
Performance Experiments with the High Level Architecture and the
Total Airport and Airspace Model (TAAM)

David J. Bodoh

Dr. Frederick Wieland

Center for Advanced Aviation Systems Development
The MITRE Corporation

7515 Colshire Drive, McLean, VA 22102
{fwieland, dbodoh}@mitre.org

Introduction

The purpose of this paper is to present a series of
performance experiments in which the United States’
Department of Defense (DoD) High Level Architecture
(HLA) has been used to improve the performance of a
sequential aviation simulation. As it was originally
envisioned and commonly used, the HLA is a mechanism
for interconnecting disparate simulations over a network.
Its main application has been distributed wargaming,
where simulations prepared by different organizations are
combined in a virtual environment for a specific training
exercise or study objective. The individual simulations
are called federates in the HLA world, while the collection
of federates that interoperate in the virtual world is called
a federation. The HLA specifies both procedures by
which organizations define a federations, as well as
software protocols to which the federates adhere for
interoperation.

In this paper we investigate an alternate use of the HLA.
It is possible to imagine that the federates are not disparate
simulations, but a single simulation that has been
partitioned along some logical axis and federated with
itself. Such a self-federation has many attractive features.
First, the data structures are identical among the various
federates. Secondly, there are no problems with common
definitions of data elements, messages, interactions, or
algorithms, as the federates all derive from the same
source code. Finally, the mechanism can be viewed as a
lightweight parallel simulation engine, as all of the details
of synchronization, time management, message passing,
and monitoring have already been well thought out and
implemented in the HLA system.

The Total Airport and Airspace Model (TAAM) is a large
air traffic simulation that is a worldwide standard for
aviation analysis. Traditionally it has been used for
regional studies, consisting of a small subset of airports
and airspace. Recently, there has been interest in using
TAAM for much larger scenarios, such as simulations of

traffic throughout the entire United States. It is possible,
but not practical, to run such simulations with TAAM. A
simulation of a large fraction of the traffic in the United
States requires at least 35 hours of run time; simulations of
the entire country would require at least double that time.

The study question we seek to address here is, can the
HLA be used as a parallel simulation mechanism to allow
large TAAM simulations to execute in a reasonable
amount of time? In other words, to what extent can the
HLA be used as a self-federation mechanism for TAAM?
As noted above, the use of the HLA has many attractive
properties, not the least of which is that many of the issues
involved in parallel simulation engines have a solution
inside the HLA.

Details of the Problem

The United States’ National Airspace System (NAS) is a
collection of airports, navigation aids, airspace,
equipment, controllers, pilots, airlines, procedures, and
other associated equipment, organizations, and policies
that facilitate the safe operation of air traffic throughout
the United States [Nolan1990]. Many organizations have
built simulations of the NAS, ranging from abstract to
more detailed [Wieland 2002]. The Total Airport and
Airspace Model (TAAM), a product of Preston Aviation
Services in Melbourne, Australia, is regarded as a very
detailed and standard model for analysis of aviation issues.

TAAM represents airports in one of three modes: as points
(sources and sinks of flights), in “runway only” mode, and
in full layout mode which includes taxipaths and
arrival/departure gates. TAAM also models the airspace
in some detail, providing the user with various options for
airspace configuration. Relevant to this study, the most
important option allows the user to turn on (or off) the
conflict detection function, which determines when two
aircraft will eventually be within conflict. Also, the
conflict resolution function, which allows TAAM to
determine a vectoring path for one of the two aircraft that

are in conflict, can also be switched on (or off). Conflict
resolution is determined by scanning a rulebase that
specifies how controllers would react in similar situations.

A typical simulation of the whole NAS would require
detailed airport layouts for up to thirty-two airports of
interest, runway only mode for up to twenty other airports,
and point sources for the remaining airports.1 Airspace
would typically be modeled with conflict detection turned
on, and conflict resolution would be used if a rulebase is
available that adequately describes conflict avoidance
maneuvers.

The experiments outlined herein use a geographic
partitioning strategy for parallelization. That is, the
scenario space is divided into two regions, one “east” and
one “west,” and the HLA is used to coordinate the flow of
aircraft as they cross the boundary. The details of this
geographic parallelization strategy, and how it was
implemented, are provided below.

Related Work

The only other self-federation study of which we are
aware involves federating a network simulation with itself
[Riley 99]. That paper describes an effort where an HLA-
like system was used for the self-federation. The
modeling issues involved are discussed at length in that
paper. The network simulator needs to determine how to
route a packet from a source to a sink. The model has to
handle routing problems caused by a federate being
unaware of the connectivity and link status in remote
federates. In our system, routing is not an issue: the
routing is done in three-dimensional space, and an aircraft
can always point itself at a destination, even if the details
about the destination are in a remote federate.
Additionally, an aviation simulation generally requires a
number of rules and procedures that involve controlling
the flow of traffic, runway assignment, arrival sequencing,
taxipath computation, gate allocation, and so forth.

Before we began federating TAAM with itself, we

conducted our own study of the feasibility of the approach
[Bodoh 2001]. We developed a meta-simulation of a self-
federation in Java, and found that the speedup was a
sensitive function of computation, communication, and
their associated variances. While this result was no
surprise to us, we were able to verify that, given sequential
performance data on TAAM’s expected computation and
communication, the HLA self-federation is feasible for
TAAM..

1 It should be noted that there is considerable flexibility in
how a TAAM scenario is constructed, so the configuration
stated here is for illustrative purposes only.

Geographic Partitioning and the HLA

Although the HLA software protocol provides many
services for connecting simulations [Kuhl 1999], in the
TAAM self-federation, only some of them are needed..
We need federation management, to create the federation
and have the individual TAAM federates join it,
declaration management to handle the routing of
messages, object management for sending and receiving
interactions (events), and finally time management for
synchronizing the advancement of the simulation clock
across federates. Each of the TAAM federates is identical,
except for the federate ID (an RTI identifier unique to
each TAAM instance), the geographical area they control,
and the flights they own, which is based upon their
geographic area of control.

Thus the basis for self-federation is splitting the scenario
space into distinct non-overlapping geographical regions,
such that each TAAM federate handles all the air traffic
within a region. As the traffic moves across region
boundaries, the federates hand off the data using the HLA
protocols.

A software realization of the HLA protocol is called the
Runtime Infrastructure, or RTI. The RTI we are using was
built at the Georgia Institute of Technology in Atlanta. It
is called the DRTI, for Distributed Runtime Infrastructure.
It is implemented in C++, and is easily compilable using
the “gcc” compiler. Only one modification of the DRTI
software was needed to support TAAM (we increased the
size of the message buffers). The DRTI system requires
two UNIX environment variables to be defined for it to
work; beyond that, all the software modifications and
changes were to TAAM itself.

Although the HLA specification allows for interoperability
of federates on a heterogeneous network, there is no
support in DRTI for heterogeneous networks. Practically,
this means that the self-federated TAAM that we built will
only run on networks of identical processors (i.e., all Sun
workstations, or all Linux boxes—it will not run on a
mixed Sun/Linux network). There are two software
constraints that prohibit heterogenerous operation: (1) the
DRTI does not include support for binary translation
between “little-endian” and “big-endian” platforms; (2) we
encoded the TAAM interactions as binary data structures,
as opposed to ASCII text.

The individual TAAM federates must share the same
scenario data, which means they all read the same project
file. We have added two new scenario files to the system:
the federation file (FED file) required by the HLA RTI,
and a geography mapping table file. The FED file

describes the data structures that are shared between
instances of TAAM—the flight plan, segments,
waypoints, and so forth. The mapping file defines the
geographical extent of each federate’s responsible area in
the federation.

Each federate must execute from a separate directory,
even if the directories are cross-mounted. This is required
because each federate writes a different report file.
Finally, even if the federation is hosted on a single mulit-
processor mahine, the federates cannot share memory,
which means that the data structures sent between TAAM
instances must contain the actual data—not pointers to
memory locations. As a result, the TAAM federation
must “deep copy” each data structure it sends.

The FED file defines the type of data to be shared.
Generally, the FED file can store either objects or
interactions or both, but in our self-federated TAAM all
communication is done via interactions. As a sidenote,
“interactions” in HLA are transient messages that are sent
to the RTI, while object interaction represents an update to
a persistent data structure. The self-federated TAAM has
two types of interactions that transfer data: an aircraft
handoff interaction and one that transfers pending
scheduled events for an aircraft previously handed off. In
addition, there are four types of interactions that are
instructional in nature. The first is a kill aircraft
interaction that informs all federates when one federate
has deleted an aircraft. The second is a set aircraft
approach interaction, while the third is a

sequencing interaction. The fourth is a shift time
marks interaction.
The second added file—the geography mapping file—
defines rectangular geographic boundaries for each
federate. Each federate must have an entry in the file, and
the entire scenario space must be covered by the union of
each federate’s individual space. It is not necessary, or
even desirable, for each federate to have the same quantity
of scenario space in its geographic region. Rather, it is
necessary to evenly distribute the work across federates, as
a function of simulated traffic load bound by geographic
region.

Data Marshalling Logic

With a distributed simulation, HLA provides the vehicle
for transferring data among federates, but it is the
responsibility of the programmer to ensure the sent data
properly represents the state of the model, and the data
received properly reflects the state of the model. Also, the
data messages need to be encoded in a form recognized by
the HLA constructs for transmittal. This set of tasks is
called Data Marshalling.

Resident data structures in TAAM cannot be transmitted
over HLA in their original form. Most of the existing
structures contain a mixture of static and pointer data that,
if exhaustively transmitted, would require transmittal of
virtually all of the data in memory. We discovered that
sending all such aircraft data is unnecessary.

identify next data
field of the object

include field in
HLA message

include data
subobjects in
HLA message

identify next data
field of the object

create a “key” to
uniquely identify
object in other

federate

is the object
unchanged?

Y

N

does object
exist in receiving

 federate?

Y N

create a “key” to
uniquely identify
object in other

federate

identify next dynamic
field of the object

include field in
HLA message

identify next dynamic
field of the object

is the
data field
a scalar?

Y

N

HLA
message

include “key” in
HLA message

Y

N
is the

data field
a scalar?

query local pointer
to object

update object fields
with dynamic data

build object from
scratch

start

Figure 1. Data Marshalling Logic in the TAAM self-federation

At a minimum, the data message had to include all
dynamic data (any data items that could be different
between federates), while also harnessing any dynamic
data of the sub-elements of the structure that are in turn
dynamic. Any data that was not dynamic, yet still needed
to be identified in the message, was sent using a “key.”
Keyswere created to uniquely identify data objects based
on some field property or as an index in a list.
One primary use of the “key” method is to locate pointers
to aircraft structures. A federate cannot send the address
of an aircraft to another federate because the other federate
is using a different memory block, perhaps even a
different computer. The receiving federate would make
no sense of a foreign address. So the sending federate
could just send the aircraft ID, which can then be used by
the receiving federate to query a hash table to find that
aircraft pointer. To this end, all federates read the same
time table information, and assign identical unique Ids to
the same aircraft.

Software Ambassadors

In the HLA specification, there are two ambassador
classes that are used for communicating with the other
federates. The RTI ambassador provides functions that the
federates employ for communicating with the RTI.
Likewise, the federate ambassador provides the callback
functions used by the RTI for communicating with the
federates.

In the DRTI, the RTI ambassador class is already defined.
The TAAM federate ambassador only overloads functions
required for operation within the federation. In this case,
it only implements timeAdvanceGrant() and
receiveInteraction().

 Initializing the Federation

HLA defines a set of features to support federation
management. In order to get a set of federates to
cooperate in a common simulation, they need to agree on a
number of issues including what types of data can they
share and when they can start executing simulation events.
HLA also defines a set of features for time management
and declaration management that prepares the federate for
how it will participate in the group.

In TAAM, the start_sim() function is used once to
initialize the simulation. In this function we added a step
to initialize this copy of TAAM as a federate in a
federation, which prepares it by using the three
management services mentioned above.

First, the federate joins the federation by specifying three
values: a common name that all federates will use to
access the same federation, a FED file that contains the
federation object model for all available data types, and a

reference to the federate ambassador instance for this
federate. TAAM then initializes some internal states
related to its participation within the federation. This
includes assigning its federate space, assigning handles to
the interaction classes, setting time management
parameters, and publishing and subscribing to interactions.
Finally, the federates enters a wait state until all federates
have reached this stage of initialization. Once that is
attained, the federation can proceed with the remainder of
start_sim().

Initializing Aircraft

Federating TAAM required the introduction of three new
fields as part of the aircraft structure. The federate
field represents the ID of the federate that has control of
the aircraft. This field will be a known federate ID, or –1
if the owning federate is undetermined. The on_loan
flag indicates that the aircraft is temporarily under the
control of the local federate, and will be returned to its true
owning federate after some calculations (this is explained
more in the section on approach settings). The
relay_kill flag indicates the origin of where the
aircraft was killed in the federation (this is explained more
in the section on terminating an aircraft).

These fields are initialized when the aircraft object is
instantiated in the simulation At the same point, the
aircraft is registered in a new hash table built for quick
retrieval of aircraft pointers using their ID as a hash key.
Because all federates read the same data from identical
time tables, the resulting hash table entries will contain the
same Ids for those aircraft, yet maintain distinct values for
the local aircraft addresses. This initialization stage is also
the point where TAAM determines which federate will
control the aircraft. Using the initial position of the
aircraft and the geographic space assigned to the federate,
the aircraft will either be included or excluded from the
federate’s control. All aircraft in a federate’s control are
explicitly stored in a global linked list. Only aircraft in the
federate’s space are added to the this list; aircraft not in
the federate’s space are excluded from that list. In fact,
nearly half of an aircraft initialization stage is skipped if it
is excluded from the federate’s space. This filtering
process guarantees that every aircraft will be assigned to
no more than one federate at initialization. Control of any
aircraft can be later transferred between federates as
described below.

Advancing Time
HLA provides management services for time
advancement, though HLA itself does not represent any
notion of a “simulation-wide” clock, nor does it regulate

Real Time

Si
m

ul
at

io
n

Ti
m

e

TA
R

G
R

A
N

T

TA
R

G
R

A
N

T

TA
R

TA
R

time step

Federate 2

Federate 1
AdvancingGranted

12

18

24

RTI’s Knowledge of Time

Figure 2. Time management in the HLA

the speed of the federation. The federates themselves
advance their internal clocks, and depending on how they
are registered with the RTI, can influence or be influenced
by other federates’ perceived advancement of time. The
internal clock value that is presented to the RTI by the
federate is known as that federate’s “logical time.” The
RTI keeps track of every federate’s logical time so that it
can safely issue grants to time advance requests. The
federation as a whole does not have a single logical time.

The TAAM federates are both time-regulating and time-
constrained. Time regulating federates request time
advances from the RTI. When a federate is ready to
advance to a new logical time, it must first get permission
from the RTI, which will only grant permission based on
the current logical times of all the federates in the
simulation. Time constrained federates are constrained by
time-regulating federates. When all federates are
established in this configuration, the simulation is known
as “conservatively synchronized.”

Time-regulating federates alternate state between the
granted state and the advancing state. The granted state is
when the simulation is performing calculations at some
logical time. The advancing state is when the federate
issues a time advance request from the RTI and is awaiting
a grant. Once the grant is received, the federate resumes
the granted state. While waiting for the grant, the federate

may receive and process any time-stamped interactions
delivered by the RTI from other federates.

The core of TAAM’s aircraft processing function updates
each aircraft’s position every six simulation seconds. At
each iteration, TAAM sends its request to the RTI to
advance to the current_time. Note that TAAM can and
does perform events at other times between these six-
second processing cycles, but they are transparent to the
RTI because the federate’s logical time is only presented
with each time advance request. Any messages that are
received and processed by the federate are executed during
the advancing state. Federates can send messages while in
either state. The primary difference is that messages sent
during the granted state will be received by the other
federate(s) during the very next advancing state.
Messages sent during the advancing state will be received
by the other federate(s) during the subsequent advancing
state.

Figure 2 illustrates how two federates affect each other’s
advancement of time. At the start of each time cycle, both
federates perform the calculations in the processing
function, and any other events that follow the processing
event. When the next processing event is ready to
commence, each federate requests a time advance from the
RTI, handles any and all events pending with that
timestamp, and receives the grant. The grant will
normally be sent immediately after the last federate has

requested the advance. Any delay in receiving the grant is
due to message process time spent during the advancing
state. Also, because all federates are using the same time
step, all time advance requests sent to the RTI will be for
identical time values. In other words, the federates will
not be “stair-stepping” each other to advance time. Note
that in figure 2, the dark-shaded states represent the time
TAAM would be spending in a sequential run. The light-
shaded states represent the overhead associated with
processing HLA messages. The chart is for illustration
only, do not draw any conclusions about the scale of event
times.

Aircraft Handoff
Because aircraft are moving about the simulated airspace,
it is inevitable that several will leave the designated
airspace of the federate in which they were initialized and
enter another federate’s airspace. Aircraft may even cross
the boundaries of several federates’ spaces during its
flight. The use of HLA interactions facilitates this
transition of ownership called handoff.

The basic operation of a handoff is that each time the
aircraft changes position, a query is made to the owning
federate’s space to determine if the new position is outside
that space. If so, then collect all the dynamic information
about that aircraft’s state into an HLA message and send
it. At that instant, the aircraft is removed from the aircraft
linked list, and any associated events still pending in the
event list are also purged, and sent in a similar fashion.
The receiving federate locates its local instance of that
aircraft, and populates that aircraft data structures with the

data that was in the message. The events associated with
that aircraft are also re-scheduled in the local schedule list,
and the aircraft is added to the local linked list.

The original intent for aircraft handoffs was to perform
them only at federate border crossings. We later
discovered exceptions to that rule. First, to prevent
aircraft from entering holding patterns that breach federate
borders, handoffs will wait until the aircraft leaves a
holding state before a handoff can be completed. Without
that rule, TAAM could generate several handoffs between
two federates in short succession. This would add
unnecessary overhead in communication. Second, we
noticed that once the aircraft performs its approach setting,
it will subsequently be compared and contrasted to other
aircraft in its landing queue. If any of the aircraft in that
queue are controlled by different federates, each federate
may not have the complete state of all the aircraft at any
given moment. Therefore we decided that only one
federate will maintain the landing queue for each arrival
airport, and any aircraft in that airport’s landing queue
must be controlled by that same federate. To accomplish
this, a handoff must be performed when an aircraft is
about to calculate its approach setting, and its arrival
airport is located in a different federate’s space. This may
result in handoffs that happen well before the aircraft
crosses federate boundaries, but it maintains integrity of
all the flights approaching the same airport.

In Figure 3, five different flight situations are observed.
The perimeter around point “F” represents the time-based
approach threshold for aircraft approaching airport F.

Landing queue threshold

A

F

G

AGF: Approach set enroute at G, no handoff.

B
H

I

BHIF: Handoff at H, then approach set enroute
 at I.

C

J

K

CJKF: Handoff at J. Federate 1 sets
 approach upon receipt. No event at K.

D
L

DLF: Temporary handoff to federate 1 for
 approach set on ground, return handoff to
 federate 2 immediately. Handoff again at
 wheels-off to federate 1. No event at L.

E

EF: Approach set on ground, no handoff.

Federate 2Federate 1

Figure 3. Aircraft Handoff in the federated TAAM

TAAM calculates approach settings when that threshold is
crossed. The line between federate 1 and federate 2
represents the border between their federate spaces.
Airports A, B, C, D and E represent points of origin for
aircraft landing at airport F.

With regard to airport A, TAAM calculates the approach at
point G, however there is no handoff because the aircraft
is landing in the same federate where the approach is
being set. From airport B, the aircraft first crosses from
federate 2 to federate 1 by means of handoff, and then
reaches the approach threshold. Again, the aircraft
continues to perform all calculations in federate 1. In case
C, the aircraft reaches the approach threshold before it
enters federate 1’s space. Federate 2 initiates a handoff at
point J to federate 1, which will then calculate the
approach setting, and continue controlling the aircraft to
the destination airport. Note that there is no handoff event
at point K. In case D, the origin airport for the aircraft is
already within the approach threshold for airport F, but not
in the same federate as F. In this case, the aircraft may
remain on the ground for some time after the approach is
set. Because federate 2 controls the aircraft separation on
the ground at airport D, federate 1 must receive the
handoff, perform the approach setting, and handoff the
aircraft back to federate 1 immediately. Federate 2
continues to control the aircraft on the ground until
wheels-off at which point it performs another handoff
back to federate 1. There is no handoff event then at point
L. In case E, both departure and arrival airports are in the
same federate, so there are no handoff events there.

A similar set of circumstances exists for the case of
aircraft crossing the sequencing threshold, which is a
smaller radius about the arrival airport. However in this
situation, the aircraft should already have had its approach
set, and would then already be controlled by its final
destination federate. The exception here is that the aircraft
could still be on the ground, as in case D, and require
(another) episode of bi-directional handoffs while on the
ground.

Aircraft Termination

Each TAAM federate maintains two lists of aircraft, One
represents the list of aircraft currently controlled by
TAAM. The other is list of all known aircraft in the
simulation, active or not. Because this seconds list is
unaffected during aircraft initialization, it will remain
consistent among federates until an aircraft is deleted or
killed. To maintain consistency, TAAM must
communicate “terminate aircraft” events so that all
federates can perform the same operation. A simple HLA
interaction was designed to transmit the aircraft ID from
any federate that initiated the aircraft termination. All

other federates who received this interaction would
immediately terminate their local instance of that same
aircraft. Note that in order to prevent recursive
interactions from second-level aircraft delete events, a flag
is used within the aircraft data structure which get set by
only the original federate. Receiving federates will note
that the flag is set, and bypass the step used for sending
that HLA interaction.

Federation Termination

Near the end of a TAAM simulation, it will reach the point
where only one aircraft is still active. In this case, only
one of the federates will be actively controlling aircraft,
while the others have stopped their processing cycles.
Normally, TAAM would end the simulation at the
termination of the last active aircraft. If that were the case
in a federation, the terminating federates would cause an
early resign error which the RTI would propagate to any
remaining active federates. To prevent early resign errors,
the terminate simulation function will be interceded by a
call to request a time advance to an ultimate simulation
time. Therefore any non-active federates will be in the
advancing state while waiting for the active federates to
either send messages, or also request advances to the
terminal time. The active federate(s) will not need to wait
as long for time advance grants, because the RTI has
already confirmed the inactive federates are beyond any
logical time still in use. Once the last active federate has
reached the advance request to the terminal time, all
federates will receive the grant, and terminate
simultaneously.

Performance of the Federation

TAAM, as modified above for self-federation, was
executed as two federates on a single multiprocessor
Solaris server. Two difference scenarios were used for the
experiment. Both scenarios were considered large enough
to warrant efforts in reducing the overall run time. The
first scenario is a 6,600 flight scenario, representing traffic
for about 8 hours in the northeastern United States. The
second scenario is a 34,000 flight scenario, representing
traffic for an entire day in the same region. In both
scenarios, the geographic extent included all of New
England, south to Washington DC, and as far west as
Chicago.

The experiments were conducted on a 700 Mhz 6-
processor Intel-chip server running Solaris 2.9 with 2GB
RAM and 4GB of swap space. This server was ideal
because each federate could be assigned a unique
processor, and there is no overhead associated with
network latency. We used the final release version 1.2 of
TAAM, as well as version 3.0 of the Federated

Simulations Development Kit (FDK) from Georgia Tech.
This kit contains a functioning RTI called the DRTI which
was used to support the HLA features of the experiment.
As a proof of concept, some test federations were
deployed across a network with two Intel-based Solaris
servers, to conclude that the distributed simulation can be
executed over a network.

The unmodified sequential version of TAAM, running as a
single federate, required approximately 25 minutes for the
6,600 flight scenario, and 3.5 hours for the 34,000 flight
scenario.

Figures 4 and 5 present the results of the experiment with
two federates (vs. the baseline) in a graphical format. The
speedup for the 6,600 flight scenario was a tiny 1.2%,
while that for the 34,000 flight scenario was 14.4%. We
measured the performance gain by inserting additional
timing code into the TAAM federates. The additional

code allowed us to assign the time spent during federation
execution into one of five different bins: both federates in
granted state (they are running the simulation
simultaneously), one federate busy (either advancing or
granted) while the other waits; both federates in advancing
state; and advance/grant cross-parallel time. The results
for the two scenarios are shown in figures 6 and 7.

Discussion and Conclusions

The results of this experiment are simultaneously pleasing
and disappointing. We are pleased that TAAM, a
sequential simulation that has evolved over ten years, can
be self-federated using the HLA technique. We are
somewhat disappointed with the low speedup achieved by
the federation. In inspecting Figures 6 and 7, it is apparent
that only 26% of the time the 6,600 flight scenario was
computing in parallel. This corresponds to a maximum

24.1

24.2

24.3

24.4

24.5

24.6

24.7

Baseline 2 Federates

R
un

 T
im

e
(m

in
ut

es
)

Figure 4. 6,600-flight scenario performance

2.8

3

3.2

3.4

3.6

3.8

Baseline 2 Federates

R
un

 T
im

e
(h

ou
rs

)

Figure 5. 34,000-flight scenario performance

One federate busy
(granted), other
federate waiting

Both federates in
Granted state

Advance-Grant
cross-parallel time

One federate busy
(advancing), other
federate waiting

Both federates in
Advancing state

56%

26%

12%

4%

2%
One federate busy

(granted), other
federate waiting

Both federates in
Granted state

Advance-Grant
cross-parallel time

One federate busy
(advancing), other
federate waiting

Both federates in
Advancing state

56%

26%

12%

4%

2%

Figure 6. Time Assignment for the 6,600-Flight
Scenario

Advance-Grant
cross-parallel time

Both federates in
Advancing state

2%

2%
5%

One federate busy
(granted), other
federate waiting

Both federates in
Granted state

One federate busy
(advancing), other
federate waiting

70%

21%

Figure 7. Time Assignment for the 34,000-Flight
Scenario

speedup of 1.26. For the 34,000 flight scenario, the
maximum speedup would be 1.21. The discrepancy
between the maximum available and the observed speedup
(1.01 and 1.18, respectively) is most likely due to low
computational granularity, but we have not made the
measurements to confirm this belief.

The rest of the system represents overhead due to either
message passing by the RTI, or due to poor load balancing
among the federates. The latter is shown by the time one
federate is busy while the other waiting; this consumes
58% of the time in the 6,600 flight scenario, and 72% of
the time in the 34,000 flight scenario.

SPACE
Federate A Federate B Federate C

t1 workload At1 workload Bt1 workload Ct1
t2 workload At2 workload Bt2 workload Ct2

tim
e

t3 workload At3 workload Bt3 workload Ct3

Table 1: Workload Distribution

When the goal of federating a simulation with itself is to
let the federates operate in parallel to achieve a faster
simulation, it is ideal to keep all the federates as busy as
possible. The workload divided among the federates is
based on geographic space. Further, each of those
workloads are partitioned to operate within the granted
state of the federate, as seen in table 1. The workload
within each federate’s granted state is a function of time
and space. For each time step, each federate has some
simulation calculation to perform, ranging from none
whatsoever, to everything, for that particular time step.
Recall that all federates will receive the time advance
grant at the same time, therefore the measured amount of
time to process the federation’s workload at a given time
step will be no less than the maximum federate workload
for that time step. Any federates that complete their
workload early will simply wait and do nothing until all
federates are done. If the maximum workload is
significantly greater than the average workload for the
majority of time steps, then the simulation is considered to
be load-imbalanced. A load-imbalanced simulation is
inefficient based on the amount of time federates are idle.

The user has limited control of balancing the workload by
adjusting and fine-tuning the boundaries that separate the
geographic space of the federates. However this can only
solve the problem in one dimension (space). Over time,
the workload could shift from East to West, making the
federate space balanced early in the simulation, but
imbalanced later in the simulation, or vice-versa. The user
is left to attempt to balance the federation’s workload by
approximating the space boundaries around the busiest
and most time-intensive points of the simulation. This is

tenuous at best. Most of the time step intervals could still
be left as heavily imbalanced which produces less chance
for simulation speed up. As it stands, there is no way to
dynamically alter the federate boundaries during the
simulation. That would require an extra set of
communication for bulk handoffs of aircraft, which would
add more overhead than it is worth.

Thus we conclude that the major source of overhead in
these scenarios is load balancing. If this conclusion
stands, then TAAM scenarios which possess better load
balancing between the federates should show much larger
speedup than reported here. Such experiments will remain
the focus of future investigations.

Acknowledgements

We would like to thank Preston Aviation Services of Australia
for their support, interest, and collaboration in this work. In
particular, we would like to thank Dr. Sasha Klein, Dr. Leigh
Samphier, and Mr. Paul Gargett from Preston. In addition, we
gratefully acknowledge the DRTI software from the Georgia
Tech College of Computing, Dr. Richard Fujimoto’s research
group, and in particular assistance from Dr. Thomas McLean.
Finally we would like to thank The MITRE Corporation’s Center
for Advanced Aviation System Development for their continued
participation and support for this research.

The contents of this paper reflect the views of the authors.
Neither the Federal Aviation Administration nor the Department
of Transportation makes any warranty or guarantee, or promise,
express of implied, concerning the content or accuracy of the
views expressed herein.

References

[Bodoh 2001] David J. Bodoh, Frederick Wieland, “Self-

Federating an Aviation System Using HLA: Is it Feasible?”
Distributed Interactive Simulation-Real Time (DiS-RT)
Conference, August, 2001 IEEE:Cincinnati, Ohio.

[Kuhl 1999] Frederick Kuhl, Richard Weatherly, Judith

Dahmann, Anita Jones, Creating Computer Simulation
Systems: An Introduction to the High Level Architecture,
Prentice Hall: 1999.

[Nolan 1990] Michael S. Nolan, Fundamentals of Air Traffic

Control, (Wadsworth:1990).

[Riley 1999] George F. Riley, Richard M. Fujimoto, Mostafa H.

Ammar, “A Generic Framework for Parallelization of
Network Simulations,” Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems,
October, 1999.

[Wieland 2002] Frederick Wieland, “Modeling the NAS: A

grand challenge for the simulation community,” Grand
Challenges in Modeling and Simulation, San Antonio, TX,
2002.

	7515 Colshire Drive, McLean, VA 22102
	Initializing Aircraft
	Advancing Time
	
	
	Figure 2. Time management in the HLA

	Aircraft Handoff
	
	
	Figure 3. Aircraft Handoff in the federated TAAM

	Aircraft Termination
	Federation Termination

