
Towards A Framework for Integrating the Real-Time Specification for
Java and Java's Remote Method Invocation

Andy Wellings
University of York, andy@cs.york.ac.uk

Ray Clark, and Doug Jensen
The MITRE Corporation, {rkc,jensen}@mitre.org

Doug Wells
The Open Group, dmw-java@contek.com

Abstract

This paper proposes a framework for integrating the
Real-Time Specification for Java and Java's Remote
Method Invocation. The concepts of real-time remote and
distributed real-time remote interfaces are introduced in
order to facilitate the design and implementation of real-
time and distributed real-time threads that call remote
objects.

Introduction

The paper discusses the options available for integrating
the Real-Time Specification for Java (RTSJ) [1] and
Java's Remote Method Invocation (RMI) facility [5].
Although the RTSJ is reasonably well defined, currently
no consideration is given as to how its facilities can be
used in a distributed environment. Similarly, although
RMI is well defined, no consideration has been given as
to how/whether it can be used in a real-time environment.

RMI

Key to developing RMI based system is defining the
interfaces to remote objects. RMI requires that all objects,
that are to be accessed remotely, provide a remote (by
extending the pre-defined interface, Remote). Each
method defined in this interface must declare that it
"throws RemoteException". Thus one of the key
design decisions of RMI is that distribution is not
completely transparent to the programmer. The location
of the remote objects may be transparent, but the fact that
remote access may occur is not transparent.

1.1 The meaning of time
In standard Java, time is expressed as a number of
milliseconds and nanoseconds passed 1st January 1970.
Java also has a Date class that encapsulates these values.
The Date class is serializable and consequently objects

of this type can be passed through RMI. However, RMI
is silent on the issue of the relationship between the
clocks on the client and server sites.

1.2 Failure semantics
RMI assumes a reliable transport mechanism (TCP).
Consequently, it does not need to be concerned with
transient communication errors. RMI’s handling of node
and permanent communication failures is centered on the
throwing of a RemoteException. A
RemoteException is thrown if a client makes a
remote call and the RMI implementation is either unable
to make the call or makes the call but detects a failure
before the call has returned. The server is not informed if
a client node fails whilst a server is executing a request on
its behalf. RMI has exactly once semantics in the absence
of failures and at most once semantics in the presence of
failures.

Minimal Integration between RTSJ and
RMI (Level 0 Integration)

Interfaces in Java provide a mechanism for defining a
contract between a client and a server. They make no
statements about the attributes of any associated object.
By implementing an interface, the server is guaranteeing
to provide the functionality implied by the interface. By
definition, a Java interface says nothing about the real-
time properties of the server. Similarly, a remote interface
says nothing about the real-time properties of either the
server or the underlying transport system. Consequently,
an object that implements a remote Java interface can be
considered to be an object that is executing without the
requirement of a real-time JVM. Furthermore, the
transport protocols that implement the connection
between the client and server are not required to be
timely, irrespective of whether the client is a real-time
client.

One way of viewing the above interpretation of RMI is
that the proxy thread on the server (which executes the
server methods on behalf of the client) can be viewed as
an ordinary Java thread (even if the client is a real-time
thread). This, therefore, is a minimal integration between
the RTSJ and RMI. Real-time threads can call remote
methods but they can expect no timely delivery of the
RMI request, and the server and its proxy thread are
unaware of any time constraints that the client has. The
application programmer must explicitly pass any
scheduling or release parameters and require a
sympathetic RMI implementation.

The main advantage of a Level 0 integration is that it
requires no additions to RMI or the RTSJ. Consequently,
Level 0 integration is silent on the relationship between
the clocks on the client and the server. It also has the
same failure semantics as that of RMI.

Real-Time RMI (Level 1 Integration)

In keeping with the non-transparent RMI philosophy, to
obtain real-time remote communication, Level 1
integration proposes the introduction of a real-time RMI.
Key to developing real-time RMI-based system, is
defining the interfaces to remote real-time objects (objects
that assume that they are executing in a real-time JVM).
Real-time RMI requires that all objects that provide a
remote interface must indicate so by extending the pre-
defined interface RealtimeRemote.

public interface RealtimeRemote
 extends Remote{};

Each method defined explicitly or implicitly in an
interface extending RealtimeRemote must declare
that it
 "throws RemoteException".
At the server side, the proxy thread can be viewed as a
real-time RTSJ thread that inherits appropriate scheduling
and release parameters from the client RTSJ. Where the
client is not a RTSJ thread but a standard Java thread,
default release and scheduling parameters can be
provided.
A RealtimeRemote interface indicates that the client
can expect the underlying transport of messages and the
server-side objects to be aware of any client-side
scheduling parameters. However, it offers no guarantee
on the type of memory used. A stronger guarantee can be
given if the server interface is defined as an extension of

the NoHeapRealtimeRemote interface. This ensures
that the underlying transport of messages and server
objects will make no use of the Java heap. The server
proxy thread can be viewed as a no-heap RTSJ real-time
thread.

1.3 Model of time
The level 1 integration of RTSJ and RMI assumes that
there is communication of timing constraints between the
client and server but that this is transparent to the client
and server real-time JVM. For example, as far as the
server JVM is concerned, the proxy thread is just another
real-time thread whose scheduling and release parameters
just happen to be set by the real-time RMI infrastructure.
The client and server JVM are, therefore, still independent
of one and other. Consequently, there is no relationship
between their real-time clocks.

It should be noted, that currently RTSJ timed types are
not serializable. This means that any time values passed
across the RT RMI must be converted into suitable types
and reconstructed at the server site.

1.4 Failure semantics
Level 1 integration assumes that nodes (sites) suffer only
crash failures. In the absence of failures, Level 1
integration provides exactly once semantics. In the
presence of failures, the semantics are at most once.
Failures on the server side are presented to the client via
remote exceptions. Failure at the client can be either
ignored at the server side, or the server can be informed
by one of the RTSJ asynchronous communications
mechanism.

1.5 Limitation of the Real-Time RMI (Level
1) Approach

Although the Level 1 integration requires extensions to
RMI, it does not require any extensions to the RTJVM or
the RTSJ. However, this results in some limitations that
stem from the fact that none of the RTSJ class definitions
have remote interfaces. Consequently, they can offer no
remote services. Furthermore, with the exception of
AsynchronouslyInterruptedException, none
of the classes implement the Serializable interface,
and consequently objects of these classes cannot be
passed across a remote interface. The next section
considers extensions to the RTSJ to increase its
distributed real-time programming capabilities.

public interface RemoteThread
 extends DistributedRealtimeRemote
{
 public RemoteReleaseParameters getReleaseParameters()
 throws RemoteException;
 public void setReleaseParameters(
 RemoteReleaseParameters parameters) throws RemoteException;
 /* Similarly for SchedulingParameters */

 public RemoteScheduler getScheduler() throws RemoteException;

 public synchronized void interrupt() throws RemoteException;

 public void start() throws RemoteException,
 IllegalThreadStateException;
}

public DistributedRealtimeThread extends RealtimeThread
 implements RemoteThread
{
 // Implementation of RemoteThread interface plus

 public static RemoteThread currentRemoteThread()
 throws NotARemoteThreadException;
}

Figure 1: Distributed Theads

Distributed Real-Time Threads (Level 2
Integration)

Following on from dynamic CORBA[4] and the
pioneering work of the Alpha kernel [3] and MK7[6], a
distributed real-time thread model is one in which a
thread’s locus of control can move freely across the
distributed system by calling methods in remote objects.
Each distributed real-time thread has a unique system-
wide identifier and, at any point in time (and in the
absence of any faults such as network partition), the
thread is eligible for execution (or is suspended) at a
single site in the distributed system. This site is the site
that is hosting the real-time remote object encapsulating
the method that is currently called by the thread. Any
remote operations on the distributed thread will affect
(via the underlying real-time virtual machines) one or
more sites that currently host the distributed thread’s
execution.

One way of expressing distributed real-time Java threads
is to extend the RTSJ’s RealtimeThread class and to
implement a real-time remote interface which defines
the remote operations that can be called on the thread.
However, to implement distributed threads requires

more from the underlying RTJVM and real-time RMI
transport protocols than that implied by the discussion in
section 0. Consequently, to indicate this, the notions of a
distributed real-time JVM and a distributed real-time
RMI are introduced. The distributed real-time JVM is a
real-time JVM augmented with facilities to support the
distributed real-time thread model.

Although it is beyond the scope of this paper to define
completely a distributed real-time specification for Java,
an example of how the RTSJ RealtimeThread can
be extended is given. The operations that can be
performed on a distributed real-time thread can be
classified into two areas:
∑ Operations that affect the scheduling of the

distributed thread. These include being able to get
and set its release and scheduling parameters.

∑ Operations that affect the state of the distributed
thread. These include being able to start a remote
thread and being able to interrupt it

Figure 1 shows a possible remote interface and class
definition for distributed real-time threads. The RTSJ
class definitions for ReleaseParameters,
SchedulingParameters etc will need to be either

re-defined (or subclasses created) to implement remote
interfaces or new classes created. A new static method
allows the current remote thread unique identifier to be
found.

1.6 The meaning of time
Level 2 integration assumes that there is a cluster of sites
that are hosting the distributed real-time application.
These sites could, therefore, provide a clock (perhaps
separate from the RTSJ real-time clock) that is
coordinated across the cluster (that is synchronized to
some delta and within a defined accuracy of UTC).

1.7 Failure semantics
Sites are assumed to suffer from crash failures only.

In the distributed thread model, the distributed RTJVM
is directly supporting the distributed thread semantics.
Consequently, when a segment site hosting the
distributed thread fails the distributed RT JVM
coordinate their responses as follows.

1. If the failed site is the head site, the site hosting
the previous segment has a remote exception
raised.

2. If the failed site is a segment site other than the
origin or head site, the head site implements
one of the models proposed for the server site
in Level 1 Integration (i.e., ignore, throw an
AIE or fire an AE). When the distributed thread
tries to return to the failed segment site, the
remote exception is raised in the segment site
previous to the failed site.

3. If the failed site is the origin site, approach 2 is
followed until the distributed thread attempts to
return to the origin site. At which point the
remote is exception is lost.

When the thread is handling the remote exception or
AIE or running the AE handler, details of the failure can
be found from the underlying distributed real-time JVM.

Conclusions

This paper has explored the ways in which the RTSJ can
be integrated with Java RMI. An incremental approach
has been suggested along the following lines, in order or
increased functionality (and increased complexity).

∑ Real-time Java threads can call remote objects but
they can expect no timeliness of message delivery
and no inheritance of scheduling parameters æ

there are no changes to RTSJ and no changes to
RMI.

∑ Real-time Java threads can call real-time remote
objects and they can expect timely delivery of
messages and inheritance of scheduling parameters;
however, they cannot expect to have any distributed
thread functionality æ there are extensions required

to RMI but no extensions required to DRTSJ or the
RT JVM.

∑ Distributed real-time Java threads can call
distributed real-time remote objects and they can
expect timely delivery of messages, inheritance of
scheduling parameters and full distributed thread
functionality æ the DRTSJ consists of the

extensions required to RMI, RTSJ and to the RT
JVM.

Acknowledgement

The research reported in this paper has been performed
in the context of the Sun Community Process JSR 50.
The authors gratefully acknowledge the help and advice
given by members of the JSR 50 Expert Group.

References

1. G. Bollella et al, The Real-Time Specification for
Java, Addison Wesley, 2000.

2. A. Burns and A.J. Wellings, Real-Time Systems and
Programming Languages 3rd Edition, Addison
Wesley, 2001.

3. R.K. Clark, E.D. Jensen and F.D. Reynolds, An
Architectural Overview of the Alpha Real-Time
Distributed Kernel, USENIX Workshop on
Microkernels and other Kernel Architectures, pp
200-208, 1993

4. OMG, Dynamic Scheduling Real-Time CORBA 2.0,
Joint Final Submission, OMG Document
orbos/2001-04-01

5. Sun Microsystems, Java Remote Method Invocation
Specification, December 1999.

6. D. Wells, A Trusted, Scalable, Real-Time Operating
System, Dual-Use Technologies and Applications
Conference Proceedings, pp II 262-270, Utica, NY,
1994

