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Fault tolerant protocol assumes the application of error correction after every quantum gate.
However, correcting errors is costly in terms of time and number of qubits. Here we demonstrate that
quantum error correction can be applied significantly less often with only a minimal loss of fidelity.
This is done by simulating the implementation of 50 encoded, single-qubit, quantum gates within
the [[7,1,3]] quantum error correction code in a noisy, non-equiprobable Pauli error environment
with error correction being applied at different intervals. We find that applying error correction
after every gate is rarely optimal and even applying error correction only once after all 50 gates,
though not generally optimal, sacrifices only a slight amount of fidelity with the benefit of 50-fold
saving of resources. In addition, we find that in cases where bit-flip errors are dominant, it is best
not to apply error correction at all.

PACS numbers: 03.67.Pp, 03.67.-a, 03.67.Lx

Standard approaches to quantum fault tolerance
(QFT), the computational framework that allows for suc-
cessful quantum computation despite a finite probability
of error in basic computational gates [4–7], assume the
application of quantum error correction (QEC) [1–3] after
every operation. QEC codes protect quantum informa-
tion by storing some number of logical qubits in a sub-
space of a greater number of physical qubits thus form-
ing the building blocks for QFT. However, the syndrome
measurements needed to check for and correct errors are
very expensive in terms of number of qubits required and
implementation time. In this paper we demonstrate via
numerical simulations that applying QEC after every op-
eration is not necessary and, in general, not optimal. The
simulations are done for single-logical-qubit operations
on information encoded in the [[7,1,3]] QEC code [8].

A guiding principle of QFT is to implement all pro-
tocols in such a way so as to ensure that information
does not leave the encoded subspace (and become sub-
ject to errors). Only specialized gates can adhere to
this principle. Nevertheless, for many QEC codes uni-
versal quantum computation can be performed within
the QFT framework if the gate set is restricted to Clif-
ford gates plus the T -gate, a single-qubit π/4 phase ro-
tation. It is not a priori obvious how to implement gen-
eral gates using such a restricted gate set. A method for
implementing an arbitrary single-qubit rotation (within
prescribed accuracy ǫ) within these constraints was ini-
tially explored in [9, 10] and has recently become an area
of intense investigation [11–17]. For Calderbank-Shor-
Steane (CSS) codes, Clifford gates can be implemented
bit-wise while the T -gates require a specially prepared
ancilla state and a series of controlled-NOT gates. Thus,
the primary goal of these investigations has been to con-
struct circuits within ǫ of a desired (arbitrary) rotation
while limiting the number of resource-heavy T -gates. As
an example, a σz rotation by .1 can be implemented with
accuracy better than 10−5 using 56 [17] T -gates, inter-
spersed by at least as many single-qubit Clifford gates.
QFT would suggest that QEC be applied after each one
of the more than 100 gates needed to implement such

a rotation requiring thousands of additional qubits and
hundreds of time steps. Adhering to this is thus very
resource intensive.
Recently there have been a number of attempts to re-

duce the resource consumption of a quantum computa-
tion by carefully analyzing, simulating, and comparing
protocols within the QFT framework [18–22]. Specifi-
cally, it was shown that QEC need not be applied after
every gate and, in fact, should not be applied after ev-
ery gate [23]. Applying QEC less often will consume less
resources, while still enabling successful quantum compu-
tation. This point was also made, though addressed in a
different way, in Ref. [24]. Here we numerically simulate
the implementation of 50 logical gates on information en-
coded into the [[7,1,3]] QEC code applying QEC (via syn-
drome measurements and possible recovery operations)
at different intervals and determining which scheme is
best for different error probabilities. The simulations are
explicit, the entire density matrix is calculated at every
step.
The [[7,1,3]] or Steane QEC code will correct an error

on one physical qubit of a seven qubit system that en-
codes one qubit of quantum information. If errors occur
on two (physical) qubits the code will be unable to restore
the system to its proper state. By applying gates follow-
ing the rules of QFT, we can ensure that the probability
of an error occurring on two physical qubits remains of
order p2, where p is the probability of a single qubit error
per gate, no matter how many gates are applied. Thus,
if p is small enough one need only apply QEC at the end
of the sequence. However, for long sequences of gates it
is likely that p is not that small and the coefficients in
front of the higher order error terms will grow to an un-
acceptable level. QEC would then be needed more often.
Of course, if QEC could be implemented perfectly, and

we have unlimited resources available, it would be worth-
while to apply QEC as much as possible. In reality, QEC
cannot be done perfectly and we are extremely concerned
about resource consumption. Thus, we are left to ask,
how often should QEC be applied?
To address this we simulate 50 single-qubit gates on
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the [[7,1,3]] QEC code in a nonequiprobable Pauli opera-
tor error environment [25] with non-correlated errors. As
in [26], this error model is a stochastic version of a biased
noise model that can be formulated in terms of Hamil-
tonians coupling the system to an environment. Here,
different error types arise with different arbitrary proba-
bilities. Individual qubits undergo σj

x errors with prob-
ability px, σ

j
y errors with probability py, and σj

z errors

with probability pz, where σ
j
i , i = x, y, z are the Pauli

spin operators on qubit j. We assume that only qubits
taking part in a gate operation, initialization, or mea-
surement will be subject to error while other qubits are
perfectly stored. This idealized assumption is partially
justified in that idle qubits may be less likely to undergo
error than those involved in gates (see for example [27]).
We assume a single qubit state |ψ〉 = cosα|0〉 +

eiβ sinα|1〉, perfectly encoded into the [[7,1,3]] error cor-
rection code. We then implement a series of gates,
U50...U2U1, in the nonequiprobable error environment
leading to a final state, ρf , of the 7 qubits. To deter-
mine the accuracy of the simulated implementations with
perfectly applied gates, ρi, we utilize the state fidelity
F (ρi, ρf ) = Tr[ρiρf ]. In addition we will find it useful
to utilize the infidelity I(ρi, ρf) = 1 − F (ρi, ρf ), and a
logarithmic infidelity log10[I(ρi, ρf )].
Our choice of gates stems from the above noted work

on the implementation of arbitrary single qubit gates
with gates from the set Clifford plus T . We define the
composite gates A = HPT and B = HT and simulate
the implementation of the 50 gates:

U = ABBBAAAABBABABABBBAA. (1)

We then formulate 7 different error correction applica-
tion schemes: applying QEC after every gate (50 QEC
applications), after every composite gate A and B (20
applications), after every other composite gate (10 appli-
cations), after every 5 composite gates (4 applications),
after each half of the sequence U (2 applications), only
after the entire sequence (1 application), and not at all.
Each scheme is simulated for 64 error models: each pj,
j = x, y, z, takes all values 10−4, 10−6, 10−8, 10−10. For
the initial state we use the basis state |0〉. Other tested
initial states and gate sequences give similar results.
Implementing a Clifford gate, C, on the [[7,1,3]] QEC

code requires implementing C† on each of the 7 qubits.
To implement a logical T -gate on a state encoded in the
[[7,1,3]] QEC code requires constructing the ancilla state
|Θ〉 = 1√

2
(|0L〉 + ei

π

4 |1L〉), where |0L〉 and |1L〉 are the

logical basis states on the [[7,1,3]] QEC code. Bit-wise
CNOT gates are then applied between the state |Θ〉 and
the encoded state with the |Θ〉 state qubits as control.
Measurement of zero on the encoded state projects the
encoded state with the application of a T -gate onto the
qubits that had made up the |Θ〉 state. Our simulations
are done in a fault tolerant fashion following [20].
Results from the simulations are depicted in Fig. 2 and

Tables I and II. Fig. 2 shows the logarithmic infidelity

FIG. 1: Circuit for syndrome measurements for the [[7,1,3]]
QEC code. Syndrome measurement is done in a fault toler-
ant fashion using four-qubit Shor states, GHZ states with a
Hadamard applied to each qubit. The Shor states themselves
are constructed in the nonequiprobable Pauli operator error
environment. In addition, each syndrome is repeated twice.

for the output state upon the application of 50 gates to
the initial state |0〉 with QEC applied after each gate
(left) and not at all (right). When no error correction is
applied the fidelity appears to decrease steadily with er-
ror probability independent of type of error. When error
correction is applied not all errors are equally damaging.
Bit-flip, σx errors are clearly seen to be more harmful to
the fidelity than either σy or σz errors. Ref. [29] demon-
strates that this is due to the choice of applying the bit
flip syndromes before the phase flip syndromes and due
to the noisy construction of the Shor states.
The other QEC application schemes provide only slight

advantages or disadvantages to the case of QEC after
every gate. The resolution of the above plots are not
fine enough to demonstrate these differences which are
instead collected in the Tables below. These tables show
which QEC application scheme is optimal with respect
to fidelity and also highlight how small the difference in
fidelity is whether applying QEC 50 times or only once.
The two tables show results for each QEC application

scheme for different error probabilities: Table I is for de-
polarization, p = px = py = pz, while Table II is for error
models where one error probability, pi, changes while the
other two remain constant pj = pk = 10−10. In each Ta-
ble the top line gives the infidelity for the scheme where
QEC is applied after every gate (50 times), I50. Lower
lines show the fractional change, D, in the infidelity upon
using other QEC application schemes where:

D(I50, Iq) =
I50 − Iq
I50

(2)

and q = 20, 10, 4, 2, 1, 0. Note that a positive fractional
change means that the infidelity is lower when using less
QEC and thus the fidelity is higher. In other words,
positive fractional change means a higher fidelity when
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FIG. 2: Logarithmic infidelity of ρf for 50 gates applied to initial state |0〉 with (left) error correction applied after every gate
and (right) no QEC at all. On this color scale, the results of other QEC application schemes would be indistinguishable from
the results of QEC applied after every gate. We note that in the case of no QEC applications the decrease in fidelity is about
equal for each of the three error probabilities. However, when QEC is applied after every gate the σx errors clearly lead to
lower fidelities than the other errors. In fact when σx errors are dominant the fidelities are even lower than when not applying
QEC at all.

TABLE I: Second line: infidelity of final state after 50 noisy gates with noisy QEC applied after each as a function of
depolarization strength p = px = py = pz. Lower lines: fractional increase or decrease of infidelity for different QEC application
schemes compared to the case of QEC after every gate.

QEC applications p = 10−10
p = 10−8

p = 10−6
p = 10−4

50 6.90× 10−9 6.90× 10−7 6.90 × 10−5 7.29 × 10−3

20 −1.61× 10−8 1.84× 10−7 1.82 × 10−5 1.88 × 10−3

10 −1.11× 10−6 1.26× 10−7 1.28 × 10−5 1.38 × 10−3

4 −5.63× 10−7 7.37× 10−8 7.55 × 10−6 8.84 × 10−4

2 −8.37× 10−7 6.56× 10−8 6.69 × 10−6 8.05 × 10−4

1 −1.48× 10−6 5.87× 10−8 5.95 × 10−6 7.35 × 10−4

0 −.391 −.391 −.391 −.372

using less QEC. Negative fractional change means the
fidelity is highest when applying QEC after every gate.
We should quickly note, however, that even if applying
QEC after every gate gives the highest fidelity, this does
not mean it is the optimal choice of QEC application
scheme. If the fractional change, D(I50, I1) is small one
may achieve an almost optimal fidelity while saving a
factor of up to 50 in time and number of qubits, perhaps
a worthwhile tradeoff.

Returning to Table I we note that applying QEC after
every gate gives the optimal fidelity for the lowest value
of p. This is not surprising as we would expect that as
error probabilities approach zero the QEC implementa-
tions become less and less error prone and the penalty
in fidelity for the implementations essentially vanishes.
Consistent with this is that as the number of QEC ap-
plications increase the lower the fidelity such that when
there is only one application the fractional change is
1.5 × 10−6. We note that even this greatest decrease
of fractional change translates to a decrease of fidelity of
only 1.0× 10−14. Such a small change may not warrant
50 times the time and number of qubits.

When the depolarization strength is increased the ap-
plication of QEC after every gate becomes non-optimal.
In fact, it is the worst of all the QEC application schemes
except for not applying QEC at all. The best scheme is
q = 20, when QEC is applied after every composite gate
A or B, and the fidelity worsens as as the number of QEC
applications decrease. Why should the fidelity increase
with more error correction except when it is applied at
every gate? Previous work [23] showed explicitly that for
up to four gates one of which is a T -gate there was no
need to apply QEC more often than once at the end of
the sequence. This is exactly what is done in the q = 20
case. Apparently, for depolarization, implementing mul-
tiple T -gates before error correction allows for too many
possible errors and hence a lower fidelity.

When the error model is asymmetric we see widely
varying results depending on the degree of asymmetry
and which errors are dominant as demonstrated in Table
II. When σy errors are dominant applying QEC after
each gate is always optimal and, in general, more QEC
applications lead to lower fidelites. When σz errors are
dominant, applying QEC after every gate is the worst
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TABLE II: Second line: one minus the fidelity of final state after 50 noisy gates with noisy QEC applied after each gate as
a function of pi with pj = pk = 10−10. Lower lines: percent increase or decrease of one minus the fidelity of different QEC
application schemes compared to applying QEC after every gate as a function of pi.

q px = 10−8
px = 10−6

px = 10−4
py = 10−8

py = 10−6
py = 10−4

pz = 10−8
pz = 10−6

pz = 10−4

50 5.5 × 10−7 5.5× 10−5 5.5× 10−3 7.6 × 10−8 7.0× 10−6 7.4× 10−4 7.6× 10−8 7.0× 10−6 8.3× 10−4

20 1.5 × 10−8 3.9× 10−9 3.1× 10−5 −1.7× 10−7 −1.7× 10−6 −1.6× 10−4 1.2× 10−6 1.3× 10−4 1.1× 10−2

10 1.4 × 10−8 −8.7× 10−8 3.0× 10−5 −1.5× 10−7 −1.7× 10−6 −1.7× 10−4 1.1× 10−6 1.3× 10−4 1.1× 10−2

4 −1.8× 10−9 −8.6× 10−8 3.8× 10−5 −3.0× 10−7 −1.7× 10−6 −1.7× 10−4 1.1× 10−6 1.3× 10−4 1.1× 10−2

2 3.4 × 10−9 −8.6× 10−8 3.9× 10−5 −2.5× 10−7 −1.7× 10−6 −1.7× 10−4 1.1× 10−6 1.3× 10−4 1.1× 10−2

1 3.0 × 10−9 −8.6× 10−8 4.0× 10−5 −2.9× 10−7 −1.7× 10−6 −1.7× 10−4 1.1× 10−6 1.3× 10−4 1.1× 10−2

0 .479 .491 .488 −1.85 −2.00 −1.89 −5.23 −5.70 −4.82

scheme (besides not applying QEC at all) while all other
schemes are about equal. When σx errors are dominant
not applying QEC at all is by far the best scheme. For
the other schemes, however, the situation becomes more
complex. For small values of px there is a general trend
of increasing fidelity when applying less QEC. As px and
the asymmetry increase applying QEC more often be-
comes optimal. However at even higher degrees of asym-
metry applying QEC less often is better. The reason
that no QEC is optimal for this error model is because
the QEC code plus syndrome measurement used here are
more sensitive σx errors than other types of errors. The
corrective abilities of QEC are not enough to overcome
these sensitivities.
In conclusion, we have numerically explored the ques-

tion of how often quantum error correction needs to be
applied during a sequence of logical single-qubit gates
from the gate set Clifford plus T , as would be necessary
for the implementation of arbitrary single-qubit rotations
in a fault tolerance setting. Our simulations involved 50

encoded gates applied to a logical qubit of the [[7,1,3]]
QEC code in a non-equiprobable error environment. We
demonstrated that for very small depolarization it is best
to apply QEC after every gate but for stronger errors
QEC should be applied before every T -gate. When the
errors are asymmetric the optimal choice of how many
times to apply QEC will depend on which error is dom-
inant and the size of the asymmetry. Perhaps surpris-
ingly, when bit-flip errors are dominant it is best not to
apply QEC at all. In all cases, however, the difference
between applying the QEC scheme with the highest fi-
delity and applying QEC just once after all 50 gates is
minimal. Thus, applying QEC once can lead to a savings
of more than an order of magnitude with a negligible cost
in fidelity.
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