
Infrastructure Support for Predictable Policy Enforcement

Gary J. Vecellio
The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102-7508

1+ 770 739-8598

vecellio@mitre.org

William M. Thomas
The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102-7508

1+ 703 983-6159

bthomas@mitre.org

ABSTRACT
Component and service-based application infrastructures
provide mechanisms for efficiently composing a system from a
diverse collection of components and services. However,
because of the lack of insight into the components and services
within the application, integrating changes can be challenging.
One class of change that we perceive as being both common and
necessary is in the area of policy adherence (i.e., the constraints
on a system’s behavior that are imposed across the system).
Unless the mechanisms that implement the policy are well
isolated from the core application logic, any upgrade to the
policy can have a ripple effect through the system. For systems
that require robust certification, this ripple effect hampers the
ability to rapidly deploy changes in policy. In this paper we
highlight some patterns for separating policy adherence from
application core logic, and discuss how these patterns can be
mapped to commercially available infrastructures. By realizing
these patterns as common infrastructure extensions, we allow
applications to be developed in a manner consistent with the
commercial infrastructure, provide the power of policy
enforcement mechanisms to the system developers, and separate
the policy enforcement logic from core application
functionality.

1. INTRODUCTION
For any software system we would like to predict, or

bound, the behavior of that system. That is, we would like to be
able to predict that a predefined set of application specific
policies (or properties) are satisfied by the system. These
policies might be common to most types of applications (e.g., a
role-based security policy) or they might be specific to an
application type, or to all applications executing in a specific
environment (e.g., a hardware-based encryption policy). In
general, mechanisms for ensuring such policies can be built into
the application itself. However, component and service
composition creates challenges in this area since components
and services are typically developed separately from the
application being composed.

There are several aspects of policy adherence that present
challenges in component and service-based applications. We
would like to have some level of assurance before the
application is deployed that a composition adheres to its
policies. When policies do not depend on shared services, the
composition’s deployment configuration or the platform on
which the composition executes, prediction of property

adherence seems reasonable. However, policy prediction is
more difficult if deployment configuration or the underlying
platform can impact the policy. For example, predicting service
response time becomes difficult when multiple, independently-
developed applications assess the same service or are co-located
in a single computer. In this case, some form of runtime
prop

cies among
inde

ponent to be used in a variety of different security
cont

erty monitoring and enforcement is needed.
Policy enforcement mechanisms depend on the language(s)

used to express the program logic and the policies. Many efforts
to express policies have focused on the programming language
level. Design by Contract™ (DBC) 1] uses pre and
postcondition and invariant evaluation to enforce the policy that
program modules must be used in a manner consistent with the
developer’s expectations. This policy is enforced by the
programming language infrastructure on a module-by-module
basis. Aspect Oriented Programming [2] can also be viewed as a
policy enforcement mechanism. Software development tools
extract common aspect from business logic modules and build
modules that implement a policy enforcement aspect. Both of
these mechanisms can be used to build components and
services, but since they are programming language-based, they
can not be use to monitor or enforce poli

pendently developed components or services.
Commercial composition technologies have some

composition-level mechanisms to enforce common aspects or
policies. An example of commercial composition technology is
the Java™ 2 Platform Enterprise Edition (J2EE™) [3]. On this
platform, components are developed without regard to some
common aspects, (e.g., security). At integration time, the
container in which the components execute is configured to
apply the application’s security policy. When the application is
deployed there is an opportunity to perform a site-specific
configuration of the policy. For example, a site-specific
configuration is used to map an application’s generic security
roles to site-specific roles. Post development configuration
improves component reuse characteristics, because it allows the
same com

exts.
Performing runtime property monitoring and enforcement

can be accomplished in at least two ways. One approach is to
develop an application-specific framework or infrastructure.
This approach has been used successfully in the past, and it may
be the most appropriate approach for some classes of
applications. However, this approach can be expensive to
implement and given the fixed budgets of many of our sponsors,
we would like to find a more cost effective approach. The
approach we have chosen to investigate is the extension of

commercially available infrastructure technologies. That is,
finding a common repeatable way to extend a set of commercial
technologies to support policy enforcement. In the remaining
sections of this paper we will show how a design pattern, the
principles of DBC, Aspect Oriented Programming (AOP), and
commercial infrastructure technology can be used to address
property monitoring and enforcement.

2.

 to support enforcement of invariants
over

 upgrade of distributed object
com

nner, such diverse “ilities” can be integrated
into

 some level of rework on our infrastructure
augm

in a manner that reduces the
assu

lers) be part of the
 the application of

BACKGROUND
We previously reported on our experiments with extending

a J2EE Enterprise JavaBeans™ (EJB) container with services
that offer the system developer flexible mechanisms to compose
a system with well-constrained behavior [4, 5]. We view the
container as an ideal place to offer such services, as it is
designed to provide a separation of the application logic from
the infrastructure. We augmented the JBoss open source EJB
container to offer interceptor-based mediator services in
addition to the standard JBoss container services. These
mediators were configured to provide flexible constraint
enforcement on method invocations, offering precondition and
postcondition invocation-level checks on the state of the
composition. Additionally, we extended the J2EE server with
monitoring capabilities

 the composition.
Related to our work is the research on “meta

programming” mechanisms for distributed object computing [6].
Composition mechanisms, such as smart proxies and
interceptors, provide additional control over CORBA
communications. The smart proxies are client-side extensions
that offer capabilities beyond those offered by the generated
proxy, including application-specific needs. The interceptor,
which can operate on both the client and server side, is an
extension to the ORB that intercepts communication between
client and server and integrates application-specific behavior
into method invocation requests without involving the client or
server core logic. These capabilities are described as being
essential to allow for efficient

puting-based applications.
Filman describes an Object Infrastructure Framework

(OIF) that is an approach to achieving non-functional “ilities”
through the use of “injectors” attached to communications [7].
In this framework, meta-information is “attached” to CORBA
method invocations, identifying a sequence of injectors that are
to be processed for that communication. Using this approach,
support for a number of “ilities” can be developed, including
reliability, maintainability, quality of service and security; and
in a consistent ma

applications.
Our research is related to these efforts, but with more focus

on how to realize application-specific policies for “high
integrity” software, and on how to support the patterns of
mediators and monitors in diverse sets of infrastructure-based
commercial standards. We found that we could develop fairly
powerful constraint checking services with mediators and
monitors. Our initial investigation focused on how these
mediators and monitors could be configured to offer a variety of
services applicable to “High-Confidence Software” (HCS),
allowing for a development model that provides a separation of
the constraint checking for policy enforcement from the core
logic of the system. The assurance case, or argument, as to

whether the HCS was guaranteed to satisfy its policy
constraints, can be directly tied to these mediators and monitors,
and thus can limit the scope of any “recertification” activity. At
the same time, we found limitations in the approach with respect
to portability to other EJB container implementations, due to the
non-standard internals of the container implementations. The
interceptor interface is not in the EJB standard; therefore, our
extensions to the JBoss container can not be assumed to be
portable to EJB containers from other vendors. Additionally, as
it is an internal interface, future versions of the container may
change in a manner that could invalidate our augmentations,
requiring

entations to enable them to work with a new version
JBoss.

In general, the coupling introduced by having the assurance
argument extend further into the infrastructure (i.e., beyond the
bounds of the mediators and monitors and into the container)
increases the likelihood of recertification as the infrastructure
evolves. Since we view commercially available infrastructure as
essential in component and service-based compositions, such
coupling may limit the achievable benefits of our approach. So
the question arises as to what can be done to reduce such
coupling. Web Services frameworks offer standards-supported
composition mechanisms for loosely-coupled federations.
Building on such a framework offers the potential for further
decoupling of policy enforcement from infrastructure. We are
investigating whether the patterns that we’ve experimented with
in the J2EE framework can be tailored to work in a Web
Services setting, and work

rance argument coupling that we see as problematic in an
evolving J2EE server world.

The next version of the J2EE standard includes Web
Service compatible interfaces for J2EE components. This will
allow applications to be built by federating loosely-coupled
services that reside on a variety of platforms. Rather than using
J2EE-specific packaging and transport mechanisms, Web
Services use a more general standards-based mechanism. There
are a number of different J2EE standards that allow J2EE
components to be accessed from Web Service clients. Java™
API for XML (JAX)-RPC [8] is one of the standards for Web
Service enabling J2EE components. Like other J2EE standards,
JAX-RPC specifies the notion of a container, and also specifies
that pluggable interceptors (SOAP hand
container. Later in this paper we will discuss
our work to the JAX_RPC infrastructure.

3. POLICY ENFORCEMENT
As mentioned earlier, it can be challenging to predict

whether a system composed of a collection of components and
services will satisfy a predefined set of application-specific
policies (or properties). For example, suppose we have a service
(S) that has the requirement to build and supply the current
picture of the battlespace. A battlespace picture includes
information such as the location of blue and red forces, weather
conditions, supply levels, etc. This service is composed with
other software to form an application. Also suppose two
independently developed applications use this service as their
source for battlespace information, and that each application can
modify the picture stored in the battlespace service. One
application (A1) is responsible for situational awareness (e.g.,
displaying and modifying the locations of blue and red forces in

a specific geographic area). The other application (A2) is
responsible for situational analysis (e.g., determining the best
way to attack an opposing force. Assume also that there is a
strong economic incentive to leave the battlespace service
unchanged, as it is part of a common infrastructure. Finally,
assu

 affect
that

d without levying requirements on outside
appl

t. If S did
not offer an externally hidden high priority update interface, p1
would not be enforceable without modifications to S.

Figu ted

’s interface can be modified for clients without
mod

sues than re-
impl

 affect
that

d without levying requirements on outside
appl

t. If S did
not offer an externally hidden high priority update interface, p1
would not be enforceable without modifications to S.

Figu ted

’s interface can be modified for clients without
mod

sues than re-
impl

me in the deployed configuration both A1 and A2 use the
same instance of S.

Further suppose that A1 and A2 each have a set of policies
P1 and P2 to which that they must adhere. Assume A1 has a
policy p1 ∈ P1 that states it must update the battlespace picture
with new information every second, and assume A2 has a policy
p2 ∈ P2 that says the application must never display classified
information. A problem can arise if application A1 is deployed
after application A2, and A1 updates S with classified
information that would cause a violation of p2. Conversely, if
A2 is deployed after A1, it could overload S, causing a violation
of p1. In general terms policy violations can arise if any policy p
∈ P1 depends on some characteristic of S, and A2 can

set of policies
P1 and P2 to which that they must adhere. Assume A1 has a
policy p1 ∈ P1 that states it must update the battlespace picture
with new information every second, and assume A2 has a policy
p2 ∈ P2 that says the application must never display classified
information. A problem can arise if application A1 is deployed
after application A2, and A1 updates S with classified
information that would cause a violation of p2. Conversely, if
A2 is deployed after A1, it could overload S, causing a violation
of p1. In general terms policy violations can arise if any policy p
∈ P1 depends on some characteristic of S, and A2 can

characteristic, or if any policy p ∈ P2 depends on some
characteristic of S, and A1 can affect that characteristic.

Using current practices this is a solvable problem, but it
could require modification of the previously built applications.
For example, A2 could be modified to ignore the new type of
information A1 is writing into S. But this means A1 is levying
requirements on A2, an application that might not be under the
control of the A1 developers. So, the question arises, is there a
way for policies to be enforced and to predict that a composition
will be vali

characteristic, or if any policy p ∈ P2 depends on some
characteristic of S, and A1 can affect that characteristic.

Using current practices this is a solvable problem, but it
could require modification of the previously built applications.
For example, A2 could be modified to ignore the new type of
information A1 is writing into S. But this means A1 is levying
requirements on A2, an application that might not be under the
control of the A1 developers. So, the question arises, is there a
way for policies to be enforced and to predict that a composition
will be vali

ications. The rest of this section will explore a solution to
this problem.

The interceptor pattern is a general pattern for mediating
communication between components [6]. This pattern can be
extended to support configurable, application-level policy
enforcement. Building on the previous example, suppose we
define the set of policies U as the union of p ∈ P1 policies that
depend on characteristics of S that can be altered by A2 and the
p ∈ P2 policies that depend on characteristics of S that can be
altered by A1. That is, U is the set of policies that depend on the
modifiable characteristics of the S, and thus are threatened by
the composition or federation of applications A1 and A2. In our
example U contains p1 and p2. Figure 1 shows how p1 and p2 can
be enforced in infrastructure technology. We use the term
interceptor to refer to a module or component that intercepts the
method level calls between the client of a service and the
supplier of a service. Interceptors can exist in either the client or
the service context, receive control before and after service
invocation, and can append to or remove information from the
call stack. A policy can be enforced by an interceptor if, and
only if, the policy is expressible in terms of the state and
operations visible in the composition. In our example, p1 is
enforceable assuming the calls to methods that update S can be
selectively redirected to an externally hidden high priority
update interface of S, and that this redirection can not be
overridden by another mechanism. Likewise, p2 is enforceable
assuming classified information returned from S can be removed
from the return stack before it is available to the clien

ications. The rest of this section will explore a solution to
this problem.

The interceptor pattern is a general pattern for mediating
communication between components [6]. This pattern can be
extended to support configurable, application-level policy
enforcement. Building on the previous example, suppose we
define the set of policies U as the union of p ∈ P1 policies that
depend on characteristics of S that can be altered by A2 and the
p ∈ P2 policies that depend on characteristics of S that can be
altered by A1. That is, U is the set of policies that depend on the
modifiable characteristics of the S, and thus are threatened by
the composition or federation of applications A1 and A2. In our
example U contains p1 and p2. Figure 1 shows how p1 and p2 can
be enforced in infrastructure technology. We use the term
interceptor to refer to a module or component that intercepts the
method level calls between the client of a service and the
supplier of a service. Interceptors can exist in either the client or
the service context, receive control before and after service
invocation, and can append to or remove information from the
call stack. A policy can be enforced by an interceptor if, and
only if, the policy is expressible in terms of the state and
operations visible in the composition. In our example, p1 is
enforceable assuming the calls to methods that update S can be
selectively redirected to an externally hidden high priority
update interface of S, and that this redirection can not be
overridden by another mechanism. Likewise, p2 is enforceable
assuming classified information returned from S can be removed
from the return stack before it is available to the clien

A2

i1 i2

A1

j1 j2

S

re 1 Generic Interceptor example. Calls to S are rou
through a set of interceptor pairs (i1, j1, i2, j2). The

re 1 Generic Interceptor example. Calls to S are rou
through a set of interceptor pairs (i1, j1, i2, j2). The

interceptors enforce their associated policies (p1, p2).
To continue this example, assume a logistics application

(A3) using the common S is developed. A3 has a policy (p3) that
the application should never display position-related
information about Special Forces units. Since this policy does
not interfere with the policies currently in place, as defined in U,
and does not modify the state or require additional services of S,
it can be implemented in interceptor pair i3, j3, which can be
placed in the interceptor stack without impacting the behavior
exhibited by the pairs i1, j1 and i2, j2. Interceptor j3 filters the
information from S before it reaches the client. This means
previously developed clients can be used in A3 and also that the
semantics of S

interceptors enforce their associated policies (p1, p2).
To continue this example, assume a logistics application

(A3) using the common S is developed. A3 has a policy (p3) that
the application should never display position-related
information about Special Forces units. Since this policy does
not interfere with the policies currently in place, as defined in U,
and does not modify the state or require additional services of S,
it can be implemented in interceptor pair i3, j3, which can be
placed in the interceptor stack without impacting the behavior
exhibited by the pairs i1, j1 and i2, j2. Interceptor j3 filters the
information from S before it reaches the client. This means
previously developed clients can be used in A3 and also that the
semantics of S

ifying S.
Of course, not all policies can be implemented in additional

interceptors. Assume a missile tracking application (A4) has a
policy (p4) that states the application must update the
battlespace picture every second. But p1 and p4 are conflicting
policies (i.e., S might not be able to process updates from both
A1 and A5 within the one second interval). Also, applications
might introduce changes to the state or information contained in
S that might cause the violation of previously established
policies. Assume a threat tracking application (A5) is developed
and that it updates threat information in S by adding references
to the unit detecting the threat. In doing so, S might add
positional information about Special Forces units to the
information in S. This modification can cause the violation of p3
which prohibits A3 from displaying positional information
about Special Forces units. This violation could be corrected by
modifying j3 to filter out Special Forces positional information.
A benefit of this approach is that re-implementing j3 is likely to
be easier and present fewer re-certification is

ifying S.
Of course, not all policies can be implemented in additional

interceptors. Assume a missile tracking application (A4) has a
policy (p4) that states the application must update the
battlespace picture every second. But p1 and p4 are conflicting
policies (i.e., S might not be able to process updates from both
A1 and A5 within the one second interval). Also, applications
might introduce changes to the state or information contained in
S that might cause the violation of previously established
policies. Assume a threat tracking application (A5) is developed
and that it updates threat information in S by adding references
to the unit detecting the threat. In doing so, S might add
positional information about Special Forces units to the
information in S. This modification can cause the violation of p3
which prohibits A3 from displaying positional information
about Special Forces units. This violation could be corrected by
modifying j3 to filter out Special Forces positional information.
A benefit of this approach is that re-implementing j3 is likely to
be easier and present fewer re-certification is

ementing parts of the core application logic.

In this section we described how application level policies
can be enforced across a federation of services by infrastructure-
level interceptors. We believe enforcing policies at the
infrastructure-level has some advantages. First, it supports the
principle of separation of concerns; components and services are
relieved of the responsibility of policy implementation and can
concentrate on business logic. Second, components and services
that are free from policy concerns make better reuse candidates;
components and services free of application-specific policy
constraints can be more easily reused in other contexts. In the
previous examples the same client and service software is used
in each application. Third, infrastructure-level policy
enforcement can make some aspects of certification easier. For
example, the problem of certifying an application moves from

ementing parts of the core application logic.

In this section we described how application level policies
can be enforced across a federation of services by infrastructure-
level interceptors. We believe enforcing policies at the
infrastructure-level has some advantages. First, it supports the
principle of separation of concerns; components and services are
relieved of the responsibility of policy implementation and can
concentrate on business logic. Second, components and services
that are free from policy concerns make better reuse candidates;
components and services free of application-specific policy
constraints can be more easily reused in other contexts. In the
previous examples the same client and service software is used
in each application. Third, infrastructure-level policy
enforcement can make some aspects of certification easier. For
example, the problem of certifying an application moves from

the component and service level to the infrastructure-level. This
also can decrease re-certification costs associated with different
vers

ent-based systems,
section we
t maps to a

stand

Serv

he interceptor pattern separates the
info

ent-based systems,
section we
t maps to a

stand

Serv

he interceptor pattern separates the
info

ions of an application. Finally, we see infrastructure-level
policy enforcement as essential support for runtime
compositions and federations.

While infrastructure-level enforcement of policies is useful,
in its generic form it suffers from a common infrastructure
problem, namely that it is very hard to get multiple programs
and developers to single up on a specific infrastructure.
However, acceptance of the approach can be eased if the general
pattern can be readily mapped to a variety of well-accepted
infrastructures. We have previously described infrastructure
extensions for policy enforcement in compon

policy enforcement as essential support for runtime
compositions and federations.

While infrastructure-level enforcement of policies is useful,
in its generic form it suffers from a common infrastructure
problem, namely that it is very hard to get multiple programs
and developers to single up on a specific infrastructure.
However, acceptance of the approach can be eased if the general
pattern can be readily mapped to a variety of well-accepted
infrastructures. We have previously described infrastructure
extensions for policy enforcement in compon
focusing on the J2EE framework. In the following
will show how infrastructure-level policy enforcemen
focusing on the J2EE framework. In the following
will show how infrastructure-level policy enforcemen

ards-based Web Service infrastructure.

4. INFRASTRUCTURE SUPPORT
Continuing with the example from the previous section,

assume A2 is a J2EE-based application that has an application
level policy (p2) that states the application must never display
classified information. This application uses a J2EE-based Web

ards-based Web Service infrastructure.

4. INFRASTRUCTURE SUPPORT
Continuing with the example from the previous section,

assume A2 is a J2EE-based application that has an application
level policy (p2) that states the application must never display
classified information. This application uses a J2EE-based Web

ice (S) that supplies A2 the current picture of the
battlespace. Figure 2 shows how this policy can be implemented
in a JAX-RPC infrastructure.

In this instantiation of the policy enforcement pattern,
JAX-RPC SOAP message handlers serve as the client and server
side interceptors. The SOAP message handlers are installed and

encodes the client’s identify into the SOAP message header.
This message is then sent across the communication
infrastructure to the JAX-RPC server-side interceptor (j2)
where, without involving the service, the client’s identity is
stored. When the SOAP message handler receives control after
the battlespace service has processed the information request, if
as determined by the stored identify, the client is the A2
application, the interceptor filters the information before
returning it to the client.

In this example t

ice (S) that supplies A2 the current picture of the
battlespace. Figure 2 shows how this policy can be implemented
in a JAX-RPC infrastructure.

In this instantiation of the policy enforcement pattern,
JAX-RPC SOAP message handlers serve as the client and server
side interceptors. The SOAP message handlers are installed and

encodes the client’s identify into the SOAP message header.
This message is then sent across the communication
infrastructure to the JAX-RPC server-side interceptor (j2)
where, without involving the service, the client’s identity is
stored. When the SOAP message handler receives control after
the battlespace service has processed the information request, if
as determined by the stored identify, the client is the A2
application, the interceptor filters the information before
returning it to the client.

In this example t
rmation access policy concerns from the core business logic

of the battlespace server. The pattern allows the information
access policy to be modified without changing the client or
service components. For example, assume the information
access policy is changed to allow classified information to be
sent to clients, but only if the subnet the client demonstrates it is
in the same building as the service. Since the implementation of
this policy change is isolated to the SOAP handlers, it can be
modified without touching the individual components. Even
significant changes to the mechanism for establishing
credentials can be realized without involving the service core
logic, and, with little or no impact on the clients. In addition, the
details that tailor the interceptor for a particular use (e.g.,
identifying the actual subnets that are allowed to receive
classified information) can be specified at deployment or even
at runtime. The other examples in the previous section are
similarly implemented.

rmation access policy concerns from the core business logic
of the battlespace server. The pattern allows the information
access policy to be modified without changing the client or
service components. For example, assume the information
access policy is changed to allow classified information to be
sent to clients, but only if the subnet the client demonstrates it is
in the same building as the service. Since the implementation of
this policy change is isolated to the SOAP handlers, it can be
modified without touching the individual components. Even
significant changes to the mechanism for establishing
credentials can be realized without involving the service core
logic, and, with little or no impact on the clients. In addition, the
details that tailor the interceptor for a particular use (e.g.,
identifying the actual subnets that are allowed to receive
classified information) can be specified at deployment or even
at runtime. The other examples in the previous section are
similarly implemented.

configured based on the policy that is included in the service’s
deployment d ysis client application
(A2) requests i espace service. Without
involving the nt-side interceptor (i2),

5. INFRASTRUCTURE DIFFERENCES
Our previous J2EE work utilized the JBoss J2EE server.

The JBoss EJB container has a configurable method level
interceptor stack on both the client and service side. This stack

configured based on the policy that is included in the service’s
deployment d ysis client application
(A2) requests i espace service. Without
involving the nt-side interceptor (i2),

5. INFRASTRUCTURE DIFFERENCES
Our previous J2EE work utilized the JBoss J2EE server.

The JBoss EJB container has a configurable method level
interceptor stack on both the client and service side. This stack

Container Container

Client (A2)

Server-side JAX-
RPC Runtime

System

 Battlespace
Service (S)

ed” pictu
ed to client

1) Battlespace Picture

2) “Identity”
encoded

3) “Identity”
stored

4) “Filter” applied
to results

Generated Code

Client-side JAX-
RPC Runtime

System

Figure 2 Enforcement of an information exchange policy (p2) in interceptors i2 and j2. The definition of “Identity” is flexible,

escriptor. A situational anal
nformation from the battl
client, the JAX-RPC clie

escriptor. A situational anal
nformation from the battl
client, the JAX-RPC clie

requested by client

5) “Filter
return

re

Situation Analysis

j2 i2

SOAP

HTTP

in this case identity would identify the user as a situational analysis client. “Filtering” could be any operation (e.g., using
XSLT to transform the returned data) to eliminate “sensitive” information.

allowed us to plug in interceptors that received control, and
acces

had

g application-level policies at the
infrastructurelevel offers potential advantages in term of

cation costs, and
f a composition. This approach appears to

be

ceptor pattern at the technology
spec

ng design by contract," IEEE
Computer, 25(10): 40-51, October 1992.

rence on Object-

[3]

f Component-based Software”,

[5]
re”, Seventh International

[6]
 2 Patterns for Concurrent and Networked Objects,

[7]
ns.” Communications of the ACM, vol. 45,

[8]
101 Java Community Process.

[9]
[10] on Bias-Free Language.

ng. Indiana University Press,

s to, the actual parameters of each method invocation and
return. The main differences noted when these patterns are
applied to these two technologies (J2EE vs. JAX-RPC) is
interceptor portability across implementations, and mediator
access to the method invocation actual parameters. The EJB
standard does not prescribe that implementations support
interceptor plug-ins. The JBoss developers made this design
tradeoff themselves. Other J2EE servers may or may not support
a similar concept. Conversely, the JAX-RPC standard specifies
support for SOAP handlers. As would be expected, the EJB
specification does not say anything about how actual parameters
are passed, and whether or how they can be accessed by an
interceptor. JAX-RPC does specify the way actual parameters
are passed, and thus a general mechanism for parameter access
can be developed. This means that mechanisms developed for a
JBoss EJB container environment offer little guarantee of
portability to other J2EE environments. On the other hand, the
JAX-RPC technology offers the ability to create more portable
interceptors.

6. CONCLUSIONS/FUTURE
DIRECTIONS

Enforcin

component and service reuse, recertifi
predicting properties o

a useful mechanism for enforcing method-level
preconditions, postconditions, and invariants; applications level
invariants; and information access policies. In addition, this
approach has other potential uses, like monitoring the behavioral
characteristics (e.g., invocation latency) of applications based on
Web Service technologies.

We have experimented with J2EE-based technologies
(EJB, JAX-RPC) and have interceptor patterns that can be
applied to these infrastructures. We are encouraged to see JAX-
RPC supporting the inter

ification level. Our current plans for this year include
extending our work to include enterprise service bus
technologies like SonicXQ [9]. If successful, this technology
will allow us to apply the interceptor pattern to applications that
integrate components deployed on a variety of platforms,
including those outside the Java language.

7. REFERENCES

[1] Meyer, B., “Applyi

[2] Kiczales G. et al., “Aspect Oriented Programming,”
Proceedings of the 11th European Confe
Oriented Programming (ECOOP), Finland, 1997.

Java™ 2 Platform, Enterprise Edition (J2EETM)
http://java.sun.com/j2ee.

[4] Vecellio, G., W. Thomas, and R. Sanders, “Containers for
Predictable Behavior o
Proceedings of the 5th ICSE Workshop on Component-
Based Software Engineering: Benchmarks for Predictable
Assembly, May 19-20, 2002.

Vecellio, G., Thomas, W., Sanders, R., “Container Services
for High Confidence Softwa
Workshop on Component-Oriented Programming, June 10,
2002..

Schmidt, D., et al., Pattern-Oriented Software Architecture
Volume
Wiley, 2000.

Filman, R., et al., “Inserting Ilities by Controlling
Communicatio
no. 1, January 2002.

JAX-RPC, Java™ API for XML-based RPC (JAX-RPC)
Version 1.0, JSR-
http://java.sun.com/xml/jaxrpc.

SonicXQ™, Sonic Software..

 Schwartz, M., and Task Force
Guidelines for Bias-Free Writi
Bloomington IN, 1995.

http://java.sun.com/xml/jaxrpc

