanGiven that median
filters help smooth speckle noise, it is not swipg that in some cases applying a median filtartmaadvantageous.

When comparing the accuracy of these experimdritsimportant to note that the success of thel lowthods (SIFT and
Hessian-Affine SIFT) is reliant on a strong VQ cldek. In other words, if a proper outside dataseioit provided, the SIFT
vectors will not be vector quantized properly arill provide poor performance. With the modern dataa dataset of images
of mangrove pollen was provided. Although the mamgrdata did contain some shape features thatsimikar to the modern
dataset, we did not feel the physical charactessif these images were close enough to thosee shddern dataset. Therefore,
our performance was not as good as expected. Qramiadie of the fossil data was the analyst confiddevels. Given that
just two tests were performed on the data (utijzimly the data related to analysts’ confidencatgrethan or equal to 95%
and only the data related to analysts’ confiderreatgr than or equal to 70%), the remaining dadta(telated to analysts’
confidence less than 70%) was used to train ouc¥dgbook. It is not surprising, then, that the lonathod performed well
on the fossil dataset.

As mentioned in the introduction, understanding thbegrains collected from the same slides intrechias was a
concern in our previous study [21]. The potentialdlide-level bias can occur due to similaritiedoackground. While our
previous results saw a decrease in accuracy of (sé&stable 2) when not controlling for which slgtains were imaged on,
our more recent methods did not result in a chamgecuracy.

6.2 Location vs. Accuracy

One reoccurring question that arose while perfogninis study was whether specific z-slices wereenimportant than
others. Observing figure 7 we see a jump in enside the first 5% of the z-stack (bin 1) for speeievel analyses. It is not
surprising that the first few slices tend to be-ofsfocus given that the structured illuminationeghanism used to take the
florescence images does not work well when a spaatlof the grain is at that focal length. Givea thcrease in error, we
performed additional tests where we exclude tte §% of the z-slices for each grain then reranbest classifier (nearest
neighbor by z-slice). Since the error does incredightly at the second half of the z-stack, wealsrformed a study utilizing
only bins 2 through 10 out of 20 (or the top halfus the top 5%). Studies were performed at battgnus and species
levels. The quality of the second half of the imnatgnded to be inferior due to interference andsWing caused by material
at higher focal planes. For the genus-level studyfind that not including the top 5% decreasedeitner from 1.72% to
1.56%. However, the error rate increased up to%a.Wen we disregarded the bottom half of the zksédang with the top

5%.
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For the species-level study, we find that the aacyiholds constant at 6.24% error regardless ofvenave discount the
top 5% or the top half minus the top 5%. Given thatabove two methods either show no effect onracy or slightly
increase the accuracy, these methods were agdorped for the fossil species-level study. We fihdt the accuracy remains
constant at 4.55% for both methods.

In evaluating figure 7 (bottom images), we visuabserve the first 5% of the data is the spar¥ésen comparing the
binned stem plot to the montage, it is not surpgghat we find the highest error exists in thess ldetailed bins.

6.3 Training data vs. accuracy

One crucial question for any automated system &t wiakes a strong training set. The data usedsrstady were ideal in
that there were a large number of images per elagonly 2-5 classes per test. Understanding hastidally performance
decreases as our training set decreases is criigate 8 shows this relationship for our threemsudies. As mentioned
before, the data were divided in a stratified fashin other words, while the subset of trainingaddecreases, the original
training data class ratio remains constant. Fontbdern data/genus-level study, the original trajrdata size had three classes
divided as follows: class 1: 96; class 2:103; cBas#42 (as stated in table 1). Given that the asiatlass representation was
96 grains while the largest was 442, the largestber we could divide our training data by was 96rider to ensure that every
class had at least one possible training repretsemtaSince 103 and 442 both have remainders wiheded by 96, the worst
case error (29.55%), seen as the first datapoifigime 8 (dark blue), occurs when there is onlg oepresentation of class 1,
one to two representations of class 2 and fouivrepresentations of class 3.

The same study was performed on the modern datbet species level. Again, the five classes @zethe species-level
classification were not equally represented (sklketd). Figure 8 (light blue) shows that our petaaror increases from
6.24% up to 44.83% when we decrease our minimaéseptation from 48 grains per class to 1. Latitly,analysis was
performed on the fossil dataset. Observing theptetin figure 8, the error rate increases frod4to 19.5% when decreasing
our minimum class representation from 108 grainscfaess to 1 grain per class. For all cases, wehsge@s we approached
using 20% of the training data, or a minimum ofGbihages per class, the error rose nonlinearlydrastically, which

suggests that 20% may be a reasonable minimahibicesize for determining training set size requiesits.

7. CONCLUSIONS

In this paper, we proposed exploring a number Béction and physical parameters of pollen to detee dependencies on

classification accuracy. First, we determined thatphological information alone may be all thahécessary to correctly
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classify grains. Second, we found that utilizingesutire image stack instead of a 2-D summed reptasen of the image stack
yields significantly improved performance. While digl find that the first 5% of an image stack camed visually sparse data,
we found the decrease in error related to exclutliege data to be marginal and unlikely to besitedilly significant. Third,

we learned that our current algorithms did not shég when handling grains from the same slides @digcovery is important
because collecting a single pollen grain per skideld be fairly time consuming and costly.

It is important to note that our dataset was oggiimiin the sense that we had few taxa and manypbes per taxa. There
were only three to five classes per test and ezsthitas represented by 48 to 442 images. Testrpexd on reduced training
data size solidified the importance of a strongirg dataset.

Our findings show great potential towards autongatire classification of pollen grains while enfaigithe need for a
strong understanding of classification dependenchile all of our studies yielded fairly low errmates, they also confirmed
the importance of comprehensive metadata. We datedthat the error rates doubled when analystsfidence was
decreased fror®=95% down to=70% and almost tripled when using data of varyiggsa Future studies should concentrate
on evaluating other collection parameters over eendoverse set of data and, more importantly, expibe relationship
between the accuracy of geo-historical locatioth&t of accurate pollen classification. Furtherleaons founded on either
computer vision or machine learning could estaltiglfection parameters allowing for the creatiormaabbust semi-automated

system. Such a system would reduce latency androlet improving productivity for the analysts.
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1. Page 3, Figure 1: (Top) Morphologically similangs-level pollen grains of tHeinaceaefamily (from left to right:
Abies Piceg Pinug. Image data from [21]. (Bottom) Image stack (lefge) of one grain along with its summed 2D
representation (top right). Image stack represemgbottom right) taken from [22].

2. Page 4, Figure 2: Flow diagram of semi-automaystesn. A new pollen image stack is introduced ®odystem. This
image is then compared to a set of database infegekssification. The estimated class is therdusecreate a geo-
historical location probabilistic distribution mdde
Page 6, Figure 3: Flow diagram of LBP-HF (Local & Pattern- Histogram Fourier Features)

Page 8, Figure 4: (Top) Overlay of SIFT regionsmé z-slice of a pollen grain image stack. (Bottfigual
representation of how SIFT bins its features.

5. Page 10, Figure 5: Overview of algorithm: A newlg@olgrain (represented by an image stack) is inred to the
system. It's then converted to a feature vectorasgntation (also called a descriptor). Lastlis @ompared to
training feature vectors in order to estimate ligssification value. Figure is modified from [36].

Page 11, Figure 6: Flow diagram of 3D nearesthimigr classification. Image stack representati@anidrom [22].
Page 17, Figure 7: (Top, left) Percent error v&@wsslice bin location for modern data: Speciegllstwdy (bottom,
left) montage of binned z-stack images (first lwicdted at top left, last (20th) bin located at drotright) for the
modern data study. (Top, right) Percent error baseztslice location for the fossil-species stuldgt{om, right)
montage of binned z-stack images (first bin locaebp left, last (20th) bin located at bottonhtigfor the fossil-
species study.

8. Page 18, Figure 8: Figure 8: Percent error versising data size.
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