
1

Dynamic Quality of Service and Adaptive Applications for a Variable Bandwidth
Environment

Mohammad Mirhakkak, Nancy Schult, Duncan Thomson
The MITRE Corporation

© 2000 The MITRE Corporation. ALL RIGHTS RESERVED.

Abstract

This paper describes an approach for providing dynamic Quality of Service (QoS) support in a variable bandwidth network, which
may include wireless links and mobile nodes. The QoS approach centers on the notion of providing QoS support at some point within
a range requested by applications. The applications must be capable of adapting to the level of QoS provided by the network, which
may vary during the course of a connection. The paper describes a new protocol called dynamic RSVP (dRSVP) that we have
implemented to demonstrate and evaluate the dynamic QoS concept. The protocol and a new application programming interface
(API) for this dynamic QoS are described. Finally, we briefly discuss our experience with adaptive streaming video and audio
applications that work with the new protocol in a testbed network.

1. Introduction

A number of challenges exist in providing support for
nomadic computing. This support has been summarized as [1]:

"The support needed to provide a rich set of computing and
communication capabilities and services to the nomad as he,
she, or it moves from place to place, in a transparent,
integrated, and convenient form."

Nomadic users can be expected to encounter networks with
wireless links and potentially moving nodes. This network
environment can include variable link characteristics and
connectivity changes, resulting in variations in available
bandwidth.

In this paper, we first discuss variable bandwidth in nomadic
networks and some issues involved in providing Quality of
Service (QoS) support in this environment. We then define an
approach for providing QoS support in a dynamic network
environment that is adaptive within a range requested by an
application. With this QoS model, applications must also be
capable of adapting to the level of QoS provided by the
network, which may vary during the course of a connection.
We present a new protocol, dynamic RSVP (dRSVP) that
supports this paradigm, which is the primary focus of this
paper. Implications for adaptive applications are discussed.
Finally, we briefly discuss our experience with adaptive
streaming video and audio applications that are UDP-based
and work with the new protocol in a testbed network.

2. Variable Bandwidth in Nomadic Networks

In contrast to the static links used in traditional networks,
wireless links are subject to variations in transmission quality

due to factors such as interference and fading, resulting in
changes in transmission quality. If the lower layers do not
detect or respond to changes in transmission quality, the
network layer sees an increase in lost or corrupted packets.
This makes it difficult to apply network layer QoS
mechanisms, which have been designed to deal mainly with
congestion loss and network layer queueing effects, rather
than packet loss due to link errors. Therefore we believe that
variations in transmission quality are best addressed within the
physical or link layers, which can react in several ways.
Possibilities include dynamic changes in modulation,
automatic repeat-request (ARQ), and adaptive forward error
correction mechanisms. In general, the techniques employed
within the link and physical layer will trade off link
throughput in order to maintain low error rate, creating
variable bandwidth as seen from the network layer.

Another source of variable bandwidth in nomadic networks is
node movement, which has several consequences. First, it
exacerbates the problem of variable link characteristics, as
nodes move in and out of areas of good signal strength.
Second, nodes may have to switch to different media as they
move in and out of coverage. A “vertical handoff” approach
has been described [2] in which seamless connectivity to
mobile nodes is maintained by handing off between small cells
with high bandwidth and wide area cells with lower
bandwidth. Again, this illustrates the need for QoS
mechanisms to deal with variable bandwidth.

Node movement also means that the network topology can
change. In the simple case, this consists of the movement of
end systems through a fixed network infrastructure. Mobile
end systems are “handed off” between fixed access points.
However, in a more general case of a mobile ad hoc network,
intermediate systems (routers) also move, resulting in
relatively rapid changes in network topology. This makes the

2

general routing problem difficult, and QoS-aware routing
extremely difficult. It also means that, not only can the
bandwidth of individual links change, but end-to-end
bandwidth can change even when links remain stable, when
topology changes result in a new route through the network
which traverses links with different available resources.

3 . Issues with Providing QoS Support in a
Variable Bandwidth Environment

As mentioned above, a solution for providing QoS support in
nomadic networks must work in the face of topology changes
(either the constrained case of mobile end systems or the more
general case of a mobile ad hoc network). A QoS solution for
these environments must also be capable of handling variation
in bandwidth, both on individual links and end-to-end. In this
section, we discuss several issues that arise when providing
QoS support in this dynamic environment, and we describe
how our approach is addressing these issues.

Two complementary approaches have been proposed for
providing QoS support in traditional networks. A resource
reservation-based approach provides QoS support by
performing admission control and reserving resources for
flows or connections on an end-to-end basis. This approach is
attractive for applications that need a per-flow, end-to-end
QoS solution (as opposed to the approach based on providing
individual packets with different per-hop behaviors at a given
node, depending on type of service markings on individual
packets). However, a resource reservation-based approach is
problematic in a variable bandwidth environment. If available
resources vary after admission control has been performed,
then the network may find that it is unable to meet
commitments for flows that have been successfully admitted.

One issue to be considered in the dynamic network
environment deals with how closely routing and QoS
mechanisms should interact. One approach is to have them
tightly coupled, in other words, support QoS routing. In
principle, given a sufficiently rapid QoS-aware routing
algorithm, whenever link conditions or network topology
changes, the routing algorithm would immediately find new
routes through the network with sufficient resources to allow
QoS commitments made by the network to be maintained.
QoS routing is a challenging problem even in a static network
- it is especially challenging in a dynamic one. Work on QoS
routing in mobile ad hoc networks has been documented in
several papers (e.g., [3],[4],[5]).

Another option is to completely decouple QoS and routing.
This approach is less difficult than QoS routing and is taken
with RSVP [6] in traditional networks, which uses “soft state”
to reserve and release resources on a given path. Traditional
routing protocols are used to route both RSVP and data traffic;
when a change in routing occurs, RSVP traffic will follow the

new path and reserve resources, while the old resources will
“time-out”. The INSIGNIA in-band signaling system for
supporting QoS in mobile ad hoc networks [7] also assumes a
decoupling of routing and QoS. INSIGNIA relies on soft-state
for dealing with the problem of changing resources.
INSIGNIA also includes mechanisms for signaling QoS
requirements along the new route, using information
incorporated into the data packet headers, and application
adaptability based on hierarchical flows.

Several efforts have focused on the more constrained problem
of topology changes, in which only the end systems move. In
this case, the problem becomes one of maintaining QoS when
an end system node is handed off from one access node to
another. One approach that tackles the problem of
maintaining QoS during handoffs assumes that, at least for
some users, mobility will be predictable [8]. An
implementation of this approach , called Mobile RSVP
(MRSVP), is based on modified versions of Mobile IP and
RSVP [9]. The MRSVP approach offers promise in dealing
with the problem of handoff of mobile hosts from the access
point in one cell to the next, but it still does not provide a
mechanism for dealing with changes in link bandwidth within
a cell.

A second approach that handles both handoff and variable link
quality, introduces the concept of adaptively re-adjusting the
quality of service within pre-negotiated bounds [10],[11]. We
believe that this concept (treating reservations as ranges and
allowing the network the flexibility to adjust QoS within this
range) is crucial to dealing with variable link bandwidth, and
we have adopted this concept as the basis for our work. Their
protocol also includes an algorithm for determining the
bandwidth to allocate to each flow within the requested range.

Our approach, which we call Dynamic QoS, is
reservation–based and includes the notion of QoS ranges,
although it is slightly different than that presented in previous
papers [10][11]. Our interpretation is that the network
provides service at a signaled QoS allocation point within the
range requested in QoS reservation request. Service is
“guaranteed”1 at the allocated point, but the network may
change this allocation point at any time. As long as the
application is capable of adapting its transmission
characteristics to stay within its allocated level, it receives
QoS support from the network. Our protocol also includes an
algorithm for determining the bandwidth to allocate to each
flow within the requested range. This protocol and the
bandwidth allocation algorithm are described in the following
section.

One reason that we find the notion of QoS ranges especially
attractive is that it facilitates the decoupling of routing and

1 We use the term “guarantee” loosely here; the exact meaning
of the term “guarantee” depends on the service model.

3

QoS maintenance. If a change in network topology causes a
new route to be computed, or if throughput changes on one of
the links within a route, having a range rather than a single
value increases the likelihood that QoS can be maintained at
some point within the range. If resources decrease, the current
allocation within the range can be decreased, rather than
having to fail and tear down the reservation, and if resources
increase, the current allocation can be increased accordingly.

It is important to note that our approach relies on “soft state”
to reestablish QoS along the new route when a change occurs.
When this happens, we rely on the concept of adaptive QoS to
deal with the fact that a different level of resources may be
available along the new route. However, the reliance on soft-
state mechanisms means that, when a route changes, there will
be a period during which the traffic receives only best-effort
service. We believe that there is a significant class of
applications that can tolerate transient periods of degraded
service, yet benefit from Dynamic QoS support.

A Dynamic QoS approach implies the need for applications to
be able to specify their QoS needs as ranges rather than scalar
values, and to adapt to a changing QoS allocation. Later in the
paper we will discuss how we added adaptive behavior to
existing streaming audio and video applications.

Note that we make the following assumptions about link-layer
capabilities: it deals with errors, it can provide information on
resulting effective link bandwidth (similar to that described in
[12]), and it can provide QoS support in a shared media
network environment.

4. The Dynamic RSVP (dRSVP) Protocol

To demonstrate the feasibility of the Dynamic QoS approach
discussed above, we defined in a distributed network protocol
that we call Dynamic RSVP or dRSVP. As the name
suggests, this protocol is an extension of the resource
reservation setup protocol (RSVP) [6]. We implemented
dRSVP by modifying and extending ISI’s implementation of
RSVP [13]. This implementation includes the Controlled
Load service model [14], and we assume that the resource of
interest is bandwidth. In this section we describe the RSVP
protocol extensions and our implementation. (The description
presented here assumes that the reader is familiar with the
basic structure and functionality of RSVP [6],[15].)

The dRSVP protocol was created by making the following
extensions and modifications to standard RSVP:

a) We added an additional flow specification (flowspec) in
Resv messages and an additional traffic specification
(tspec) in Path messages, so that they describe ranges of
traffic flows.

b) We added a “measurement specification” (mspec) to
the Resv messages, which is used to allow nodes to
learn about “downstream” resource bottlenecks.

c) We created a new reservation notification (ResvNotify)
message, which carries a “sender measurement
specification” (smspec) that is used to allow nodes to
learn about “upstream” resource bottlenecks.

d) We changed the admission control processing to deal
with bandwidth ranges.

e) We added a bandwidth allocation algorithm that divides
up available bandwidth among admitted flows, taking
into account the desired range for each flow as well as
any upstream or downstream bottlenecks for each flow.

f) We extended SCRAPI, the simplified RSVP API [16],
to deal with bandwidth ranges.

These extensions and modifications to RSVP comprise the
dynamic RSVP (dRSVP) protocol, which is described below.

4.1. dRSVP Protocol Description

Figure 1 illustrates a simple network in which node S sends
data to node R through intermediate nodes N1, N2, N3, and N4.
The nodes are connected by links, shown in the figure as wide
bars, with the width of the bar corresponding to the bandwidth
available on the link. The adaptive application running on
node S can generate data at rates within the range from sl to sh.
These values are communicated in Path messages, which flow
through the network hop by hop, following the same route as
the data messages, to the receiver R. Upon receipt of the Path
messages, the receiving application on R requests a
reservation for this flow, with QoS range (sl, sh). The request
is carried through the network in Resv messages, which is the

S RN2

b

adn

aup

Data

N1 N3 N4

Upstream Downstream

sh

sl a

Path

Resv

ResvNotify

Figure 1. Overview of dRSVP

4

reverse of the route followed by the Path messages (assuming
bi-directional links). Finally, Resv-Notify messages flow
through the network from S to R.

We will examine the operation of the protocol in detail, using
the figure to illustrate how the protocol would operate at node
N2 for this simple example. Each node receives Path and
Resv-Notify messages from upstream nodes, and Resv
messages from downstream nodes. (The “upstream” and
“downstream” directions are defined relative to the flow of
data from S to R, not relative to the flow of protocol
messages.) In the simple example shown in the figure, there is
only a single flow, and each node has only one upstream and
one downstream interface for this flow. In general, however,
there will be multiple flows, and each flow may be multicast,
so each flow can have multiple upstream interfaces and
multiple downstream interfaces. In this case, a node could
possibly receive different values of sl and sh in Resv messages
from downstream receivers. Each node aggregates and stores
the received values (how values are aggregated is discussed
later). We use sh(f) to denote the maximum2 value of sh that
has been received for flow f, and sl(f) to denote the minimum
value of sl that has been received for flow f at a given node.

When a node receives a Resv message on interface i for flow f,
requesting a resource reservation in the range (sl, sh), it must
determine how much bandwidth within this range it can
allocate for the flow on that interface. It does this by
executing a bandwidth allocation algorithm that divides up the
available bandwidth on interface i, denoted b(i), among all the
flows that are utilizing this interface. This bandwidth
allocation algorithm is a key part of the dRSVP protocol
operation. The following discussion describes how we
compute the bandwidth allocation for flow f on interface i,
denoted a(f,i).

First, if we have enough bandwidth on interface i to provide
every flow that on that interface with the maximum desired
bandwidth, the bandwidth allocation algorithm will be simple,
because there is plenty of bandwidth to spare. Let F(i) denote
the set of all flows that have been admitted on downstream
interface i. Then the amount of bandwidth, H, needed to
satisfy the maximum requested for all flows is given by:

∑
∈

=
)(

)(
iFg

h gsH .

2 For simplicity of exposition, we treat sl and sh as scalars. In
fact they are traffic specifications that contain not only
average bandwidth, but also other parameters such as bucket
size and peak rate; thus, the terms “maximum” and
“minimum” are ambiguous. Throughout this document we
use the terms “minimum” and “maximum” as a simplification
for a traffic specification merging process as described in RFC
2211 [14].

If ()ibH ≤ , we simply allocate for f on interface i the

maximum requested bandwidth:

() ()fsifa h=, .

This is the case at node N2 in Figure 1. There is only one flow
present, and there is sufficient bandwidth available on the
downstream interface from N2 to satisfy the maximum
requested for the flow.

If there is not have enough bandwidth for this, i.e. ()ibH > ,

we look to see if there are flows that do not need the
maximum requested bandwidth allocated, because they cannot
utilize it due to bottlenecks elsewhere in the network. Resv
messages received from downstream nodes contain a
parameter, denoted mr, that provides an indication of
downstream bottlenecks. Similarly, Resv-Notify messages
received from upstream nodes contain a parameter, ms, that
provides an indication of upstream bottlenecks. We use the
notation adn(g,j) to denote the value of m r that we have
received for flow g on downstream interface j. Similarly,
aup(g,j) denotes the value of ms that we have received for flow
g on upstream interface j. (Later we will describe how we
report these values upstream and downstream.) Note that
senders such as S in Figure 1 do not have any upstream nodes.
In this case we simply set au p to s h, the maximum rate
requested for the flow. Similarly, at receivers we set adn to sh.

A multicast flow may have multiple upstream and downstream
interfaces, so we need to aggregate the aup and adn values for
these different interfaces to determine the bottlenecks that may
affect this flow elsewhere in the network. If we denote the set
of downstream and upstream interfaces for flow g as D(g) and
U(g), respectively, then we define this aggregation as follows:

() ()[]jgaga dngDjdn ,min)(∈= ,

() ()[]jgaga upgUjup ,max)(∈= .

We use the minimum when aggregating downstream values,
because we assume that the sending application will back off
to the rate that can be reliably delivered to all receivers. As a
result, there will be no need to reserve more bandwidth than
could be delivered to the most constrained receiver. We use
the maximum when aggregating upstream values, because we
want to ensure that we have reserved enough capacity to allow
us to deliver the traffic received from the most aggressive
transmitter.

Figure 1 illustrates the values of aup and adn at node N2 for the
single flow in the example.

Using the aggregated downstream and upstream bottleneck
parameters, we can now obtain a single estimate of the

5

bottlenecks that affect a flow elsewhere in the network. We
refer to this estimate as the “external allocation,” and it is
computed simply as:

() () ()[]gagaga dnupext ,min= .

If we have enough bandwidth on interface i to provide every
flow on that interface with at least as much as its external
allocation, then we are not creating a bottleneck for any flow.
The amount of bandwidth needed to satisfy the external
allocation for all flows is given by:

∑
∈

=
)(

)(

iFf

extext faA .

If ()ibAext ≤ , then we can give each flow at least its external

allocation. This will provide flow f with enough bandwidth to
avoid running up against bottlenecks elsewhere in the
network. To avoid creating a bottleneck, we only need to
reserve at least aext for flow f. However, even though we do
not need to reserve more than the external allocation, we do
want to advertise the fact that we could reserve more if we
needed to. This is crucial to fast convergence of the
distributed algorithm when bottlenecks in the network are
removed. We need to report the fact that, at this node, the
maximum reservation that we could give to each flow is its
external allocation plus a share of the “excess” bandwidth
available at this node. We assume that the excess bandwidth
will be divided up among all the flows in a proportionate
manner, so the allocation at this node for flow f is given by:

() () () ()[]fafsfaifa exthext −+= β, .

Here β is a factor that determines how much each flow can be

given of its requested range above the external allocation,
computed as follows:

()

ext

ext

AH

Aib

−
−

=β .

This formula divides up all of the available bandwidth among
all the flows on the interface. This can be easily seen by
simply summing the bandwidth allocation over all flows:

() () () ()[]∑∑∑
∈∈∈

−+=
)()()(

,
iFf

exth
iFf

ext
iFf

fafsfaifa β

() () ()















−+= ∑∑∑

∈∈∈)()()(iFf

ext

iFf

h

iFf

ext fafsfa β

[]extext AHA −+= β

[]ext
ext

ext
ext AH

AH

Aib
A −

−
−

+=
)(

()ib= .

Finally, if ()ibAext > , we indeed have a bottleneck on

interface i. In this case, we compute L, the bandwidth needed
in order to provide each flow with the minimum required
bandwidth:

∑
∈

=
)(

)(

iFf

l fsL .

If ()ibL ≤ then we give each flow the minimum of its range,

and divvy up any remainder proportionately:

() () () ()[]fsfafsifa lextl −+= β, , where

()
LA

Lib

ext −
−=β

On the other hand, if ()ibL > , there is insufficient capacity to

maintain even the minimum. In this case we reject flow f. If
it is a new flow, it is considered to have failed admission
control. If it is an existing flow, link bandwidth has decreased
to the point that we cannot maintain the minimum requested
bandwidth for all flows, and some existing flow must be torn
down. Our implementation simply tears down the first flow
for which this condition is detected. A more sophisticated
implementation would select a flow to tear down based on
some policy, for example tearing down flows which are
underutilizing their reservation or are somehow considered as
being of lower priority than other flows.

Having computed the allocation for flow f, we know what
level of resources to reserve. We also must determine what
values to report as mr and ms for this flow in Resv and Resv-
Notify messages that we send upstream and downstream for
this flow. To do this, we first take the minimum of the
allocations on all of the downstream interfaces for the flow:

() () ()[]ifafa fDi ,min ∈= .

Then the value of mr we will report upstream is the minimum
of the allocation we have made, and the allocation made by
other nodes downstream of us:

() ()[]fafam dnr ,min= .

Similarly, the value of ms we will report downstream is the
minimum of the allocation we have made, and the allocation
made by other nodes upstream of us:

() ()[]fafam ups ,min= .

6

In the example of Figure 1, node N2 is not a bottleneck, so it
simply forwards the value adn in its reports upstream, and aup

in its reports downstream. Observe that N2 knows of the
existence and magnitude of the bottlenecks that are present in
the network upstream and downstream from it. Figure 2
shows the situation that would occur if a new flow was added
that also traversed the link from N2 to N3. Node N2 must now
decide how to divide the bandwidth of this interface between
flows f and g. Since flow f is limited by external bottlnecks,
N2 knows that all the bandwidth above level adn(f), as shown,
can be allocated to flow g without affecting the end-to-end
reservation for f. If the resources requested by g were high
enough, or if additional flows were added across this link, or if
the bandwidth of the link were to decrease, N2 might find that
the bandwidth it could allocate to f was less than the value of
adn. Node N2 would then become the new bottleneck for flow
f, which would be reported in Resv and Resv-Notify messages
forwarded by N2, affecting the end to end reservation level for
the flow.

4.2 dRSVP Application Programming Interface

For the application to signal its requirements and to adapt to
dynamic network conditions, the API between dRSVP and the
application needed to be modified. We extended a current
RSVP API to include this capability, creating an API called
the Dynamic RSVP Application Programming Interface
(dSCRAPI). This API is based on the SCRAPI interface
provided with ISI’s RSVP implementation [16]. Our API
allows an application to specify the range of bandwidths
within which it is capable of operating, and to request QoS
support for operation within this range. A “callback”
mechanism is provided to allow the application to learn the
status of a reservation request, and to learn the current
allocated bandwidth within the requested range. The
application can then adapt its transmission rate to the allocated
level and will receive QoS support for its traffic.

5. Implementation Status and Discussion

In order to test and evaluate our implementation of the
adaptive QoS protocol described above, we have created a
testbed in which we can vary resources available in a network
of routers. These routers can be configured in a variety of
complex network topologies. The routers are Intel-based PCs
running FreeBSD with the alternate queueing (ALTQ)
package installed [17][18].

Our testbed does not yet include mobile nodes, but it does
include the ability to emulate the effects of dynamic link
characteristics. To accomplish this we created a centralized
testbed controller application, which provides a GUI as well as
a scripting facility from which we can set the speed of any of
the links in the testbed. The testbed controller sends

R1

N2

b

adn(f)

aup(f)

N1 N3 N4
S1

S2

R2

Flow f

Flow g

Figure 2. Example with a Second Flow

Figure 3. Screenshot of “vic” Video Application

7

commands to a bandwidth manager daemon resident on each
router in the testbed, which then implements the link speed
change command by interacting, via rsvpd, with the ALTQ
package. The link speed change is effected by modifying the
queue service parameters used in CBQ [19]. By examining
the link traffic, we verified that this strategy is an effective
way to vary the effective link speed seen by the network layer.
The only problem we have observed with this technique is that
the interface bandwidth actually consumed by CBQ is
somewhat sensitive to packet size. Flows with small packets
tend to be under-served; that is, they actually receive less
bandwidth than specified.

In order to obtain insight into the value of dynamic QoS for a
realistic application, we selected the UDP/RTP-based
streaming video and audio applications vic and vat, which
were created at LBL and modified to be RSVP-aware by ISI.
We modified these applications to make them adaptive and
work with dRSVP.

Figure 3 shows a screen shot of our modified version of vic.
When the “Transmit” button is selected by the user, the
application transmits at a data rate selected by the user using
the “rate control” slider, and this is the rate for which a
reservation will be issued when the user selects the “reserve”
button at the receiver. On the other hand, when the “Adaptive
Transmit” button is selected and the “reserve” button is
clicked, the application requests a reservation for a bandwidth
range determined by the extremes of the “rate control” slider
(10 Kbps to 1 Mbps in the example shown in Figure 3). Using
information obtained from the dSCRAPI API, this application
will automatically adjust the frame rate to stay within the

bandwidth allocation provided by dRSVP, and the rate control
slider moves to show the current allocation. With the audio
tool vat, adaptation occurs by selecting an audio encoding to
stay within the allocated bandwidth. The range of bandwidths
in the reservation requests issued by vat, when operating in
adaptive mode, is simply the range from the most compact
encoding (about 8Kbps) to the least compact encoding (about
78Kbps).

For both vic and vat, the programming effort required to make
the applications adaptive was quite modest. This was partly
due to the fact that these applications were already written to
be capable of operating at different speeds. There may be a
large class of streaming applications that would lend
themselves to this type of adaptive behavior. Also, we should
note that these applications use Real-time Transport Protocol
(RTP) and UDP as their underlying transport mechanism. We
are currently implementing an adaptive web server
application, which will give us experience in how TCP-based
applications can operate with a dynamic QoS paradigm.

Tests and demonstrations performed in our testbed comparing
standard and dynamic RSVP have illustrated the benefits of
the adaptive QoS approach in a varying bandwidth
environment. Figure 4 shows one of the configurations we
have used in our testbed for these demonstrations. In this
configuration we generate three different multicast video
sessions, originating at the machines named itinerant, waif,
and refugee, and subscribed to by outcast, traveler, and gypsy,
as shown. We use our testbed controller to vary link speeds to
create and remove bottlenecks on the links traversed by the
flows, as indicated by the funnel shape icons on the links. We
can also inject best effort traffic into the network, as well as
audio flows. With this configuration we can demonstrate how
dRSVP divides available bandwidth among several
applications and responds to varying link speeds. We also
show how the applications adapt to variable bandwidth
allocations, continuing to receive QoS support even under
degraded conditions. Demonstrations such as this provide
convincing qualitative evidence of the value of the dynamic
QoS approach, and a quantitative evaluation is currently
underway.

6. Concluding Remarks

With our testbed, adaptive applications, and dRSVP
implementation, we have been able to demonstrate a complete
system in which QoS support is maintained even while link
bandwidths vary within the network. Our experience in
developing this capability has convinced us that an adaptive
QoS approach is both feasible and potentially valuable. We
are in the process of gathering quantitative results on various
aspects of our implementation; for example we plan to gather
data on protocol overhead under various conditions in order to
analyze scalability. We also would like to add wireless

gypsy

outcast itinerant

traveler

waif

refugee

ragamuffin

rambler

drifter

Figure 4. Sample Demonstration Configuration

8

hardware into our testbed, and experiment with node
movement and a dynamic topology.

Many interesting possibilities remain open for investigation.
One possible area is the interaction between adaptive QoS and
a variety of different link layers, in particular a shared media
link layer with a subnet bandwidth manager for link layer
resource management. Another possible area is integrating an
adaptive QoS approach with a (separate) QoS routing solution.
Still another is applying the notion of bandwidth ranges
together with a lightweight QoS signaling mechanism such as
INSIGNIA, in a mobile ad hoc network environment. Our
hope is that the concepts and experience documented in this
paper will encourage further research into these areas.

References

[1] R. Bagrodia, W. Chu, L. Kleinrock, C. Popek, Vision,
Issues, and Architecture for Nomadic Computing [and
Communications], IEEE Personal Communications
Volume: 2 6 , Page(s): 14 –27, December 1995.

[2] M. Stemm, R. Katz; Vertical Handoffs in Wireless
Overlay Networks; ACM Mobile Networking
(MONET), Special Issue on Mobile Networking in the
Internet; Winter 1998.

[3] S. Chen, K. Nahrstedt, Distributed Quality-of-Service
Routing in Ad Hoc Networks, IEEE Journal on Selected
Areas in Communications, Vol 17, No. 8, August 1999.

[4] C. Lin, J. Liu, QoS Routing in Ad Hoc Wireless
Networks, IEEE Journal on Selected Areas in
Communications, Vol 17, No. 8, August 1999.

[5] R. Sivakumar, P. Sinha, V. Bharghavan CEDAR: A
Core-Extraction Distributed Ad Hoc Routing
Algor i thm , IEEE Journal on Selected Areas in
Communications, Vol 17, No. 8, August 1999.

[6] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin.
Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification, IETF RFC 2205, September
1997.

[7] S. Lee and A. Campbell, INSIGNIA: In-band Signaling
Support for QOS in Mobile Ad Hoc Networks, Proc of
5th International Workshop on Mobile Multimedia
Communications (MoMuC,98), Berlin, Germany,
October 1998.

[8] A.Talukdar, B. Badrinath, Rutgers University, and A.
Acharya, C&C Research Labs, On Accommodating
Mobile Hosts in an Integrated Services Packet

Network, NEC USA, Princeton, NJ Proceedings of
INFOCOM ’97, Kobe, Japan, April 1997.

[9] A. Talukdar, B. Badrinath, MRSVP: A Reservation
Protocol for an Integrated Services Packet Network
with Mobile Hosts, Department of Computer Science
Technical Report DCS-TR-337, Rutgers University,
July 1997.

[10] S. Lu, V. Bharghavan; Adaptive Resource Management
Algorithms for Indoor Mobile Computing
Environments; Proceedings of ACM SIGCOMM ’96,
Univ. of Illinois at Urbana-Champaign, Stanford, CA;
August 1996.

[11] S. Lu, K. Lee, V. Bharghavan; Adaptive Service in
Mobile Computing Environments; from “Building QoS
into Distributed Systems”; Campbell and Nharstedt
(editors); Chapman & Hall; 1997.

[12] D. Beyer, T. Frivold, J. Hight, M. Lewis, API
Framework for Internet Radios, September 1998.
ftp://ftp.rooftop.com/pub/apis/api_framework.pdf .

[13] ISI, The RSVP Implementation developed by the
University of Southern California (USC) Information
S c i e n c e s I n s t i t u t e (I S I) .
http://www.isi.edu/div7/rsvp/rsvp.html

[14] J. Wroclawski, Specification of the Controlled-Load
Network Element Service, Internet Engineering Task
Force Request For Comments Number 2211,
September 1997.

[15] R. Braden, L. Zhang; Resource ReSerVation Protocol
(RSVP) -- Version 1 Message Processing Rules, IETF
RFC 2209, September 1997.

[16] B. Lindell, ISI; SCRAPI – A Simple ‘Bare Bones’ API
for RSVP; Work in progress (draft-lindell-rsvp-scrapi-
0 0 . t x t) , A u g u s t 1 0 , 1 9 9 8 .
http://www.isi.edu/rsvp/DOCUMENTS/draft-lindell-
rsvp-scrapi-02.txt

[17] K. Cho, A Framework for Alternate Queueing:
Towards Traffic Management by PC-UNIX Based
Routers, Proceedings of USENIX 1998 Annual
Technical Conference, New Orleans LA, June 1998.
www.csl.sony.co.jp/~kjc/kjc/papers.html

[18] K. Cho, Managing Traffic with ALTQ; Proceedings of
USENIX, 1999 Annual Technical Conference:
FREENIX Track, Monterey CA; June 1999.
www.csl.sony.co.jp/~kjc/kjc/papers.html

[19] S. Floyd, V. Jacobson; Link-Sharing and Resource
Management Modules for Packet Networks;

9

IEEE/ACM Transactions on Networking, Vol. 3, No. 4,
pp 365-386; August 1995.

