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ABSTRACT
Motivation: The biological literature is a major repository
of knowledge. Many biological databases draw much of
their content from a careful curation of this literature.
However, as the volume of literature increases, the burden
of curation increases. Text mining may provide useful tools
to assist in the curation process. To date, the lack of
standards has made it impossible to determine whether
text mining techniques are sufficiently mature to be useful.
Results: We report on a Challenge Evaluation task that
we created for the Knowledge Discovery and Data Mining
(KDD) Challenge Cup. We provided a training corpus
of 862 articles consisting of journal articles curated in
FlyBase, along with the associated lists of genes and gene
products, as well as the relevant data fields from FlyBase.
For the test, we provided a corpus of 213 new (‘blind’)
articles; the 18 participating groups provided systems that
flagged articles for curation, based on whether the article
contained experimental evidence for gene expression
products. We report on the evaluation results and describe
the techniques used by the top performing groups.
Contact: asy@mitre.org
Keywords: text mining, evaluation, curation, genomics,
data management

INTRODUCTION
The research literature is a major repository of biological
knowledge. To make this knowledge accessible, it is
translated by expert curators into entries in biological
databases. This serves several purposes: experts consol-
idate data about a single organism or a single class of
entity (e.g. proteins) in one place, often in conjunction
with sequence information. Second, this process makes
the information searchable through a variety of automated
techniques, given that the curators use standardized
terminologies or ontologies. However, it is becoming
more and more difficult for curators to keep up with the
increasing volume of literature, creating a demand for
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automated curation aids.
There has been a growing volume of work in text

mining for biological literature, but until now, there has
been no way to compare results of the different systems
(Hirschman et al., 2002). Several related fields have
addressed this problem by organizing open ‘challenge’
evaluations, e.g. for protein structure prediction, there
have been the successful CASP evaluations (Critical As-
sessment of Techniques for Protein Structure Prediction,
http://predictioncenter.llnl.gov/). For natural language
processing, there was the series of Message Understand-
ing Conferences (MUCs) for information extraction on
newswire text (Hirschman, 1998). The Text REtrieval
Conferences (TREC, http://trec.nist.gov/; (Voorhees and
Buckland, 2002)) for information retrieval are ongoing.

The idea behind these series of open evaluations has
been to attract teams to work on a problem by providing
them with real (or realistic) training and test data, as
well as objective evaluation metrics. These data sets are
often hard to obtain, and the open evaluation makes it
much easier for groups to build systems and compare
performance on a common problem. If many teams are
involved, the results are a measure of the state-of-the-
art for that task. In addition, when the teams share
information about their approaches and the evaluations
are repeated over time, then the research community can
demonstrate measurable forward progress in a field.

For these reasons, we decided that it would be valuable
to test whether text mining techniques could help the
curation process. To do this, we created and ran a
common challenge evaluation (a contest) using data from
a biological database and a task performed by curators of
biological databases. The contest that we created and ran
was Task 1 (of 2 tasks) of the KDD Challenge Cup 2002, a
competition held in conjunction with the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), July 23–26, 2002.† This contest

† See http://www.biostat.wisc.edu/∼craven/kddcup/ for a description of the
task.
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focused on text mining to provide semi-automated aids for
biological database curation (Yeh et al., 2003). FlyBase,
a publicly available database on Drosophila genetics and
molecular biology (FlyBase Consortium, 2002), supplied
the data and biological expertise. This paper describes the
results and lessons that we learned from setting up and
running this contest.

METHODS: CONTEST SET-UP
For this contest, we drew on the work performed by Prof.
William Gelbart and colleagues at Harvard in connection
with FlyBase Harvard. We discussed how to provide
automated aids for curating biomedical databases with the
FlyBase curators and settled on a fundamental task at the
beginning of the FlyBase Harvard curation pipeline, that
of identifying the papers to be curated for Drosophila gene
expression information.

FlyBase Harvard curates journal articles containing ex-
perimental gene expression evidence, specifically, exper-
imental evidence about the products—mRNA transcripts
(TR) and proteins/polypeptides (PP)—associated with a
given gene.

We defined the following task for the contest, based on
materials obtained from FlyBase:

• Given a set of papers (full text) on genetics or
molecular biology and, for each paper, a list of the
genes mentioned in that paper:

• Determine whether the paper meets the FlyBase gene-
expression curation criteria, and for each gene, indicate
whether the full paper has experimental evidence for
gene products (mRNA and/or protein).

For each paper, a system needed to return three things:

1. A ranked list of papers in order of probability
of the need for curation, where papers containing
experimental evidence of interest should rank higher
than papers that did not contain such evidence;

2. A yes/no decision on whether to curate each paper;

3. For each gene in each paper, a yes/no decision
about whether the paper contained experimen-
tal evidence for the gene’s products (RNA and
protein/polypeptide).

The KDD Challenge Cup schedule included a 6 week
period when the training data was made available for
the contestants to build and train a system, followed by
a two week period to complete the running of the test
material. The results were then submitted to MITRE for
final scoring.

The training and test data
The training data set consisted of 862 ‘cleaned’ full text
papers, of which 283 had been judged to need curation.
Each paper came to the Harvard curators with a list of
the genes (in a standardized nomenclature) mentioned in
the paper. Along with its standardized nomenclature, the
FlyBase database provides synonym lists for each gene.
These resources, along with the set of relevant FlyBase
database entries for each paper, were provided to KDD
participants as part of the training data.

The test data set came from papers that had already been
curated for genes (so the gene list was available to both the
FlyBase gene product curators and the general public), but
for which the gene product curation was not public yet. In
the end, the test set consisted of 213 papers, together with
the genes mentioned in each paper.

For each paper, we ‘cleaned’ the text by converting non-
plain text (superscripts, subscripts, italics, Greek letters)
into plain text; this was critical to preserve distinctions in
meaning for further processing. For example, in ‘Appld’,
the Appl in italics indicates that the Appl gene is being
mentioned (and not the protein) and the superscript d indi-
cates that the Appl gene’s d allele is being mentioned. The
resulting conversion produced the form ‘@Appl@[d]’, us-
ing the conventions developed by FlyBase for their gene
name lists.

The list of genes for a paper was given in the form of a
template in XML that also indicated the yes/no decisions
to be made. For the training papers, a filled-out version
of this template was also provided. For example, the
following template indicated the mention of the sws and
Ecol\lacZ genes in the associated paper:

<curate>?</curate>
<gene symbol="sws">

<tr>?</tr><pp>?</pp></gene>
<gene symbol="Ecol\lacZ">

<tr>X</tr><pp>X</pp></gene>

Systems gave their yes/no (Y/N) answers by returning
these templates with the ?’s replaced by Y or N. For
each gene, returning <pp>Y</pp> meant that a system
found experimental data of interest in the paper for some
protein of that gene. Returning <pp>N</pp> meant that a
system did not; <tr>Y</tr> and <tr>N</tr> indicated
analogous findings for that gene’s transcripts.

Lethal (e.g. l(2)52A), foreign (e.g. Ecol\lacZ) and
anonymous (e.g. anon-56Cb) genes were especially hard
to handle and were deemed ‘special’. Systems did not have
to answer Y/N for those genes’ products. We indicated this
by replacing the appropriate ?’s with X’s.

The overall decision on whether a paper had exper-
imental evidence for a product of any gene (including
‘special’ genes) was indicated by changing the ? in
<curate>?</curate> into a Y for yes and N for no.
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For the training papers, we also provided the experi-
mental data that FlyBase extracted from that paper. For
example, below is relevant evidence from Kolhekar et al.
(1997):

(gene="Phm" product="Phm-P1"
ptype="pp" evtype="asm"):

immunolocalization

This indicated that the assay mode (asm) was immunolo-
calization, used on the Phm-P1 protein product (pp) of the
Phm gene.

The data sets presented a number of complications.
First, the list of synonyms for the genes provided to
the contestants was not complete because of the many
typographical variants of names. For example, FlyBase
listed the following 7 synonyms for the Appl gene:

APPL, appl, EG:65F1.5, CG7727, BcDNA:GH04413,
&bgr; amyloid protein precursor-like,
&bgr;-amyloid-protein-precursor-like.

But this list did not include the synonym APP-like as
a gene name, which appears in Rosen et al. (1989). In
addition, some names are not unique to a particular gene.
For example, Clk is both a symbol for the Clock gene and
a synonym for the period gene. This meant that it was not
trivial to map between the genes listed for an article and
their mentions in the text.

The training set came from papers that were already
curated and publicly available from FlyBase. One small
source of noise in the training data was due to the fact that,
not surprisingly, curation standards change over time and
differ between individuals. For example, FlyBase is only
interested in gene expression results that are applicable
to ‘regular’ flies found in the wild (wild-type), and not
in expression results that apply just to laboratory induced
mutations. In addition, FlyBase is normally interested in
wild-type experimental gene expression results that are
repeats of results found in other, earlier papers. However,
if the focus of a paper is not on the gene products in wild-
type flies, but the paper does have a few experimental
results on wild-type flies (usually to serve as controls in an
experiment) that have already been seen elsewhere, then
FlyBase is not interested in that particular paper’s gene
expression results. The border between a ‘few’ results (not
of interest) and enough results to be of interest is a bit
fuzzy. Such borderline papers were removed from the test
data, but were left in the training data.

Also, it took significant reverse engineering to deter-
mine how the experimental evidence was encoded in the
database, and exactly what kinds of information consti-
tuted experimental evidence. This reverse engineering was
not perfect, and the imperfections form another source of
residual noise. Many FlyBase transcript and protein data
fields contain experimental data, such as transcript length
and assay mode, but many others do not, including the

fields public protein symbol and synonyms for transcript
symbol. There are also fields that contain data that used
to be of interest to the gene product curators, but are no
longer, because another group is now curating these fields.
Examples are protein domains and protein characteristics.
The comment field is a special case by itself. It usually
contains experimental results of interest to the gene prod-
uct curators, so we included its existence as an indicator of
a training paper having results of interest for an associated
gene’s transcript or protein. However, the field is used for
any information that will not fit anywhere else in FlyBase,
and so the field sometimes contains material that is either
not of interest or of borderline interest.

We originally wanted a contestant’s system to provide
evidence for its response, by indicating a passage in
the text describing relevant experimental results. When
using a system to aid in curation, providing such a
passage would give a person checking the system a
basis on which to accept or reject that finding. But
while FlyBase stores the results of interest found in a
paper, it does not indicate which passage(s) in that paper
support or describe those results. Furthermore, the entry
in FlyBase often uses wording that is very different from
what is explicitly stated in the passage(s). For example,
FlyBase’s assay field for the PHM protein in the paper
(Kolhekar et al., 1997) uses the controlled vocabulary term
immunolocalization. In that paper, there is no mention of
the term ‘immunolocalization’ (or any similar term) in
the text. Instead, the supporting text describes the various
steps taken to perform an immunolocalization assay (use
an anti-body to stain some tissue and then look at it), as
illustrated in this figure caption excerpt from Kolhekar et
al. (1997):

Figure 12. Top. Whole-mount tissue staining
using an affinity-purified anti-PHM antibody
in the CNS and in non-neural tissues. A, The
third instar larval CNS exhibits distributed
cell body and neuropilar staining. This view
displays only a portion of the CNS; ...

Another example is that for the paper Tingvall et al.
(2001), FlyBase records that mRNA transcripts of certain
reporter constructs (a construct is a combination of a
reporter gene and a gene of interest) appear in certain parts
of the body. The paper itself never explicitly mentions
any transcript. Instead, the supporting text mentions where
the associated reporter protein is detected. The FlyBase
curators infer the transcripts’ locations from the places
where the protein is detected. Manually finding such
‘evidence’ passages for use in training a system would
have been both time consuming and difficult†. So we
dropped the passage finding requirement.

† Especially since it can require a lot of biology knowledge and our contes-
tants had more of a data-mining background than a biology background.
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We also originally wanted the participating systems to
generate the names of the gene product(s) that had exper-
imental results in a paper. However, different proteins in
the FlyBase database are named using different conven-
tions (and likewise for transcripts). For example, FlyBase
lists 5 different forms of proteins for the Doa gene, which
are named using 4 different conventions: Doa+P105kD is
named after the form’s size (105 kilodaltons). Doa+P517
is named after the form’s length (517 amino acids).
Doa-P1 and Doa-P2 are named using more recent naming
conventions for distinct forms of Doa protein found in the
literature. Doa+P is a name used for results that apply to
one or more forms of Doa protein, but the curator cannot
tell from the paper which specific form(s).

Furthermore, the product names used in the papers
do not always match the corresponding FlyBase names.
Determining the correspondences may not be so difficult
with FlyBase names that contain some product property
like size or length, for example ‘105-kD protein’ or
‘105-kD DOA isoform’ in (Yun et al., 2000), which
are mentions of Doa+P105kD. However, determining
the correspondences to other FlyBase product names is
difficult. For example, in the same paper, phrases like
‘55-kD DOA protein’ and ‘55-kD isoform’ are recorded
in FlyBase as Doa-P2. Also in that paper, phrases like
‘protein kinase’, ‘DOA kinase’, ‘DOA protein’, and
‘DOA’ can either refer to all forms of DOA protein, the
two forms studied in detail in that paper (Doa+P105kD
and Doa-P2) or to one or more forms, but the paper is
unclear (to a biologically-trained curator) as to which,
leading the curator to use Doa+P.

In addition, difficulties in determining the corre-
spondences can lead to difficulties in determining when a
transcript or protein described in a paper is actually new to
FlyBase, and has yet to be listed in the database. For these
reasons, we avoided the issue of naming gene expression
products; we simply required the systems to provide a
‘yes/no’ answer for whether a paper had experimental
results for that gene’s transcripts and proteins.†

Scoring measures
The contest task was divided into 3 sub-tasks. The ranked-
list and ‘yes/no curate paper’ sub-tasks are two possible
ways to help a curator with filtering out the papers that
have no information of interest. The ranked-list can help
by providing an ordering on the relative likelihood of a
paper being of interest. If accurate, the ‘yes/no curate
paper’ decisions are direct indicators of what papers to
concentrate on. The third sub-task (‘yes/no’ for products

† Even with this simplification, products of ‘special’ (lethal, foreign and
anonymous) genes can be hard to handle, so we added the further
simplification that contestants did not need to make ‘yes/no’ decisions about
these products, as mentioned earlier.

Table 1. Results of the 32 submissions

Sub-Task Best 1st Quartile Median Low

Ranked-list: 84% 81% 69% 35%
Y/N paper: 78% 61% 58% 32%
Y/N products: 67% 47% 35% 8%

Overall: 76% 61% 55% 32%

of each gene) is a way to tell a curator what gene(s) to
concentrate on in a paper.

After defining the task and preparing the training and
test data, we developed a simple scoring method for each
of the three sub-tasks.

For the ranked-list sub-task, we used as a metric the
area under the receiver operating characteristic curve
(AROC); the ROC curve (Duda et al., 2001, Section 2.8.3)
measures the trade-off between sensitivity (recall) and the
probability of a false alarm. As the area under the curve
increases, a system will on average be more sensitive for
the same false alarm rate.

For the yes/no curation decisions for the set of papers,
we used the standard balanced F measure, which is a
combination (the harmonic mean) of recall and precision.‡

Recall is the percentage of the correct ‘yes’ decisions
that are actually returned by the system. This measures
how sensitive a system is in finding what it should find.
Precision is the percentage of the ‘yes’ decisions returned
by the system that are actually correct. This measures how
specific a system is in finding just what it should find.

We also used the balanced F measure for the yes/no
decisions on experimental evidence for products of the
genes mentioned in the papers. The sum of these three
scores (equally weighted) was used to provide an overall
system score.

RESULTS
Overall, 18 teams returned 32 separate submissions for
evaluation (up to 3 per team). There were eight countries
represented, including Japan, Taiwan, Singapore, India,
Israel, UK, Portugal and USA. There were groups from
industry, academia and government laboratories, often
teamed. The top performing team, ClearForest and
Celera, obtained both the highest overall score and the
highest score on the each sub-task. The results of the 32
submissions for the three metrics and the overall score
(normalized to 100%) are given in Table 1. The top 5
teams for the ranked-list sub-task all had close scores for
this sub-task (81–84%).

‡ The balanced F measure is (2*precision*recall)/(precision + recall).
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High-performing teams
We declared a winning team and three honorable mention
teams. The teams used a variety of approaches. The
winning team (Regev et al., 2003) used an information
extraction approach with manually constructed rules that
matched against patterns deemed of interest. A focus was
finding patterns in figure captions. These often involved
linguistic constructs, such as noun phrases (e.g. ‘the
developing midgut’) and verb phrases (e.g. ‘does not
antagonize’). The output of the rules was combined to
produce scores at both the document and gene level.

One honorable mention team was from three Singapore-
based organizations (Shi et al., 2003). Their system looked
for the presence of certain manually chosen ‘keywords’.†

Within each paragraph of a paper, it computed the distance
(measured as the number of sentence boundaries crossed)
between each keyword mention and each mention of a
gene name or synonym. For each gene and keyword pair,
the minimum distance was noted, as was the number of
occurrences with that minimum distance. The effects of
different keywords on decisions about a gene’s products
were combined using Naı̈ve Bayes (Duda et al., 2001,
Section 2.11).

The honorable mention team from Imperial College and
Inforsense (Ghanem et al., 2003) had a system that used
regular expressions‡ to find particular patterns of words.
It automatically extracted these patterns from sentences
in the training corpus. The patterns were restricted to
be within a sentence or neighboring sentences, and to
contain gene name(s) or keyword(s) that appeared in the
experimental database fields from FlyBase associated with
the training papers. When searching for the products of a
particular gene, only sentences related to that gene were
examined. The patterns served as features to be combined
by a support vector machine (SVM) classifier (Duda et al.,
2001, Section 5.11) (http://svmlight.joachims.org), which
made the final decisions.

The honorable mention team from Verity and Exelixis
(B.Chen, personal communication) also had a system
that used regular expressions and SVMs (two types:
transductive and inductive). The system ignored certain
sections of papers.

One thing these highly-ranked teams had in common is
that they all moved away from the ‘bag of words’ approach
common in text classification and information retrieval.
This approach represents a document as an unordered bag
of words, thus losing any grammatical relations among
words. The words are then weighted by frequency to
create a vector for each document. These vectors are then

† A ‘keyword’ could actually be more a single word, e.g. northern blot.
‡ Many text pattern matching systems use regular expressions to define the
patterns, including the Perl programming language and the Unix grep utility.

compared to find similar documents or passages.§ One
group (Ghanem et al., 2003) in fact tried this approach
at first, but found that the resulting system did not perform
well. In general, use of pattern matching and local context
seemed to work better, probably because it was important
to associate experimental results with specific relevant
genes; document level association may simply be too
weak for this set of tasks.

Many of the submissions came from teams, and these
teams often included biologists in the role of ‘domain
expert’. The domain experts seemed to be most useful
for these teams near the start of the contest. This was
the indication that we got in talking to a member of the
winning team. The two honorable mention teams who
wrote descriptions of their work, (Shi et al., 2003) and
(Ghanem et al., 2003), both mention using domain experts
to produce some of the feature lists that they used in their
experiments. However, one thing to keep in mind is that
as mentioned in The training and test data Section, we
made several simplifications to this competition to make it
less dependent on domain knowledge.

Test-set paper analysis
In our post-competition analysis, we looked at several
factors that might have contributed to overall task dif-
ficulty. The first factor was how well the training data
and test data sets were matched. The training data had
33% of articles that were judged to contain curatable
experimental evidence for gene products. By contrast, the
test set had a statistically significantly higher percentage:¶

91 papers (43%) of the 213 test papers had results of
interest.

This led us to look at whether systems had been overly
conservative in marking a paper as containing evidence
for curation; we concluded that they had been. Overall,
26 (81%) of the 32 submissions marked less than 91 test
papers with ‘yes, curate’.‖

We also tried to characterize what made a curation
decision harder for an individual paper. To do this, we
counted how many of the 32 submissions made the correct

§ The SMART information retrieval system uses this ‘bag of words’ approach
(Salton and McGill, 1983, Ch. 4). Often in this approach, words are stemmed
(e.g. removal of plural s) and stop words are removed, e.g. a, of, the, on, in.
Then each document or passage is represented as a vector of words, generally
using a variant of the ‘tf-idf’ scheme, which weights words (terms) by their
frequency within a document and by the inverse of the number of documents
containing that word (inverse document frequency). Two documents are
often compared by taking an inner (dot) product of their vectors, also known
as a cosine measure.
¶ Significant at the 0.005 level using a single-sided equal-variance t test.
‖ This is statistically significantly higher (at the 0.015 level) than 50%, the
highest expected figure if overall, the submissions were not conservative. A
1-sided test with a Normal approximation of a binomial distribution plus
the Yates correction was used. This statistical significance holds even if
one assumes only 18 of the submissions are independent (1 independent
submission per team).
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Table 2. ‘no’ versus ‘yes’ papers

Paper Type average r ′ Fraction with r ′ > 50%

‘no’ 24.3 (76%) 93% (114 of 122 papers)
‘yes’ 17.6 (55%) 54% (49 of 91 papers)

Table 3. both versus either papers

Paper Type average r ′ Fraction with r ′ > 50%

both 74% 85% (41 of 48 papers)
either (but not both) 35% 19% (8 of 42 papers)

‘Y/N curate’ decision for a given paper; we call this
number the r ′ value for the paper.

Given the conservativeness observed above, it is not
surprising that papers which had no results of interest
(correct answer marked ‘no’) tended to be easier than
papers with results (correct answer marked ‘yes’). The
‘no’ papers had a higher average r ′ (r ′) than the ‘yes’
papers.† Another way to view this is that a larger fraction
of the ‘no’ papers were correctly marked by over half the
submissions (had r ′ > 50%) than the ‘yes’ papers. See
Table 2.

We did a further analysis to see if we could determine
what made the ‘yes-curate’ papers hard. We noted that all
but one of the ‘yes’ papers (90/91) had results of interest
for at least one ‘regular’‡ gene product. These 90 papers
could be divided into two groups.§ Papers in the first group
had results of interest on both transcripts and proteins. All
test set papers of this type also had at least one ‘regular’
gene for which both transcript and protein results were
present in the paper. Papers of the second type had results
of interest on either transcripts or proteins, but not both.
The both papers were easier to identify than the either
papers, with the former having a higher r ′ than the latter,¶

as shown in Table 3. Another way to view this is that a
higher fraction of the both papers have r ′ > 50% than the
either papers.

The either papers may be harder because they seem
more likely to also have experimental results that only

† The r ′ standard deviations (sd(r ′)) are 14 and 26%, respectively. The
difference in the averages is statistically significant (at the 0.0005 level)
using a single-sided equal-variance t test.
‡ A ‘regular’ gene is one that is not ‘special’ (anonymous, lethal or foreign)
as mentioned in The training and test data Section.
§ Products of ‘special’ genes were ignored in the determination of the groups’
members.
¶ sd(r ′) is 20 and 16% respectively. The difference in the averages is
statistically significant (at the 0.0005 level) using a single-sided equal-
variance t test.

apply to laboratory-produced mutants (results not of
interest), which can obscure the results that are of interest
(wild-type).

DISCUSSION: LESSONS LEARNED
One lesson we learned from running this contest is that
access to the literature itself is a complex matter. Abstracts
of papers are fairly easy to obtain via PubMed/Medline
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi). How-
ever, many of the results of interest to the FlyBase curators
are only described in the full paper, and not in the abstract.
As an example, for the protein Appl+P145kD, FlyBase
records that (Torroja et al., 1996) finds 17 expression
patterns relating to when (in the life cycle) and where (in
the body) that protein is found. Only 2 (12%) of these
patterns (an adult’s brain and an adult’s mushroom body)
are mentioned in that paper’s abstract. The other 15 (88%)
patterns (for example: a larva’s photoreceptor cell and a
pupa’s lobula) are only mentioned in the full paper—see
Figure 1.

Using full papers introduces complications. One com-
plication is that easily accessible electronic versions of
some papers do not exist. Other papers could be obtained
in PDF format, but they were not suitable for processing
by most text mining systems. A subset of the papers were
available in HTML format; however, this HTML version
needed to be freely available to the public. For the contest,
we began with a list of 7100 possible papers, but were able
to obtain only 1118 freely available papers in HTML, from
which both the training and test papers were drawn.

HTML has its own challenges. Publishers set up many
of the HTML versions of the papers so that the main
file and the directory to the linked files have the same
path name. The linked files include most figures and also
some figure captions and tables. So in a straightforward
download, one cannot get both the main file and the
linked files. Either one downloads the main file first
and then replaces it with the directory when a linked
file is downloaded, or vice-versa. We chose to keep the
main files and leave out the directory and associated
linked files. FlyBase curators have mentioned that many
of the experimental results are presented in figures and
their captions (B.Matthews, personal communication).
Fortunately, most captions were not left out, and the
captions typically described what was of interest in the
actual figure. Also, most text processing systems cannot
actually handle the figures (images) themselves.

Another complication was that many automated text
processing systems have been designed to handle plain
text, but, as mentioned in The training and test data
Section, full papers of interest to FlyBase often have
information expressed in typesetting conventions, such
as superscripts, subscripts, italics and Greek letters. It
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Fig. 1. Expression patterns found in full text versus abstract.

was necessary to apply conversion routines to produce
versions that translated typographic conventions into plain
text corresponding to the FlyBase conventions.

A second lesson is that the information of interest can
differ quite a bit in appearance between the paper and
the corresponding curated database entries, for example,
in gene product naming (see The training and test
data Section). FlyBase does not store pointers to the
specific passage(s) that support a database entry. As a
result, finding the evidence for a given entry may require
significant biology expertise and sometimes, also expertise
in FlyBase conventions.

This competition was held at a data-mining conference,
so not surprisingly, many contestants made use of statisti-
cal, automated learning and/or automated weighting tech-
niques, including Naı̈ve Bayes, SVMs, Widrow Hoff lin-
ear classifiers, linear regression and the ‘tf-idf’ weighting
scheme. However, such techniques were not enough to do
well. The contestants also needed to either manually de-
termine what features to look for and/or where to look for
them. Examples of features included keywords, patterns
of words and types of patterns. The winning team used
manually determined patterns, while the honorable men-
tion teams used mixtures of manually determined items
and items gleaned from statistics or automated learning.

It was also important to know where to look for
features or patterns. The winning system made good
use of information in figure captions. A number of
groups looked only at sentences containing gene name(s)

or certain keyword(s). Some groups made use of the
document structure, preferring to look in certain sections
(e.g. ‘Results’ or ‘Methods’) and avoiding other sections.
The ‘References’ section is one to especially avoid, as
it contains citations that included names of genes not
discussed in the paper.

The third sub-task was the hardest and the most fine-
grained. This sub-task required determining which genes
in a paper had experimental data on their wild-type (non-
mutant) products, as opposed to just making an overall
determination for the paper. So especially for this sub-
task, a contestant’s system needed to do more than look
for good indicators of experimental results and good
indicators of results for wild-type versus mutant genes.
The system also needed to associate indicator terms
relating to experimental findings (e.g. ‘Northern blot’ or
‘Western blot’) with particular genes. Some of the high
performing systems handled this by looking for particular
patterns of words that would associate an indicator with
a particular gene, with the patterns often being contained
within a sentence or two. Another system handled this by
measuring how close (in sentences) an indicator (feature)
was to a gene name and restricting the measurements to
occurrences of gene and indicator mentions within the
same paragraph.

A common feature of these approaches was that they
used information about the document structure and lin-
guistic structure of a paper, e.g. sections, paragraphs, sen-
tences, and phrases. This is in contrast to the information
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retrieval approach of treating a paper as just an unstruc-
tured set of words. We expect that systems will need to
make more extensive use of linguistic and document struc-
ture to achieve better results and to accommodate more
realistic tasks. For example, linguistic structure may pro-
vide critical clues once the simplifications mentioned in
The training and test data Section are removed, includ-
ing requiring systems to handle mentions of foreign genes,
lethal genes or anonymous genes. Similarly, if the list of
genes is not provided in advance for each paper, this makes
the task of identifying the set of genes discussed in an ar-
ticle more difficult. The system would have to determine
when a new name refers to a new gene and when it is a syn-
onym for something already known. In this case too, both
linguistic structures and document structures can provide
critical information

One of our goals in running this evaluation was to
evaluate the evaluation. For this, we defined three criteria:

• The evaluation should be repeatable and affordable.
This should include a reusable training data set, cost-
effective preparation of ‘gold standard’ data for test
and repeatable scoring procedures that are easy to run
and easy to understand.

• The evaluation must attract participants. This means
that it needs to be a problem of importance to
biologists, but also accessible to researchers in text
mining teamed with biologists.

• The task must be tractable, but should also push the
state of the art. If the task is well chosen, groups
will demonstrate that they are on the path to the
development of a useful capability.

Our assessment of the KDD evaluation was that it was
successful along all of these dimensions. It was affordable.
We estimate that it took us approximately 9 staff months
of time to complete the tasks associated with setting up
and running the KDD evaluation, including: (1) defining
the task; (2) obtaining and normalizing the texts; (3)
preparing and packaging the training data; (4) releasing
the training data and answering questions; (5) developing
and explaining the scoring routines; and (6) scoring the
test results. In addition to our time, it took 2 staff months
of time from the FlyBase curators to curate the test set
and answer questions (both our questions and those of the
participants).

We were able to create a reusable training corpus, which
we will continue to make available.†

We were able to attract a reasonable number of partici-
pating groups (18) from a wide range of countries. How-
ever, because of the venue (KDD), we attracted mostly re-
searchers in text mining, rather than biologists. We would

† To obtain the training corpus, send e-mail to Alex Yeh, asy@mitre.org

like to attract more participation from the biology commu-
nity.

The task we chose is one of real importance to curators
responsible for maintaining biological databases. We
believe that there are many other text mining tasks that
could be of great potential utility to biological database
curators.

CONCLUSIONS
We successfully organized an initial evaluation on text
mining systems to aid biological database curation, as part
of the KDD Challenge Cup 2002. Many teams took part in
the evaluation, and their results indicate that curated data
from a biological database can be used to train text mining
systems to perform a potentially useful task.

The task that we presented to the contestants is only
a small part of what the FlyBase Harvard curators do.
But even this limited task is of real importance to the
curators, because most of the papers (for example, 2/3
of our training papers) given to the curators contain no
results of interest, and filtering out such papers is useful.
The results from the ranked-list sub-task look especially
promising (the best teams were 81–84%). But we need
to perform further experiments to determine whether the
resulting lists will actually help the curators with filtering
papers.

We are now involved in planning a larger competition,
together with A. Valencia and C. Blaschke (CNB-Madrid),
under the umbrella of the ISCB BioLINK Special Interest
Group for Text Data Mining (see http://www.pdg.cnb.
uam.es/BioLINK/). We are planning two tasks; the first is
the extraction of gene or protein names from text, so that
we can evaluate the current state of the art in biological
entity extraction across systems that have been reported in
the literature over the past few years. The second task will
require systems to associate Gene Ontology (GO) terms
with mentions of proteins in articles curated in the SWISS-
PROT database. Our experience in organizing the KDD
competition leads us to believe that by using data from
curated databases and focusing on tasks of immediate
utility both to database curators and to researchers, we can
define a good challenge evaluation for text data mining
systems.
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