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Introduction 
 
The purpose of this paper is to present a series of 
performance experiments in which the United States’ 
Department of Defense (DoD) High Level Architecture 
(HLA) has been used to improve the performance of a 
sequential aviation simulation.  As it was originally 
envisioned and commonly used, the HLA is a mechanism 
for interconnecting disparate simulations over a network.  
Its main application has been distributed wargaming, 
where simulations prepared by different organizations are 
combined in a virtual environment for a specific training 
exercise or study objective.  The individual simulations 
are called federates in the HLA world, while the collection 
of federates that interoperate in the virtual world is called 
a federation.  The HLA specifies both procedures by 
which organizations define a federations, as well as 
software protocols to which the federates adhere for 
interoperation.   
 
In this paper we investigate an alternate use of the HLA.  
It is possible to imagine that the federates are not disparate 
simulations, but a single simulation that has been 
partitioned along some logical axis and federated with 
itself.  Such a self-federation has many attractive features.  
First, the data structures are identical among the various 
federates.  Secondly, there are no problems with common 
definitions of data elements, messages, interactions, or 
algorithms, as the federates all derive from the same 
source code.  Finally, the mechanism can be viewed as a 
lightweight parallel simulation engine, as all of the details 
of synchronization, time management, message passing, 
and monitoring have already been well thought out and 
implemented in the HLA system. 
 
The Total Airport and Airspace Model (TAAM) is a large 
air traffic simulation that is a worldwide standard for 
aviation analysis. Traditionally it has been used for 
regional studies, consisting of a small subset of airports 
and airspace.  Recently, there has been interest in using 
TAAM for much larger scenarios, such as simulations of 

traffic throughout the entire United States.  It is possible, 
but not practical, to run such simulations with TAAM.  A 
simulation of a large fraction of the traffic in the United 
States requires at least 35 hours of run time; simulations of 
the entire country would require at least double that time. 
 
The study question we seek to address here is, can the 
HLA be used as a parallel simulation mechanism to allow 
large TAAM simulations to execute in a reasonable 
amount of time?  In other words, to what extent can the 
HLA be used as a self-federation mechanism for TAAM?  
As noted above, the use of the HLA has many attractive 
properties, not the least of which is that many of the issues 
involved in parallel simulation engines have a solution 
inside the HLA. 
 
Details of the Problem 
 
The United States’ National Airspace System (NAS) is a 
collection of airports,  navigation aids, airspace, 
equipment, controllers, pilots, airlines, procedures, and 
other associated equipment, organizations, and policies 
that facilitate the safe operation of air traffic throughout 
the United States [Nolan1990].  Many organizations have 
built simulations of the NAS, ranging from abstract to 
more detailed [Wieland 2002].  The Total Airport and 
Airspace Model (TAAM), a product of Preston Aviation 
Services in Melbourne, Australia, is regarded as a very 
detailed and standard model for analysis of aviation issues. 
 
TAAM represents airports in one of three modes: as points 
(sources and sinks of flights), in “runway only” mode, and 
in full layout mode which includes taxipaths and 
arrival/departure gates.  TAAM also models the airspace 
in some detail, providing the user with various options for 
airspace configuration.  Relevant to this study, the most 
important option allows the user to turn on (or off) the 
conflict detection function, which determines when two 
aircraft will eventually be within conflict.  Also, the 
conflict resolution function, which allows TAAM to 
determine a vectoring path for one of the two aircraft that 



are in conflict, can also be switched on (or off). Conflict 
resolution is determined by scanning a rulebase that 
specifies how controllers would react in similar situations. 
 
A typical simulation of the whole NAS would require 
detailed airport layouts for up to thirty-two airports of 
interest, runway only mode for up to twenty other airports, 
and point sources for the remaining airports.1  Airspace 
would typically be modeled with conflict detection turned 
on, and conflict resolution would be used if a rulebase is 
available that adequately describes conflict avoidance 
maneuvers. 
 
The experiments outlined herein use a geographic 
partitioning strategy for parallelization.  That is, the 
scenario space is divided into two regions, one “east” and 
one “west,” and the HLA is used to coordinate the flow of 
aircraft as they cross the boundary.  The details of this 
geographic parallelization strategy, and how it was 
implemented, are provided below. 
 
Related Work 
 

The only other self-federation study of which we are 
aware involves federating a network simulation with itself 
[Riley 99].  That paper describes an effort where an HLA-
like system was used for the self-federation.  The 
modeling issues involved are discussed at length in that 
paper. The network simulator needs to determine how to 
route a packet from a source to a sink.  The model has to 
handle routing problems caused by a federate being 
unaware of the connectivity and link status in remote 
federates.  In our system, routing is not an issue: the 
routing is done in three-dimensional space, and an aircraft 
can always point itself at a destination, even if the details 
about the destination are in a remote federate.   
Additionally, an aviation simulation generally requires a 
number of rules and procedures that involve controlling 
the flow of traffic, runway assignment, arrival sequencing, 
taxipath computation, gate allocation, and so forth.   

 
Before we began federating TAAM with itself, we 

conducted our own study of the feasibility of the approach 
[Bodoh 2001].  We developed a meta-simulation of a self-
federation in Java, and found that the speedup was a 
sensitive function of computation, communication, and 
their associated variances.  While this result was no 
surprise to us, we were able to verify that, given sequential 
performance data on TAAM’s expected computation and 
communication, the HLA self-federation is feasible for 
TAAM.. 

                                                           
1 It should be noted that there is considerable flexibility in 
how a TAAM scenario is constructed, so the configuration 
stated here is for illustrative purposes only. 

 
Geographic Partitioning and the HLA 
 
Although the HLA software protocol provides many 
services for connecting simulations [Kuhl 1999], in the 
TAAM self-federation, only some of them are needed..  
We need federation management, to create the federation 
and have the individual TAAM federates join it, 
declaration management to handle the routing of 
messages, object management for sending and receiving 
interactions (events), and finally time management for 
synchronizing the advancement of the simulation clock 
across federates.  Each of the TAAM federates is identical, 
except for the federate ID (an RTI identifier unique to 
each TAAM instance), the geographical area they control, 
and the flights they own, which is based upon their 
geographic area of control. 
 
Thus the basis for self-federation is splitting the scenario 
space into distinct non-overlapping geographical regions, 
such that each TAAM federate handles all the air traffic 
within a region.  As the traffic moves across region 
boundaries, the federates hand off the data using the HLA 
protocols. 
 
A software realization of the HLA protocol is called the 
Runtime Infrastructure, or RTI. The RTI we are using was 
built at the Georgia Institute of Technology in Atlanta.  It 
is called the DRTI, for Distributed Runtime Infrastructure. 
It is implemented in C++, and is easily compilable using 
the “gcc” compiler. Only one modification of the DRTI 
software was needed to support TAAM (we increased the 
size of the message buffers). The DRTI system requires 
two UNIX environment variables to be defined for it to 
work; beyond that, all the software modifications and 
changes were to TAAM itself.  
 
Although the HLA specification allows for interoperability 
of federates on a heterogeneous network, there is no 
support in DRTI for heterogeneous networks.  Practically, 
this means that the self-federated TAAM that we built will 
only run on networks of identical processors (i.e., all Sun 
workstations, or all Linux  boxes—it will not run on a 
mixed Sun/Linux network).  There are two software 
constraints that prohibit heterogenerous operation: (1) the 
DRTI does not include support for binary translation 
between “little-endian” and “big-endian” platforms; (2) we 
encoded the TAAM interactions as binary data structures, 
as opposed to ASCII text. 
 
The individual TAAM federates must share the same 
scenario data, which means they all read the same project 
file. We have added two new scenario files to the system: 
the federation file (FED file) required by the HLA RTI, 
and a geography mapping table file.  The FED file 



describes the data structures that are shared between 
instances of TAAM—the flight plan, segments, 
waypoints, and so forth.  The mapping file defines the 
geographical extent of each federate’s responsible area in 
the federation.   
 
Each federate must execute from a separate directory, 
even if the directories are cross-mounted.  This is required 
because each federate writes a different report file.  
Finally, even if the federation is hosted on a single mulit-
processor mahine, the federates cannot share memory, 
which means that the data structures sent between TAAM 
instances must contain the actual data—not pointers to 
memory locations.  As a result, the TAAM federation 
must “deep copy” each data structure it sends. 
 
The FED file defines the type of data to be shared. 
Generally, the FED file can store either objects or 
interactions or both, but in our self-federated TAAM all 
communication is done via interactions.  As a sidenote,  
“interactions” in HLA are transient messages that are sent 
to the RTI, while object interaction represents an update to 
a persistent data structure.  The self-federated TAAM has 
two types of interactions that transfer data: an aircraft 
handoff interaction and one that transfers pending 
scheduled events for an aircraft previously handed off.  In 
addition, there are four types of interactions that are 
instructional in nature.  The first is a kill aircraft 
interaction that informs all federates when one federate 
has deleted an aircraft. The second is a set aircraft 
approach interaction, while the third is a 

sequencing interaction.  The fourth is a shift time 
marks interaction. 
The second added file—the geography mapping file—
defines rectangular geographic boundaries for each 
federate.  Each federate must have an entry in the file, and 
the entire scenario space must be covered by the union of 
each federate’s individual space.  It is not necessary, or 
even desirable, for each federate to have the same quantity 
of scenario space in its geographic region.  Rather, it is 
necessary to evenly distribute the work across federates, as 
a function of simulated traffic load bound by geographic 
region. 
 
Data Marshalling Logic 
 
With a distributed simulation, HLA provides the vehicle 
for transferring data among federates, but it is the 
responsibility of the programmer to ensure the sent data 
properly represents the state of the model, and the data 
received properly reflects the state of the model. Also, the 
data messages need to be encoded in a form recognized by 
the HLA constructs for transmittal. This set of tasks is 
called Data Marshalling.  

Resident data structures in TAAM cannot be transmitted 
over HLA in their original form. Most of the existing 
structures contain a mixture of static and pointer data that, 
if exhaustively transmitted, would require transmittal of 
virtually all of the data in memory.  We discovered that 
sending all such aircraft data is unnecessary.    
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Figure 1. Data Marshalling Logic in the TAAM self-federation



At a minimum, the data message had to include all 
dynamic data (any data items that could be different 
between federates), while also harnessing any dynamic 
data of the sub-elements of the structure that are in turn 
dynamic.  Any data that was not dynamic, yet still needed 
to be identified in the message, was sent using a “key.”  
Keyswere created to uniquely identify data objects based 
on some field property or as an index in a list.  
One primary use of the “key” method is to locate pointers 
to aircraft structures.  A  federate cannot send the address 
of an aircraft to another federate because the other federate 
is using a different memory block, perhaps even a 
different computer.  The receiving federate would make 
no sense of a foreign address. So the sending federate 
could just send the aircraft ID, which can then be used by 
the receiving federate to query a hash table to find that 
aircraft pointer.  To this end, all federates read the same 
time table information, and assign identical unique Ids to 
the same aircraft.   

Software Ambassadors 

In the HLA specification, there are two ambassador 
classes that are used for communicating with the other 
federates. The RTI ambassador provides functions that the 
federates employ for communicating with the RTI.  
Likewise, the federate ambassador provides the callback 
functions used by the RTI for communicating with the 
federates. 

In the DRTI, the RTI ambassador class is already defined.  
The TAAM federate ambassador only overloads functions 
required for operation within the federation.  In this case, 
it only implements timeAdvanceGrant() and 
receiveInteraction(). 

 Initializing the Federation 

HLA defines a set of features to support federation 
management.  In order to get a set of federates to 
cooperate in a common simulation, they need to agree on a 
number of issues including what types of data can they 
share and when they can start executing simulation events.  
HLA also defines a set of features for time management 
and declaration management that prepares the federate for 
how it will participate in the group. 

In TAAM, the start_sim() function is used once to 
initialize the simulation.  In this function we added a step 
to initialize this copy of TAAM as a federate in a 
federation, which prepares it by using the three 
management services mentioned above. 

First, the federate joins the federation by specifying three 
values: a common name that all federates will use to 
access the same federation, a FED file that contains the 
federation object model for all available data types, and a 

reference to the federate ambassador instance for this 
federate. TAAM then initializes some internal states 
related to its participation within the federation.  This 
includes assigning its federate space, assigning handles to 
the interaction classes, setting time management 
parameters, and publishing and subscribing to interactions. 
Finally, the federates enters a wait state until all federates 
have reached this stage of initialization.  Once that is 
attained, the federation can proceed with the remainder of 
start_sim(). 

Initializing Aircraft 
 
Federating TAAM required the introduction of three new 
fields as part of the aircraft structure.  The federate 
field represents the ID of the federate that has control of 
the aircraft.  This field will be a known federate ID, or –1 
if the owning federate is undetermined. The on_loan 
flag indicates that the aircraft is temporarily under the 
control of the local federate, and will be returned to its true 
owning federate after some calculations (this is explained 
more in the section on approach settings). The 
relay_kill flag indicates the origin of where the 
aircraft was killed in the federation (this is explained more 
in the section on terminating an aircraft). 

These fields are initialized when the aircraft object is 
instantiated in the simulation At the same point, the 
aircraft is registered in a new hash table built for quick 
retrieval of aircraft pointers using their ID as a hash key.  
Because all federates read the same data from identical 
time tables, the resulting hash table entries will contain the 
same Ids for those aircraft, yet maintain distinct values for 
the local aircraft addresses. This initialization stage is also 
the point where TAAM determines which federate will 
control the aircraft.  Using the initial position of the 
aircraft and the geographic space assigned to the federate, 
the aircraft will either be included or excluded from the 
federate’s control.  All aircraft in a federate’s control are 
explicitly stored in a global linked list.  Only aircraft in the 
federate’s space are added to the this list; aircraft not in 
the federate’s space are excluded from that list.  In fact, 
nearly half of an aircraft initialization stage is skipped if  it 
is excluded from the federate’s space.  This filtering 
process guarantees that every aircraft will be assigned to 
no more than one federate at initialization.  Control of any 
aircraft can be later transferred between federates as 
described below. 

Advancing Time 
HLA provides management services for time 
advancement, though HLA itself does not represent any 
notion of a “simulation-wide” clock, nor does it regulate 
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Figure 2.  Time management in the HLA 

 
the speed of the federation.  The federates themselves 
advance their internal clocks, and depending on how they 
are registered with the RTI, can influence or be influenced 
by other federates’ perceived advancement of time. The 
internal clock value that is presented to the RTI by the 
federate is known as that federate’s “logical time.”  The 
RTI keeps track of every federate’s logical time so that it 
can safely issue grants to time advance requests.  The 
federation as a whole does not have a single logical time. 

The TAAM federates are both time-regulating and time-
constrained.  Time regulating federates request time 
advances from the RTI.  When a federate is ready to 
advance to a new logical time, it must first get permission 
from the RTI, which will only grant permission based on 
the current logical times of all the federates in the 
simulation.  Time constrained federates are constrained by 
time-regulating federates.  When all federates are 
established in this configuration, the simulation is known 
as “conservatively synchronized.” 

Time-regulating federates alternate state between the 
granted state and the advancing state.  The granted state is 
when the simulation is performing calculations at some 
logical time.  The advancing state is when the federate 
issues a time advance request from the RTI and is awaiting 
a grant.  Once the grant is received, the federate resumes 
the granted state.  While waiting for the grant, the federate 

may receive and process any time-stamped interactions 
delivered by the RTI from other federates. 

The core of TAAM’s aircraft processing function updates 
each aircraft’s position every six simulation seconds. At 
each iteration, TAAM sends its request to the RTI to 
advance to the current_time. Note that TAAM can and 
does perform events at other times between these six-
second processing cycles, but they are transparent to the 
RTI because the federate’s logical time is only presented 
with each time advance request.  Any messages that are 
received and processed by the federate are executed during 
the advancing state.  Federates can send messages while in 
either state.  The primary difference is that messages sent 
during the granted state will be received by the other 
federate(s) during the very next advancing state.  
Messages sent during the advancing state will be received 
by the other federate(s) during the subsequent advancing 
state. 

Figure 2 illustrates how two federates affect each other’s 
advancement of time.  At the start of each time cycle, both 
federates perform the calculations in the processing 
function, and any other events that follow the processing 
event.  When the next processing event is ready to 
commence, each federate requests a time advance from the 
RTI, handles any and all events pending with that 
timestamp, and receives the grant.  The grant will 
normally be sent immediately after the last federate has 



requested the advance.  Any delay in receiving the grant is 
due to message process time spent during the advancing 
state.  Also, because all federates are using the same time 
step, all time advance requests sent to the RTI will be for 
identical time values.  In other words, the federates will 
not be “stair-stepping” each other to advance time. Note 
that in figure 2, the dark-shaded states represent the time 
TAAM would be spending in a sequential run.  The light-
shaded states represent the overhead associated with 
processing HLA messages.  The chart is for illustration 
only, do not draw any conclusions about the scale of event 
times. 

Aircraft Handoff 
Because aircraft are moving about the simulated airspace, 
it is inevitable that several will leave the designated 
airspace of the federate in which they were initialized and 
enter another federate’s airspace.  Aircraft may even cross 
the boundaries of several federates’ spaces during its 
flight. The use of HLA interactions facilitates this 
transition of ownership called handoff. 

The basic operation of a handoff is that each time the 
aircraft changes position, a query is made to the owning 
federate’s space to determine if the new position is outside 
that space.  If so, then collect all the dynamic information 
about that aircraft’s state into an HLA message and send 
it.  At that instant, the aircraft is removed from the aircraft 
linked list, and any associated events still pending in the 
event list are also purged, and sent in a similar fashion.  
The receiving federate locates its local instance of that 
aircraft, and populates that aircraft data structures with the 

data that was in the message.  The events associated with 
that aircraft are also re-scheduled in the local schedule list, 
and the aircraft is added to the local linked list. 

The original intent for aircraft handoffs was to perform 
them only at federate border crossings.  We later 
discovered exceptions to that rule.  First, to prevent 
aircraft from entering holding patterns that breach federate 
borders, handoffs will wait until the aircraft leaves a 
holding state before a handoff can be completed.  Without 
that rule, TAAM could generate several handoffs between 
two federates in short succession.  This would add 
unnecessary overhead in communication.  Second, we 
noticed that once the aircraft performs its approach setting, 
it will subsequently be compared and contrasted to other 
aircraft in its landing queue.  If any of the aircraft in that 
queue are controlled by different federates, each federate 
may not have the complete state of all the aircraft at any 
given moment.  Therefore we decided that only one 
federate will maintain the landing queue for each arrival 
airport, and any aircraft in that airport’s landing queue 
must be controlled by that same federate.  To accomplish 
this, a handoff must be performed when an aircraft is 
about to calculate its approach setting, and its arrival 
airport is located in a different federate’s space. This may 
result in handoffs that happen well before the aircraft 
crosses federate boundaries, but it maintains integrity of 
all the flights approaching the same airport. 

In Figure 3, five different flight situations are observed.  
The perimeter around point “F” represents the time-based 
approach threshold for aircraft approaching airport F. 
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Figure 3.  Aircraft Handoff in the federated TAAM 

 



TAAM calculates approach settings when that threshold is 
crossed.  The line between federate 1 and federate 2 
represents the border between their federate spaces.  
Airports A, B, C, D and E represent points of origin for 
aircraft landing at airport F. 

With regard to airport A, TAAM calculates the approach at 
point G, however there is no handoff because the aircraft 
is landing in the same federate where the approach is 
being set. From airport B, the aircraft first crosses from 
federate 2 to federate 1 by means of handoff, and then 
reaches the approach threshold.  Again, the aircraft 
continues to perform all calculations in federate 1.  In case 
C, the aircraft reaches the approach threshold before it 
enters federate 1’s space.  Federate 2 initiates a handoff at 
point J to federate 1, which will then calculate the 
approach setting, and continue controlling the aircraft to 
the destination airport.  Note that there is no handoff event 
at point K.  In case D, the origin airport for the aircraft is 
already within the approach threshold for airport F, but not 
in the same federate as F.  In this case, the aircraft may 
remain on the ground for some time after the approach is 
set.  Because federate 2 controls the aircraft separation on 
the ground at airport D, federate 1 must receive the 
handoff, perform the approach setting, and handoff the 
aircraft back to federate 1 immediately.  Federate 2 
continues to control the aircraft on the ground until 
wheels-off at which point it performs another handoff 
back to federate 1.  There is no handoff event then at point 
L.  In case E, both departure and arrival airports are in the 
same federate, so there are no handoff events there. 

A similar set of circumstances exists for the case of 
aircraft crossing the sequencing threshold, which is a 
smaller radius about the arrival airport.  However in this 
situation, the aircraft should already have had its approach 
set, and would then already be controlled by its final 
destination federate. The exception here is that the aircraft 
could still be on the ground, as in case D, and require 
(another) episode of bi-directional handoffs while on the 
ground. 

Aircraft Termination 

Each TAAM federate maintains two lists of aircraft,  One 
represents the list of aircraft currently controlled by 
TAAM.  The other is list of all known aircraft in the 
simulation, active or not.  Because this seconds list is 
unaffected during aircraft initialization, it will remain 
consistent among federates until an aircraft is deleted or 
killed.  To maintain consistency, TAAM must 
communicate “terminate aircraft” events so that all 
federates can perform the same operation.  A simple HLA 
interaction was designed to transmit the aircraft ID from 
any federate that initiated the aircraft termination.  All 

other federates who received this interaction would 
immediately terminate their local instance of that same 
aircraft.  Note that in order to prevent recursive 
interactions from second-level aircraft delete events, a flag 
is used within the aircraft data structure which get set by 
only the original federate.  Receiving federates will note 
that the flag is set, and bypass the step used for sending 
that HLA interaction. 

Federation Termination 

Near the end of a TAAM simulation, it will reach the point 
where only one aircraft is still active.  In this case, only 
one of the federates will be actively controlling aircraft, 
while the others have stopped their processing cycles.  
Normally, TAAM would end the simulation at the 
termination of the last active aircraft.  If that were the case 
in a federation, the terminating federates would cause an 
early resign error which the RTI would propagate to any 
remaining active federates.  To prevent early resign errors, 
the terminate simulation function will be interceded by a 
call to request a time advance to an ultimate simulation 
time. Therefore any non-active federates will be in the 
advancing state while waiting for the active federates to 
either send messages, or also request advances to the 
terminal time.  The active federate(s) will not need to wait 
as long for time advance grants, because the RTI has 
already confirmed the inactive federates are beyond any 
logical time still in use.  Once the last active federate has 
reached the advance request to the terminal time, all 
federates will receive the grant, and terminate 
simultaneously. 
 
Performance of the Federation 
 
TAAM, as modified above for self-federation, was 
executed as two federates on a single multiprocessor 
Solaris server.  Two difference scenarios were used for the 
experiment. Both scenarios were considered large enough 
to warrant efforts in reducing the overall run time. The 
first scenario is a 6,600 flight scenario, representing traffic 
for about 8 hours in the northeastern United States.  The 
second scenario is a 34,000 flight scenario, representing 
traffic for an entire day in the same region.  In both 
scenarios, the geographic extent included all of New 
England, south to Washington DC, and as far west as 
Chicago. 
 
The experiments were conducted on a 700 Mhz 6-
processor Intel-chip server running Solaris 2.9 with 2GB 
RAM and 4GB of swap space.  This server was ideal 
because each federate could be assigned a unique 
processor, and there is no overhead associated with 
network latency. We used the final release version 1.2 of 
TAAM, as well as version 3.0 of the Federated 



Simulations Development Kit (FDK) from Georgia Tech.  
This kit contains a functioning RTI called the DRTI which 
was used to support the HLA features of the experiment. 
As a proof of concept, some test federations were 
deployed across a network with two Intel-based Solaris 
servers, to conclude that the distributed simulation can be 
executed over a network.   
 
The unmodified sequential version of TAAM, running as a 
single federate, required approximately 25 minutes for the 
6,600 flight scenario, and 3.5 hours for the 34,000 flight 
scenario. 
 
Figures 4 and 5 present the results of the experiment with 
two federates (vs. the baseline) in a graphical format.  The 
speedup for the 6,600 flight scenario was a tiny 1.2%, 
while that for the 34,000 flight scenario was 14.4%.  We 
measured the performance gain by inserting additional 
timing code into the TAAM federates.  The additional 

code allowed us to assign the time spent during federation 
execution into one of five different bins: both federates in 
granted state (they are running the simulation 
simultaneously), one federate busy (either advancing or 
granted) while the other waits; both federates in advancing 
state; and advance/grant cross-parallel time.  The results 
for the two scenarios are shown in figures 6 and 7. 
 
Discussion and Conclusions 

The results of this experiment are simultaneously pleasing 
and disappointing.  We are pleased that TAAM, a 
sequential simulation that has evolved over ten years, can 
be self-federated using the HLA technique. We are 
somewhat disappointed with the low speedup achieved by 
the federation.  In inspecting Figures 6 and 7, it is apparent 
that only 26% of the time the 6,600 flight scenario was 
computing in parallel.  This corresponds to a maximum 
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Figure 4. 6,600-flight scenario performance 
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Figure 5. 34,000-flight scenario performance 
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Figure 6. Time Assignment for the 6,600-Flight 
Scenario 
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Figure 7. Time Assignment for the 34,000-Flight 
Scenario 



speedup of 1.26.  For the 34,000 flight scenario, the 
maximum speedup would be 1.21.  The discrepancy 
between the maximum available and the observed speedup 
(1.01 and 1.18, respectively) is most likely due to low 
computational granularity, but we have not made the 
measurements to confirm this belief. 
 
The rest of the system represents overhead due to either 
message passing by the RTI, or due to poor load balancing 
among the federates.  The latter is shown by the time one 
federate is busy while the other waiting; this consumes 
58% of the time in the 6,600 flight scenario, and 72% of 
the time in the 34,000 flight scenario. 
 

SPACE  
Federate A Federate B Federate C 

t1 workload At1 workload Bt1 workload Ct1 
t2 workload At2 workload Bt2 workload Ct2 

tim
e 

t3 workload At3 workload Bt3 workload Ct3 

Table 1: Workload Distribution 

 
When the goal of federating a simulation with itself is to 
let the federates operate in parallel to achieve a faster 
simulation, it is ideal to keep all the federates as busy as 
possible. The workload divided among the federates is 
based on geographic space. Further, each of those 
workloads are partitioned to operate within the granted 
state of the federate, as seen in table 1. The workload 
within each federate’s granted state is a function of time 
and space. For each time step, each federate has some 
simulation calculation to perform, ranging from none 
whatsoever, to everything, for that particular time step.  
Recall that all federates will receive the time advance 
grant at the same time, therefore the measured amount of 
time to process the federation’s workload at a given time 
step will be no less than the maximum federate workload 
for that time step.  Any federates that complete their 
workload early will simply wait and do nothing until all 
federates are done. If the maximum workload is 
significantly greater than the average workload for the 
majority of time steps, then the simulation is considered to 
be load-imbalanced.  A load-imbalanced simulation is 
inefficient based on the amount of time federates are idle. 
 
The user has limited control of balancing the workload by 
adjusting and fine-tuning the boundaries that separate the 
geographic space of the federates.  However this can only 
solve the problem in one dimension (space).  Over time, 
the workload could shift from East to West, making the 
federate space balanced early in the simulation, but 
imbalanced later in the simulation, or vice-versa.  The user 
is left to attempt to balance the federation’s workload by 
approximating the space boundaries around the busiest 
and most time-intensive points of the simulation.  This is 

tenuous at best.  Most of the time step intervals could still 
be left as heavily imbalanced which produces less chance 
for simulation speed up. As it stands, there is no way to 
dynamically alter the federate boundaries during the 
simulation.  That would require an extra set of 
communication for bulk handoffs of aircraft, which would 
add more overhead than it is worth. 
 
Thus we conclude that the major source of overhead in 
these scenarios is load balancing.  If this conclusion 
stands, then TAAM scenarios which possess better load 
balancing between the federates should show much larger 
speedup than reported here.  Such experiments will remain 
the focus of future investigations. 
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