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ABSTRACT 

Boost phase missile tracking is formulated as a nonlinear parameter estimation problem, initialized with an unscented 
transformation, and updated with a scaled unscented Kalman filter. 
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1. INTRODUCTION 

The subject of this paper is the estimation of launch parameters (principally latitude, longitude, azimuth, and launch 
time) of a missile during boost phase. Several methods have been proposed for tracking boosting missiles, including 
constant gain alpha-beta-gamma or constant acceleration filters,1 filters with dynamic booster models,2–4 or by 
fitting to a known profile (e.g. tabulated values of altitude and downrange distance as a function of time).5,6 The 
latter can diverge if the missile does not follow the expected trajectory, as in using a different loft or if no appropriate 
profile is available for the missile in question. It is also a batch process, so it must be repeated as new observations 
become available. The other methods do not directly yield the launch parameters. 

This paper explores an intermediate method, where a realistic dynamic model is used for the booster (in particular, 
one with a natural description of lofted or depressed trajectories ), but the state parameters to be estimated are the 
initial conditions for the launch. 

Our goal is to find a maximum likelihood estimate of the trajectory parameters. In this work, an Unscented 
Transformation7,8 is used to initialize this estimate from the first observation. As subsequent observations become 
available, a filter is used to recursively update the parameter estimate. For linear systems, the Kalman Filter9 (KF) 
maintains a consistent estimate of the first two moments of the state distribution: the mean and the variance. Since 
our observation function (that is, the function that predicts the target state at the observation time based on the 
current estimate of the trajectory parameters) is nonlinear, we need a nonlinear tracking filter. 

The Extended Kalman Filter (EKF)10 allows the Kalman filter machinery to be applied to nonlinear systems. 
In the EKF, the state distribution is approximated by a Gaussian random variable, and is propagated analytically 
through the first-order linearization (a Taylor series expansion truncated at the first order) of the nonlinear function. 
This linearization can introduce substantial errors in the estimates of the mean and covariance of the transformed 
distribution, which can lead to sub-optimal performance and even divergence of the filter. 

In this work, the more accurate scaled Unscented Kalman Filter11 (UKF) is used to update the model parameter 
estimates. 

Section 2 describes the Unscented Kalman Filter. Section 3 discusses the missile flyout model and filter initializa
tion. Section 4 mentions some implementation considerations. Section 5 illustrates the performance of the method. 
Section 6 summarizes the results. Appendix A provides the derivation of the flyout model. 
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2. THE SCALED UNSCENTED KALMAN FILTER 

Julier and Uhlmann have described the unscented transformation (UT) which approximates a probability distribution 
using a small number of carefully chosen test points.7,8 These test points are propagated through the true nonlinear 
system, and allow estimation of the posterior mean and covariance accurate to the third order for any nonlinearity. 

ˆAs originally described, the UT approximates an n dimensional random variable x with mean x and covariance 
P by 2n + 1 samples X0 . . . X2n with weights W0 . . . W2n as follows: 

ˆX0 = x (1) 
κ 

(2) 
n + κ 

W0 = 

(n + κ)P 
i 

ˆXi = x + i = 1 · · · n (3) 

(n + κ)P 
i 

ˆXi+n = x − i = 1 · · · n (4) 

1 
2(n + κ) 

Wi = Wi+n = i = 1 · · · n, (5) 

where κ is any number, positive or negative, provided n + κ �= 0, and 

(n + κ)P (6) 
i 

is the ith row of the matrix square root A of P, such that P = AT A. 

Each sample point is first transformed as 
Yi = f (Xi). (7) 

The mean of the transformed distribution is then estimated as 

ŷ = 
2n 

i=0 

WiYi, (8) 

and its covariance as 

Pyy = 
2n 

y}{Yi − ˆWi{Yi − ˆ y}T . (9) 
i=0 

With this method, as the dimension of the state space increases, the radius of the sphere that bounds all the 
sample points also increases. The mean and covariance of the points still match those of the a priori distribution, 
but they may seriously oversample the tails of the distribution. To control this, we use Julier’s method of scaling the 
sample points.11 The new sample points and the weights used for finding the mean are 

X � i = X0 + α(Xi −X0) (10) 

W0/α
2 + 1 − 1/α2 i = 0 

(11)
Wi/α

2 i �= 0 
Wi 

� = 

The covariance is found using a modified set of weights 

W0/α
2 + 2 − 1/α2 − α2 + β i = 0 

, (12)
Wi/α

2 i �= 0 
W �� i = 

where β is another adjustable parameter. The mean and covariance are estimated as 

Y � 
i = f (Xi 

�) (13) 
2n 

i=0 

ŷ Wi 
�Yi 

� (14)= 

2n 

i=0 

Wi 
��{Yi 

� − ˆ y �}T . (15)y �}{Yi 
� − ˆP� 

yy = 
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It remains to set the adjustable parameters κ, α, and β. We follow Julier’s recommendation of 

β = 2 (16) 

to capture part of the fourth order term in the Taylor series expansion of the covariance. We choose 
√ 

n (17)α = 1/ 

to make the sample diameter independent of the state size. The UT effectively estimates the transformed mean 
and variance by statistical regression,12 so we expect the estimate to be more accurate if the prior distribution 
is approximately uniformly sampled. The estimated covariance P� 

yy is guaranteed to be positive semidefinite if all 
the untransformed weights are non-negative, which establishes the condition κ > 0. We also want the transformed 
weights to be non-negative for robustness (if one sample point has a substantially negative weight, then a nonlinearity 
can lead to a biased estimated mean and an inflated covariance), which establishes the stricter condition κ > n2 − n. 
We actually choose to make all the transformed weights equal, so that 

κ = n 2 − n/2. (18) 

For n = 16, we have α = 1/4, κ = 248, and W0 
� = Wi 

� = 1/33. 

The Unscented Kalman Filter13,14 (UKF) uses the UT for both the transformations (process model and obser
vation function) required by a Kalman filter. It provides a Minimum-Mean-Squared Error (MMSE) estimate of the 
state of a nonlinear discrete time system 

x(k + 1) = f [x(k), u(k), v(k), k] (19) 

z(k) = h[x(k), u(k), k] + w(k), (20) 

where x(k) is the state of the system at time k, f [k] and h[k] are the possibly nonlinear system and observation 
functions, u(k) is the input vector, v(k) is the process noise, z(k) is the observation, and w(k) is additive measurement 
noise. v and w are assumed zero mean and 

v(k)v T (j) = δkj Q(k), (21)E 

w(k)w T (j) = δkj R(k), (22)E 

v(k)w T (j) = 0, ∀k, j. (23)E 

An augmented covariance matrix is constructed with P, Q, and R on the diagonal. Eqs. 10-12 then provide sample 
points Xi 

�(k + 1|k) that specify not only x but also v and w. 

The predicted state x̂(k + 1|k) and its covariance P(k + 1|k) are estimated as 

Xi(k + 1|k) = f [Xi(k|k), u(k), k] (24) 

x̂(k + 1|k) = 
2n 

i=0 

Wi 
�Xi(k + 1|k) (25) 

P(k + 1|k) = 
2n 

i=0 

x(k + 1|k)} {Xi(k + 1|k) − ˆWi 
�� {Xi(k + 1|k) − ˆ x(k + 1|k)}T 

. (26) 

The predicted observation ẑ, its covariance Pzz , and the cross correlation Pxz are estimated as 

Z(k + 1|k) = h [Xi 
�(k + 1|k), u(k), k + 1] (27) 

ẑ(k + 1|k) = 
2n 

i=0 

Wi 
�Zi(k + 1|k) (28) 

Pzz (k + 1|k) = 
2n 

i=0 

z(k + 1|k)} {Zi(k + 1|k) − ˆWi 
�� {Zi(k + 1|k) − ˆ z(k + 1|k)}T 

(29) 
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2n 

x(k + 1|k)} {Zi(k + 1|k) − ˆPxz (k + 1|k) = Wi 
�� {Xi(k + 1|k) − ˆ z(k + 1|k)}T 

. (30) 
i=0 

ˆThe state estimate x(k|j) at time step k, and its covariance P(k|j), given all observations up to and including 
time step j, are updated as follows: 

Pνν (k + 1|k) = R(k + 1) + Pzz (k + 1|k) (31) 

W(k + 1) = Pxz (k + 1|k)P−1 
νν (k + 1|k) (32) 

ˆ ˆ z(k + 1|k)) (33)x(k + 1|k + 1) = x(k + 1|k) + W(k + 1)(z(k + 1) − ˆ 

P(k + 1|k + 1) = P(k + 1|k) − W(k + 1)Pνν (k + 1|k)WT (k + 1), (34) 

where W is the Kalman gain. 

For linear functions, the UKF is equivalent to the KF. The computational complexity of the UKF is the same as 
the EKF, but it is more accurate and does not require the derivation of any Jacobians. 

3. MISSILE FLYOUT MODEL 

We assume the missile has constant thrust and follows a gravity turn with zero angle of attack. That is, we assume 
the thrust vector is always parallel to the earth-relative velocity vector. We assume a spherical, non-rotating earth, 
and neglect aerodynamic drag and lift. Let r be the missile position, v be its velocity, and at be the acceleration 
due to rocket thrust. The missile state obeys the differential equations given by Hough15 (see Appendix A). 

dr 
dt 
dv 
dt 

dat 

dt 

where 

= v (35) 

= at + g (36) 

at 
U at + ω × at t < tf (37)= 
0 t > tf 

g = − 
µe 

r (38) 
r3 

.
is the gravitational acceleration, µe = 3.986004418 × 1014 m3/sec2 is the gravitational parameter, 

ω = (v × g)/v2 (39) 

is the angular rate of v and at, and tf is the burnout time. 

For our model, the trajectory of a single stage missile is determined by eight parameters: 

tlaunch = 
L = 
λ = 
β = 
U = 
θi = 
ai = 
af = 

launch time

launch latitude

launch longitude

launch azimuth

exhaust velocity

initial tilt angle (i.e. angle from vertical)

initial acceleration magnitude

acceleration magnitude at burnout.


The last four parameters are characteristic of the missile. The least familiar of these is the tilt angle. Only a 
small range separates a tilt angle that yields an almost vertical trajectory from one that allows the missile to fall 
over immediately after launch, especially for a missile with low initial acceleration. The feasible values of θi and ai 

are also highly correlated, as shown in Fig. 1. (Recall that for a short range missile, a zenith angle at burnout near 
45 degrees gives maximum range.) The nonlinearities may be mitigated by transforming both parameters. Instead 
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Figure 1. Correlation of Initial Tilt and Acceleration Magnitude 

of θi we will use τi = ln(θi), and instead of ai we will use 

αi = ln 
ai 

ge 
− 1 , (40) 

where ge = 9.8m/sec2 is the approximate acceleration of gravity at the earth’s surface. This helps greatly, as shown 
in Fig. 2. Initial values suitable for some hypothetical missiles are also shown. For those distributions, the correlation 
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Figure 2. Correlation of Transformed Initial Tilt and Acceleration Magnitude 

coefficient between αi and τi ranges from 0.96 to 0.99. For two stage missiles, we add two states for the initial and 
final acceleration magnitude of the second stage. (U is assumed to be the same for the two stages.) 

The first four parameters (tlaunch, L, λ, and β) are different for each launch, and can be found from the initial 
estimated target position r and velocity v. (Hough describes initialization using angles-only measurements.15 ) 
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The launch latitude and longitude are estimated together. The surface location ru = [xu yu zu]T directly under 
the target is 

re 
ru = r. (41) 

r 
This is converted to a latitude and longitude with 

Lu = tan−1(zu/ x2 
u), (42)u + y2 

λu = tan−1(yu/xu). (43) 

The approximate straight-line extrapolation of the current state back to the ground (i.e. in the −v direction from 
r) is 

vrh 
rs = r − , (44) 

v · r 
which is similarly converted to latitude Ls and longitude λs. The launch point is then estimated as a linear interpo
lation between these two surface points: 

λ = aλu + (1 − a)λs (45) 

L = aLu + (1 − a)Ls, (46) 

where a ≈ .25. 

The launch azimuth is estimated from the horizontal component of the target velocity 

vh = (r × v) × r/r2 . (47) 

z be a unit vector in the z direction. Then ˆ z × r/|ˆLet ˆ e = ˆ z × r| is a unit vector eastward from the current estimated 
position, and	 ˆ e/|r × ˆn = r × ˆ e| is a unit vector northward. The launch azimuth is then 

e 
β = tan−1 vh · ˆ 

. (48) 
vh · n̂ 

We may estimate the flight time t (hence tlaunch) from the altitude using some further simplifications of the 
dynamics model, specifically vertical launch and constant gravity. The thrust acceleration magnitude at obeys the 
equation 

a2 
t at = . (49)

U 
We can integrate to find the acceleration as a function of flight time 

ai 
at = . (50)

1 − ait/U 

If the acceleration at burnout is af , then the time of burnout is 

1 1 
tf = U − . (51) 

ai af 

Assuming a vertical trajectory and constant gravitation force of ge, we substitute this into Eq. 36 and integrate again 
to find the velocity 

v(t) = vi − get − U ln (1 − ait/U ) , (52) 

and similarly from Eq. 35 the altitude 

1 U 2 

h(t) = r − re = (vi + U )t − 
2 
get

2 + (1 − ait/U ) ln (1 − ait/U ) , (53) 
ai 

where re is the earth radius. Eqn. 53 can be solved for t iteratively. Bringing the third t to the left hand side gives 
us the iteration 

U h − (vi + U )tk + get
2 
k/2 

tk+1 = − , (54) 
ai U ln(1 − aitk/U ) 
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which converges from a wide range of starting values. With the starting value 

t0 = 
U 

1 − e −5aih/U 2 

, (55) 
ai 

two iterations suffice (e.g. giving the flight time to within one second for any altitude from 10 km to burnout). 

Eqns. 41-54 represent a nonlinear transformation from the estimated target state to the values of the first four 
parameters. However, the position and velocity of the target are not known precisely. In a practical system the target 
state has an uncertainty described by a covariance matrix. We really need to transform the uncertainty distribution, 
not just a single value. In this work, the scaled Unscented Transformation described in Section 2 is used to estimate 
the initial state and covariance. 

4. IMPLEMENTATION 

In our method, each missile with a given number of stages is represented by an uncertainty region in the parameter 
space. To track an unknown missile, one can either initialize a single filter with a large uncertainty region to cover 
the region of interest or use several filters, each initialized appropriately for a different missile. Separate filters are 
needed in any case to accommodate both single and two stage missiles, so we have chosen the latter method. 

The prediction program must handle infeasible conditions, such as ai > af or ai < 0. We have chosen in both 
cases to integrate over a zero interval. 

The equation for the angular velocity of at is indeterminate when v = 0, so it is necessary to initialize the 
motion with a small velocity. In addition, the equation for thrust acceleration magnitude has a singularity at time 
t = ti + U/ai. This is why the burnout time was not chosen as a state variable—its uncertainty distribution might 
extend past the singularity. 

5. EXAMPLE 

The estimation procedure was tested using a small simulation in which a missile is launched directly eastward. Its 
position and velocity are observed four times at four second intervals, with spherically symmetric uncertainty (one 
sigma) of 100 m and 100 m/sec. 

Initialization of latitude and longitude is shown in figure 5. The actual launch point is indicated with an asterisk. 
The point [Lu, λu] directly under the target and the straight line extrapolation to the surface [Ls, λs] are shown with 
right- and left-pointing triangles respectively (both calculated from the the first observation mean). The state is 
augmented with a, the weight on the sub-target point. The augmented covariance is 

  
1002 

 1002 
 

  
 1002 

 
  
 1002 

 . (56) 
  
 1002 

 
  
 1002 

 

0.12 

The calculated launch points corresponding to the various sample points are shown with plus signs. The one-sigma 
contour of the resulting launch point estimate is shown as an ellipse. 

The prediction of the next observation is shown in Fig. 4. As before, the actual launch site is represented by 
an asterisk, the transformed sample points are shown with plus signs and the one-sigma contour of the resulting 
estimate is shown with the ellipse. (Several of the transformed sample points are below ground because the initial 
distribution of tilt and acceleration magnitude was broad enough that for some values the missile would fall over 
immediately after launch. This leads to a large uncertainty in the predicted slant range.) In addition, there are lines 
from the center of the ellipse to the mean estimated launch point and to the actual observation (whose uncertainty 
is too small to show up here). The updated launch point estimate is shown in Fig. 5. 

The prediction for the third observation is shown in Fig. 6, and the prediction for the fourth observation is added 
in Fig. 7. Its elevation from the launch point is intermediate between the first two predictions. The uncertainty in 
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Figure 4. Prediction of first measurement. 

predicted slant range has not improved much. The estimated launch point after three updates is shown in Fig. 8. 
The estimate has a bias in crossrange. 

LˆLet dll = [ ˆλ]T − [Lλ]T be the error in the estimated launch position, and Pll be the corresponding part of the 
estimated covariance. If the filter’s estimated covariance were accurate, then the normalized distance 

D2 = dT P −1d (57)ll 

would be chi-square distributed with two degrees of freedom. The actual distribution of D for 250 Monte Carlo trials 
is shown in Fig. 9. Evidently, the filter underestimates the uncertainty of the launch position. The distribution of 
north and east components of the LPE error are shown in Fig. 10. The median errors are 252 m in latitude and 
884 m in longitude. The latter is likely due to the Coriolis accelerations which were neglected above. There is an 
outlier with a longitude error of 7247 m. However the means of the estimated position variances are only 593 m in 
latitude and 1474 m in longitude, so even disregarding the outlier and the bias, the estimated variance is optimistic. 

6. CONCLUSION 

The launch parameters for a missile have been estimated using an analytic approximation of the trajectory and 
an unscented Kalman filter. Transformations of the parameters were identified which substantially reduce the 
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Figure 6. Prediction of second measurement. 

nonlinearities in the effective observation function. Nevertheless, the filter does not accurately update the parameter 
estimate. We suspect that the cross-covariance matrix is being evaluated too far from the optimal solution, so the 
filter overcorrects. We plan to investigate whether an iterated UKF such as that of Bellaire et al.16,17 would improve 
the result. Alternatively, the problem could of course be formulated as a least-squares estimation problem and solved 
in a batch process with the method of Levenberg and Marquardt.18 

APPENDIX A. DERIVATION OF ROCKET MODEL 

During boost, the thrust acceleration is almost parallel to the longitudinal axis e of the vehicle: 

at = ate (58) 

Differentiation yields the vector-differential equation 

dat 
= at + ω × at, (59)

dt 

where e rotates at angular velocity ω with respect to inertial space. With constant mass flow rate and exhaust 
velocity U , the rate of change of thrust acceleration may be approximated by 

a2 
t at = . (60)

U 
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Figure 7. Prediction of third measurement. 
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Figure 8. Estimated launch point after three updates. 

During flight in the atmosphere, a thrusting missile is generally controlled to maintain small angles of attack 
between the longitudinal axis e and the earth-relative velocity 

u = v − ωe × r, (61) 

.
where ωe = 7.292115856 × 10−5 rad/sec is the earth rotation rate. Differentiating with respect to time, the equations 
of motion take the form 

du dv dr 
= − ωe × = at + aa + g(r) − ωe × v. (62)

dt dt dt 
where aa is the aerodynamic acceleration which we will eventually neglect. Expressing the time derivative with 
respect to inertial space in terms of the body frame, 

u 
u̇ + ω × u = at + aa + g(r) − ωe × v. (63) 

u 

We remove the component parallel to u using a vector cross product: 

2(ω × u) × u = (ω · u)u − u ω = (at + aa + g(r) − ωe × v) × u, (64) 

where ω · u = 0 because we assume the vehicle is stabilized in roll, so we find 

ω = u × (at + g − ωe × v)/u2 . (65) 
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Hough neglected the Coriolis acceleration. In his application—tracking well after launch—the Coriolis acceleration 
was negligibly small. We are focused on estimating the launch point, and will integrate the equations of motion from 
immediately after launch. The initial velocity direction determines the launch azimuth and loft of the trajectory. 
That initial direction must be very close to vertical. Any perturbing forces will tend to keep the missile from 
maintaining its launch azimuth. In particular, the Coriolis acceleration will tend to make it veer to the west. The 
simplest way of avoiding this problem is to use a dynamic model that is perfectly symmetric about vertical. Hence, 
we have neglected earth rotation for this work. Accordingly, ωe = 0 and u = v. We also assume a zero angle of 
attack so that at is parallel to v. Hence, 

ω = v × g/v2 (66) 
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