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ABSTRACT 
Component and service-based application infrastructures 
provide mechanisms for efficiently composing a system from a 
diverse collection of components and services. However, 
because of the lack of insight into the components and services 
within the application, integrating changes can be challenging. 
One class of change that we perceive as being both common and 
necessary is in the area of policy adherence (i.e., the constraints 
on a system’s behavior that are imposed across the system). 
Unless the mechanisms that implement the policy are well 
isolated from the core application logic, any upgrade to the 
policy can have a ripple effect through the system. For systems 
that require robust certification, this ripple effect hampers the 
ability to rapidly deploy changes in policy. In this paper we 
highlight some patterns for separating policy adherence from 
application core logic, and discuss how these patterns can be 
mapped to commercially available infrastructures. By realizing 
these patterns as common infrastructure extensions, we allow 
applications to be developed in a manner consistent with the 
commercial infrastructure, provide the power of policy 
enforcement mechanisms to the system developers, and separate 
the policy enforcement logic from core application 
functionality. 
 

1. INTRODUCTION 
For any software system we would like to predict, or 

bound, the behavior of that system. That is, we would like to be 
able to predict that a predefined set of application specific 
policies (or properties) are satisfied by the system. These 
policies might be common to most types of applications (e.g., a 
role-based security policy) or they might be specific to an 
application type, or to all applications executing in a specific 
environment (e.g., a hardware-based encryption policy). In 
general, mechanisms for ensuring such policies can be built into 
the application itself. However, component and service 
composition creates challenges in this area since components 
and services are typically developed separately from the 
application being composed. 

There are several aspects of policy adherence that present 
challenges in component and service-based applications. We 
would like to have some level of assurance before the 
application is deployed that a composition adheres to its 
policies. When policies do not depend on shared services, the 
composition’s deployment configuration or the platform on 
which the composition executes, prediction of property 

adherence seems reasonable. However, policy prediction is 
more difficult if deployment configuration or the underlying 
platform can impact the policy. For example, predicting service 
response time becomes difficult when multiple, independently-
developed applications assess the same service or are co-located 
in a single computer. In this case, some form of runtime 
prop

cies among 
inde

ponent to be used in a variety of different security 
cont

erty monitoring and enforcement is needed. 
Policy enforcement mechanisms depend on the language(s) 

used to express the program logic and the policies. Many efforts 
to express policies have focused on the programming language 
level. Design by Contract™ (DBC) 1] uses pre and 
postcondition and invariant evaluation to enforce the policy that 
program modules must be used in a manner consistent with the 
developer’s expectations. This policy is enforced by the 
programming language infrastructure on a module-by-module 
basis. Aspect Oriented Programming [2] can also be viewed as a 
policy enforcement mechanism. Software development tools 
extract common aspect from business logic modules and build 
modules that implement a policy enforcement aspect. Both of 
these mechanisms can be used to build components and 
services, but since they are programming language-based, they 
can not be use to monitor or enforce poli

pendently developed components or services.  
Commercial composition technologies have some 

composition-level mechanisms to enforce common aspects or 
policies. An example of commercial composition technology is 
the Java™ 2 Platform Enterprise Edition (J2EE™) [3]. On this 
platform, components are developed without regard to some 
common aspects, (e.g., security). At integration time, the 
container in which the components execute is configured to 
apply the application’s security policy. When the application is 
deployed there is an opportunity to perform a site-specific 
configuration of the policy. For example, a site-specific 
configuration is used to map an application’s generic security 
roles to site-specific roles. Post development configuration 
improves component reuse characteristics, because it allows the 
same com

exts.  
Performing runtime property monitoring and enforcement 

can be accomplished in at least two ways. One approach is to 
develop an application-specific framework or infrastructure. 
This approach has been used successfully in the past, and it may 
be the most appropriate approach for some classes of 
applications. However, this approach can be expensive to 
implement and given the fixed budgets of many of our sponsors, 
we would like to find a more cost effective approach. The 
approach we have chosen to investigate is the extension of 



commercially available infrastructure technologies. That is, 
finding a common repeatable way to extend a set of commercial 
technologies to support policy enforcement. In the remaining 
sections of this paper we will show how a design pattern, the 
principles of DBC, Aspect Oriented Programming (AOP), and 
commercial infrastructure technology can be used to address 
property monitoring and enforcement. 
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BACKGROUND 
We previously reported on our experiments with extending 

a J2EE Enterprise JavaBeans™ (EJB) container with services 
that offer the system developer flexible mechanisms to compose 
a system with well-constrained behavior [4, 5]. We view the 
container as an ideal place to offer such services, as it is 
designed to provide a separation of the application logic from 
the infrastructure. We augmented the JBoss open source EJB 
container to offer interceptor-based mediator services in 
addition to the standard JBoss container services. These 
mediators were configured to provide flexible constraint 
enforcement on method invocations, offering precondition and 
postcondition invocation-level checks on the state of the 
composition. Additionally, we extended the J2EE server with 
monitoring capabilities

 the composition.  
Related to our work is the research on “meta 

programming” mechanisms for distributed object computing [6]. 
Composition mechanisms, such as smart proxies and 
interceptors, provide additional control over CORBA 
communications. The smart proxies are client-side extensions 
that offer capabilities beyond those offered by the generated 
proxy, including application-specific needs. The interceptor, 
which can operate on both the client and server side, is an 
extension to the ORB that intercepts communication between 
client and server and integrates application-specific behavior 
into method invocation requests without involving the client or 
server core logic. These capabilities are described as being 
essential to allow for efficient

puting-based applications.  
Filman describes an Object Infrastructure Framework 

(OIF) that is an approach to achieving non-functional “ilities” 
through the use of “injectors” attached to communications [7]. 
In this framework, meta-information is “attached” to CORBA 
method invocations, identifying a sequence of injectors that are 
to be processed for that communication. Using this approach, 
support for a number of “ilities” can be developed, including 
reliability, maintainability, quality of service and security; and 
in a consistent ma

applications. 
Our research is related to these efforts, but with more focus 

on how to realize application-specific policies for “high 
integrity” software, and on how to support the patterns of 
mediators and monitors in diverse sets of infrastructure-based 
commercial standards. We found that we could develop fairly 
powerful constraint checking services with mediators and 
monitors. Our initial investigation focused on how these 
mediators and monitors could be configured to offer a variety of 
services applicable to “High-Confidence Software” (HCS), 
allowing for a development model that provides a separation of 
the constraint checking for policy enforcement from the core 
logic of the system. The assurance case, or argument, as to 

whether the HCS was guaranteed to satisfy its policy 
constraints, can be directly tied to these mediators and monitors, 
and thus can limit the scope of any “recertification” activity. At 
the same time, we found limitations in the approach with respect 
to portability to other EJB container implementations, due to the 
non-standard internals of the container implementations. The 
interceptor interface is not in the EJB standard; therefore, our 
extensions to the JBoss container can not be assumed to be 
portable to EJB containers from other vendors. Additionally, as 
it is an internal interface, future versions of the container may 
change in a manner that could invalidate our augmentations, 
requiring

entations to enable them to work with a new version 
JBoss.  

In general, the coupling introduced by having the assurance 
argument extend further into the infrastructure (i.e., beyond the 
bounds of the mediators and monitors and into the container) 
increases the likelihood of recertification as the infrastructure 
evolves. Since we view commercially available infrastructure as 
essential in component and service-based compositions, such 
coupling may limit the achievable benefits of our approach. So 
the question arises as to what can be done to reduce such 
coupling. Web Services frameworks offer standards-supported 
composition mechanisms for loosely-coupled federations. 
Building on such a framework offers the potential for further 
decoupling of policy enforcement from infrastructure. We are 
investigating whether the patterns that we’ve experimented with 
in the J2EE framework can be tailored to work in a Web 
Services setting, and work 

rance argument coupling that we see as problematic in an 
evolving J2EE server world.  

The next version of the J2EE standard includes Web 
Service compatible interfaces for J2EE components. This will 
allow applications to be built by federating loosely-coupled 
services that reside on a variety of platforms. Rather than using 
J2EE-specific packaging and transport mechanisms, Web 
Services use a more general standards-based mechanism. There 
are a number of different J2EE standards that allow J2EE 
components to be accessed from Web Service clients. Java™ 
API for XML (JAX)-RPC [8] is one of the standards for Web 
Service enabling J2EE components. Like other J2EE standards, 
JAX-RPC specifies the notion of a container, and also specifies 
that pluggable interceptors (SOAP hand
container. Later in this paper we will discuss
our work to the JAX_RPC infrastructure.  

3. POLICY ENFORCEMENT 
As mentioned earlier, it can be challenging to predict 

whether a system composed of a collection of components and 
services will satisfy a predefined set of application-specific 
policies (or properties). For example, suppose we have a service 
(S) that has the requirement to build and supply the current 
picture of the battlespace. A battlespace picture includes 
information such as the location of blue and red forces, weather 
conditions, supply levels, etc. This service is composed with 
other software to form an application. Also suppose two 
independently developed applications use this service as their 
source for battlespace information, and that each application can 
modify the picture stored in the battlespace service. One 
application (A1) is responsible for situational awareness (e.g., 
displaying and modifying the locations of blue and red forces in 



a specific geographic area). The other application (A2) is 
responsible for situational analysis (e.g.,  determining the best 
way to attack an opposing force. Assume also that there is a 
strong economic incentive to leave the battlespace service 
unchanged, as it is part of a common infrastructure. Finally, 
assu
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me in the deployed configuration both A1 and A2 use the 
same instance of S. 

Further suppose that A1 and A2 each have a set of policies 
P1 and P2 to which that they must adhere. Assume A1 has a 
policy p1 ∈ P1 that states it must update the battlespace picture 
with new information every second, and assume A2 has a policy 
p2 ∈ P2 that says the application must never display classified 
information. A problem can arise if application A1 is deployed 
after application A2, and A1 updates S with classified 
information that would cause a violation of p2. Conversely, if 
A2 is deployed after A1, it could overload S, causing a violation 
of p1. In general terms policy violations can arise if any policy p 
∈ P1 depends on some characteristic of S, and A2 can
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characteristic, or if any policy p ∈ P2 depends on some 
characteristic of S, and A1 can affect that characteristic. 

Using current practices this is a solvable problem, but it 
could require modification of the previously built applications. 
For example, A2 could be modified to ignore the new type of 
information A1 is writing into S. But this means A1 is levying 
requirements on A2, an application that might not be under the 
control of the A1 developers. So, the question arises, is there a 
way for policies to be enforced and to predict that a composition 
will be vali
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ications. The rest of this section will explore a solution to 
this problem. 

The interceptor pattern is a general pattern for mediating 
communication between components [6]. This pattern can be 
extended to support configurable, application-level policy 
enforcement. Building on the previous example, suppose we 
define the set of policies U as the union of p ∈ P1 policies that 
depend on characteristics of S that can be altered by A2 and the 
p ∈ P2 policies that depend on characteristics of S that can be 
altered by A1. That is, U is the set of policies that depend on the 
modifiable characteristics of the S, and thus are threatened by 
the composition or federation of applications A1 and A2. In our 
example U contains p1 and p2. Figure 1 shows how p1 and p2 can 
be enforced in infrastructure technology. We use the term 
interceptor to refer to a module or component that intercepts the 
method level calls between the client of a service and the 
supplier of a service. Interceptors can exist in either the client or 
the service context, receive control before and after service 
invocation, and can append to or remove information from the 
call stack. A policy can be enforced by an interceptor if, and 
only if, the policy is expressible in terms of the state and 
operations visible in the composition. In our example, p1 is 
enforceable assuming the calls to methods that update S can be 
selectively redirected to an externally hidden high priority 
update interface of S, and that this redirection can not be 
overridden by another mechanism. Likewise, p2 is enforceable 
assuming classified information returned from S can be removed 
from the return stack before it is available to the clien
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interceptors enforce their associated policies (p1, p2). 
To continue this example, assume a logistics application 

(A3) using the common S is developed. A3 has a policy (p3) that 
the application should never display position-related 
information about Special Forces units. Since this policy does 
not interfere with the policies currently in place, as defined in U, 
and does not modify the state or require additional services of S, 
it can be implemented in interceptor pair i3, j3, which can be 
placed in the interceptor stack without impacting the behavior 
exhibited by the pairs i1, j1 and i2, j2. Interceptor j3 filters the 
information from S before it reaches the client. This means 
previously developed clients can be used in A3 and also that the 
semantics of S
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interceptors. Assume a missile tracking application (A4) has a 
policy (p4) that states the application must update the 
battlespace picture every second. But p1 and p4 are conflicting 
policies (i.e.,  S might not be able to process updates from both 
A1 and A5 within the one second interval). Also, applications 
might introduce changes to the state or information contained in 
S that might cause the violation of previously established 
policies. Assume a threat tracking application (A5) is developed 
and that it updates threat information in S by adding references 
to the unit detecting the threat. In doing so, S might add 
positional information about Special Forces units to the 
information in S. This modification can cause the violation of p3 
which prohibits A3 from displaying positional information 
about Special Forces units. This violation could be corrected by 
modifying j3 to filter out Special Forces positional information. 
A benefit of this approach is that re-implementing j3 is likely to 
be easier and present fewer re-certification is
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ementing parts of the core application logic. 

In this section we described how application level policies 
can be enforced across a federation of services by infrastructure-
level interceptors. We believe enforcing policies at the 
infrastructure-level has some advantages. First, it supports the 
principle of separation of concerns; components and services are 
relieved of the responsibility of policy implementation and can 
concentrate on business logic. Second, components and services 
that are free from policy concerns make better reuse candidates; 
components and services free of application-specific policy 
constraints can be more easily reused in other contexts. In the 
previous examples the same client and service software is used 
in each application. Third, infrastructure-level policy 
enforcement can make some aspects of certification easier. For 
example, the problem of certifying an application moves from 
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the component and service level to the infrastructure-level. This 
also can decrease re-certification costs associated with different 
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in its generic form it suffers from a common infrastructure 
problem, namely that it is very hard to get multiple programs 
and developers to single up on a specific infrastructure. 
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pattern can be readily mapped to a variety of well-accepted 
infrastructures. We have previously described infrastructure 
extensions for policy enforcement in compon
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battlespace. Figure 2 shows how this policy can be implemented 
in a JAX-RPC infrastructure. 

In this instantiation of the policy enforcement pattern, 
JAX-RPC SOAP message handlers serve as the client and server 
side interceptors. The SOAP message handlers are installed and 

encodes the client’s identify into the SOAP message header. 
This message is then sent across the communication 
infrastructure to the JAX-RPC server-side interceptor (j2) 
where, without involving the service, the client’s identity is 
stored. When the SOAP message handler receives control after 
the battlespace service has processed the information request, if 
as determined by the stored identify, the client is the A2 
application, the interceptor filters the information before 
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of the battlespace server. The pattern allows the information 
access policy to be modified without changing the client or 
service components. For example, assume the information 
access policy is changed to allow classified information to be 
sent to clients, but only if the subnet the client demonstrates it is 
in the same building as the service. Since the implementation of 
this policy change is isolated to the SOAP handlers, it can be 
modified without touching the individual components. Even 
significant changes to the mechanism for establishing 
credentials can be realized without involving the service core 
logic, and, with little or no impact on the clients. In addition, the 
details that tailor the interceptor for a particular use (e.g., 
identifying the actual subnets that are allowed to receive 
classified information) can be specified at deployment or even 
at runtime. The other examples in the previous section are 
similarly implemented.  
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in this case identity would identify the user as a situational analysis client. “Filtering” could be any operation (e.g., using 
XSLT to transform the returned data) to eliminate “sensitive” information. 
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s to, the actual parameters of each method invocation and 
return. The main differences noted when these patterns are 
applied to these two technologies (J2EE vs. JAX-RPC) is 
interceptor portability across implementations, and mediator 
access to the method invocation actual parameters. The EJB 
standard does not prescribe that implementations support 
interceptor plug-ins. The JBoss developers made this design 
tradeoff themselves. Other J2EE servers may or may not support 
a similar concept. Conversely, the JAX-RPC standard specifies 
support for SOAP handlers. As would be expected, the EJB 
specification does not say anything about how actual parameters 
are passed, and whether or how they can be accessed by an 
interceptor. JAX-RPC does specify the way actual parameters 
are passed, and thus a general mechanism for parameter access 
can be developed. This means that mechanisms developed for a 
JBoss EJB container environment offer little guarantee of 
portability to other J2EE environments. On the other hand, the 
JAX-RPC technology offers the ability to create more portable 
interceptors. 

6. CONCLUSIONS/FUTURE 
DIRECTIONS 

Enforcin

component and service reuse, recertifi
predicting properties o

a useful mechanism for enforcing method-level 
preconditions, postconditions, and invariants; applications level 
invariants; and information access policies. In addition, this 
approach has other potential uses, like monitoring the behavioral 
characteristics (e.g., invocation latency) of applications based on 
Web Service technologies. 

We have experimented with J2EE-based technologies 
(EJB, JAX-RPC) and have interceptor patterns that can be 
applied to these infrastructures. We are encouraged to see JAX-
RPC supporting the inter

ification level. Our current plans for this year include 
extending our work to include enterprise service bus 
technologies like SonicXQ [9]. If successful, this technology 
will allow us to apply the interceptor pattern to applications that 
integrate components deployed on a variety of platforms, 
including those outside the Java language. 
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