
This work was supported by the Army under contract #DAAB07-00-C-C201 and is subject to the "Rights in Data" clause at
DFARS 252.227-7013 (NOV 95). This work was performed at the MITRE Corporation. Jeff Nielsen was with The MITRE
Corporation when the work was done.

Verifying HLA RTIs

Susan Symington
Joseph Kaplan
Frederick Kuhl
John Tufarolo

Richard Weatherly
The MITRE Corporation

McLean, VA 22102
703 983-7209

susan@mitre.org

Jeff Nielsen
ObjectSpace, Inc.

14850 Quorum Dr., Suite 500
Dallas, TX 75240

jnielsen@objectspace.com

Keywords:
HLA, RTI, Verification, Verifier, Interface Specification, testing.

ABSTRACT: An RTI Verification Facility has been established by the Defense Modeling and Simulation Office
(DMSO) to test the compliance of High Level Architecture (HLA) Run Time Infrastructure (RTI) implementations
with the U.S DoD High Level Architecture Interface Specification, version 1.3. Using the custom-built "RTI
Verifier" software, the Verification Facility has to date verified two RTI implementations from two different RTI
developers. In this paper, we describe our experience with the verification process and the RTI Verifier. We explain
the process in detail, including the effort involved, test failure analysis, and turnaround time. We also discuss how
the RTI Verifier works and enhancements that have been made to support future versions of the HLA Interface
Specification. Finally, we present some lessons learned as an aid to future RTI developers.

1. Introduction

To ensure consistent behavior of High Level
Architecture (HLA) Run Time Infrastructure (RTI)
systems and to encourage multiple independent RTI
developers, the Defense Modeling and Simulation
Office (DMSO) has established an RTI Verification
Facility to test the compliance of RTI implementations
with the U.S. DoD HLA Interface Specification. HLA
users who select RTIs that have been verified by
DMSO can have confidence that these products have
been rigorously tested for compliance to the HLA
standard.

The RTI Verification Facility consists of custom-built
verification software—known as the RTI Verifier—
and staff who operate this software, write tests, and
analyze test results. The architecture of the RTI
Verifier has been explained in detail in [1,2]. It
includes a custom-built Script Definition Language

(SDL) used to author test scripts; an application
executive/controller/interpreter to parse and execute
scripts; test federates that connect and interact with an
RTI under test; and a database to maintain
requirements, tests, and test results. Figure 1 presents
a functional overview of this architecture. Since the
RTI Verifier architecture was described in [1],
extensive enhancements have been made to both the
SDL syntax and the software itself to improve the
execution, analysis, and reporting of tests and their
results.

2. Verifier History

As with any test system, development of the Verifier
required access to a working version of an RTI against
which the Verifier could be tested. In the summer of
1998, the RTI Verification Facility began designing
the RTI Verifier using the RTI 1.3 [3], as a test case.
In February of 1999 the Verifier had matured to the

point that it could be used to test a beta version of the
RTI 1.3 Next Generation (NG) software, developed by
SAIC. During this time, the Verifier and RTI 1.3 NG
were developed in parallel, enjoying a mutually
beneficial relationship. Running the Verifier on the
beta version of RTI 1.3 NG proved to be an excellent
way to discover problems with Verifier software and
test suites. Likewise, it was an excellent way to
uncover early problems with RTI 1.3 NG.

In June of 1999, the Verification Facility began
running the Verifier on an early version of a second
RTI, pRTI, developed by the Swedish company Pitch
AB. Having this second RTI, which was developed
independently from RTI NG 1.3 and in a different
language (Java as opposed to C++), enabled the
Verification Facility to eliminate additional glitches
and gain increased confidence in the Verifier.

Both of these RTI implementations, RTI 1.3 NG and
pRTI, ultimately achieved the official status of verified
RTIs. This means that, based on the results of
verification testing, DMSO is confident that each
adheres to the HLA Interface Specification, version
1.3.

2.1 Specification ambiguities

During this period of development, the Verifier and
the RTIs were not the only elements being tested. In a
sense, version 1.3 of the HLA Interface Specification
was also under test. For the first time, two independent
developers were trying to develop an implementation
based completely on that specification to the extent
that both RTIs would pass a comprehensive
verification test suite. For the most part, the 1.3
Interface Specification proved itself to be clear and
complete. However, as might be expected, several
issues did arise regarding the expected behavior of an
RTI. These issues arose because of ambiguous or
missing text in the Interface Specification. As they
arose, the Verification Facility provided feedback to
the RTI developers informing them of the DoD
interpretation of the Interface Specification and
clarifying expected RTI behavior. These issues are
documented on the DMSO web page
[ftp://ftp.dmso.mil/pub/documents/initiatives/hla/rti/ve
rify/spec_ambiguities.pdf] as guidance to future RTI
developers.

3. Verification Policy and Process

Complete details on the HLA RTI Verification Policy
can be found at the HLA web site
[http://hla.dmso.mil/rti/verify/policy.html]. Included
there are:

HLA Interface
1.3 Specification

24 4 P age s
12 9 S erv ices

Requirement
Distiller

Requirements
199 6 Item s

Java RMI

AP1 AP2 AP3 AP4 AP5

RTI Under Test

Test
Writer

Microsoft
 Access

29 Forms
31 Tables

1464 Tests

JDBC

Executive
Ja va

22 ,8 39 S LO C

Interpreter
JJT r ee /Ja v aC C
3 0,9 9 4 S L O C

Test C ontroller
Ja v a/ S w i ng RTI

Tester

50-60 CPU Hours

Test Reports

Results
Analyst

Figure 1: Verifier System Architecture

• a description of the verification policy,
• level 1 Test Procedures that should be self-

administered by RTI developers before submitting
their RTIs for verification testing,

• a form to register the RTI for verification testing,
and

• a verification status board that lists
• RTIs that have completed Level 1 testing
• RTIs that are in Level 2 testing, and
• RTIs that have been certified compliant.

From the viewpoint of the Verification Facility, the
verification process officially begins when an RTI
developer submits a formal request for verification
using the automated form at the HLA web site. As part
of the request, the developer specifies not only the
particular RTI that is to be verified, but also the
version of the HLA specification to which the RTI is
intended to adhere, the HLA API, the operating
system, and the language binding to be used. By
submitting a formal request for verification, the RTI
developer is asserting that the RTI has already
successfully passed a set of fundamental tests that
constitute Level 1 testing. Once the Verification
Facility receives a request for verification, it contacts
the developer to obtain a copy of the RTI so that
testing can begin.

Access to RTI source code is not required for the
verification process. Instead, the RTI Verification
Facility links its own test federates with the runtime
version of the RTI, executes the full suite of tests, and
reports back to the RTI developers on every test that
fails. It continues to run the tests on all successively
submitted versions until a particular version of the RTI
passes all of them.

When a single version of an RTI has passed all
Verifier tests, the Verification Facility recommends
that version of the RTI to the Director of DMSO for
compliance certification. The Director of DMSO
renders definitive judgement as to whether an RTI
implementation is compliant. As indicated above,
DMSO has to date certified two RTI implementations
as compliant with the HLA Interface Specification
version 1.3. These are:

• RTI Next Generation (NG), version 1.3,
manufactured by SAIC, using the C++ API and a
Sun C++ 4.2 compiler, on a Solaris 2.6 platform.

• pRTI, version 1.3, manufactured by Pitch AB,
using the Java API and the JDK 1.2 compiler, on
a Java 2 platform.

4. Testing Process

4.1 Phased Testing

The Verification Test Suite consists of approximately
1500 tests that perform functional testing of all areas
of the HLA Interface Specification. These tests are
divided into five phases for purposes of running tests
and reporting test results. Thus, for any given version
of an RTI under test, a developer must receive five test
reports in order to have received a complete report on
that RTI. The breakdown is as follows:
• Phase 1: Federation Management, Declaration

Management, and Support Services
• Phase 2: Object and Ownership Management
• Phase 3: Time Management
• Phase 4: Data Distribution Management (DDM)
• Phase 5: Management Object Model (MOM)
The phases may be run in any order, with the sequence
being determined by the Verification Facility.

4.2 Testing Process

Figure 2 shows a flowchart of the testing process that
occurs for each of the five phases of testing with a
given RTI version. First, the RTI is installed and the
particular phase of the test suite is run. This may take
anywhere from several hours to an entire day,
depending on the phase being run and the
characteristics of the RTI.

Once all tests in a given phase have been run, a
Verification Facility staff member reviews all of the
failed tests and their test logs in the database. This is a
"quality assurance" measure in order to assure that all
errors reported to the developer are truly problems
with the RTI. If (as happened frequently in the early
stages of development) the staff member determines
that the cause of the failure was a problem with the
test or the Verifier software, then the necessary
corrections are made and the test is re-run. If the cause
appears to be a genuine defect in the RTI, the staff
member documents his failure analysis by inserting
appropriate text for this test in the test report. Once all
failed tests have been thus analyzed, the test report is
generated and provided to the RTI developer. The test
report includes a textual description of each test
purpose and behavior, an analysis of where and why
the test failed, and an automatically-generated log of
every RTI service invoked by the test, complete with
argument values.

As mentioned earlier, any given RTI version must go
through this process for each of the five test phases in
order for it to have been tested completely.

4.3 Costs

Given the verification process just described and the
Verification Facility's experience having verified two
RTIs so far, one may wonder what it costs to verify an
RTI. Although the number of data points (two) is
currently too small for any kind of statistically
significant answer, this section attempts to present
some relevant numbers.

We define a pass as one application of the verification
test suite that includes each of the five phases of
testing; and we define turnaround time as the amount
of time elapsed from the moment the RTI is received
until the moment that the last of the five phased test
reports is provided to the RTI developer on a given
pass. Simply running the entire suite of verification
tests on a given RTI takes from 1 to 3 work days. After
all tests have been run, all failed tests must be
analyzed by a staff member. This quality assurance

step is by far the most time and labor-intensive part of
the testing process and as a result, turnaround time for
a given RTI primarily depends on the number of tests
that the RTI fails.

Our experience so far suggests that successfully
completing verification testing requires about 5 passes,
with the average turnaround time for the first pass
being about five and a half weeks and turnaround time
for each successive pass decreasing significantly.
Figure 3 shows a chart of the failure rate and
turnaround time data averaged from the two RTIs
verified to date.

As can be seen from Figure 3, the first pass of testing
typically has a large number of test failures and,
consequently, a lengthy turnaround time. As the
developers fix problems and as the Verification
Facility corrects any problems found with the tests,
subsequent passes exhibit a decrease in the number of
failures, with a commensurate decrease in turnaround
time. Although turnaround time is defined as the
length of time required to report on the RTI’s
performance on the entire test suite, the test suite itself
is broken down into a set of five phases. This means
that RTI developers are not required to wait until all
test phases have been run to receive test reports;
instead, they receive the reports as the phases
complete. So, although the first pass of testing may
take five and a half weeks, the developer will receive
its first test report much earlier than that (most likely
after only one or two weeks). In a given pass, the
developer can be working to eliminate errors found in
one phase of testing while the Verification Facility is
analyzing test results on other phases.

rreerruunn
tteessttss

IInnssttaallll RRTTII aanndd
RRuunn 55--pphhaassee tteesstt ssuuiittee

VViieeww ffaaiilleedd tteessttss aanndd llooggss
 iinn ddaattaabbaassee

QQuuaalliittyy
AAssssuurraannccee

WWrriittee ffaaiilluurree aannaallyyssiiss tteexxtt

GGeenneerraattee aanndd sseenndd aa tteesstt rreeppoorrtt
ffoorr eeaacchh ooff tthhee 55 PPhhaasseess

Figure 2: Testing Process Flowchart

Data from two RTIs to date

9Avg. #
releases

delivered to
Verification

team

Avg.
Number of

Failures

Avg.
Turnaround

Time

Initial pass 333 ~
Pass 1 179 5.5 weeks
Pass 2 57 2 weeks
Pass 3 29 6 days
Pass 4 5 4 days
Pass 5 1 3 days

Figure 3: Data from Two Verified RTIs

If an inordinate number of errors are found during a
given phase of testing, a developer may choose to
provide a new release of the RTI to the Verification
Facility before it has reported the results of the entire
pass. This choice would typically be made early during
the pass, when it is discovered that a single error has
widespread ramifications throughout the RTI and is
causing a large number of errors. Such a choice saves
both Verification Facility resources and minimizes
developer wait time.

The option to provide a new release before the results
of an entire pass have been received explains the data
showing that an average of 9 releases of each RTI
were delivered to the Verification Facility for testing,
while only five of these releases were subjected to an
entire pass of testing. The "Initial Pass" row of the
table refers to the initial period of testing that was
conducted while the Verifier itself was still being
developed. Results from this early period of testing are
not considered relevant to what can be expected from
the typical verification process.

4.4 Testing Phenomena

Ideally, the number of failures will diminish with each
pass of testing as RTI developers work to fix problems
uncovered. However, there is always the chance that
developers will inadvertently introduce errors when
they make a change to the RTI in an attempt to fix it.
In addition, there are some failures that persist despite
attempts to eliminate them. Some interesting
phenomena were discovered during our verification
experiences that are not readily apparent from the data
in Figure 3. These are
• single cause of many failures,
• failure masking, and
• labor-intensive latter failures.

Single cause of many failures: the drastic and
continued decrease in verification turnaround time
from the first through subsequent passes can be
accounted for, in part, by the fact that in early phases
of testing, many of the test failures were caused by
only a few implementation errors. Hence, fixing one
error can result in a large reduction in test failures in
the next pass of testing. Developers who are
responsive to the test reports, therefore, will tend to
experience significant and systematic reductions in the
number of errors, and therefore in the turnaround
time, in the early passes of testing.

Failure masking: although most tests that fail in a
given pass tend to be a subset of the tests that were
reported as failing in previous passes, it is not always
the case that tests fail for the same reason that they
failed earlier. In fact, tests in latter passes frequently
fail for an altogether different reason. For example, the
table in figure 3 shows a reduction in test failures from
pass 1 to pass 2 from 179 to 57. This does not mean
that the developers chose to fix only the errors that
were causing 122 tests to fail but not the errors that
were causing the other 57 failures. On the contrary,
typically the developer would deliver the RTI for its
second pass of testing after having remedied all or
most of the errors reported. However, in many cases,
the error that had been causing the test to fail during
pass 1 was merely masking a second (and perhaps
third or fourth) error that was still present in the test,
but was only uncovered when the first error was fixed.
These errors appear on subsequent passes when the
test is allowed to proceed far enough to encounter the
additional error. So, no matter how responsive a
developer may be to the test reports received, the five
tests that failed pass 4 of the testing may have all
failed each of the three previous passes. It merely
required successive passes of testing to uncover
failures that had been masked by previous failures to
the point that all errors were uncovered.

Labor-intensive latter failures: Despite developer
responsiveness, some tests failed successive passes of
testing for a reason other than failure masking. In
some cases, a particularly difficult or problematic
failure would persist and show up repeatedly in test
results despite developer attempts to eliminate it
between passes. These failures, which tended to still
be lurking in the latter passes, required significantly
more labor on both the part of the developer and the
part of the Verification Facility. These test failures
could be difficult to reproduce, so that providing
developers with enough information about them to
enable them to be understood, tracked down, and fixed
was not straightforward and often required
considerable communication between the Verification
Facility and the developer.

4.5 Quality Assurance Analysis

As was stated before, the quality assurance analysis
performed by a Verification Facility staff member on
all test failures is the most labor and time-intensive
portion of the verification process. Figure 4 depicts a
flowchart of this process.

The first step in the analysis of a failed test is to
determine whether or not the requirement driving the
test is itself valid. This requires combing the HLA
Interface Specification and locating exactly that
portion of text from which the requirement can be
derived. If the requirement is not found to be
derivable from the Interface Specification, then the
Verification Facility makes a determination as to
whether the test should be discarded or kept, as
appropriate, and it advises the developer of this
decision. All cases in which it is decided to keep a test
and thereby enforce a requirement that can not be
literally derived from the specification are documented
and made publicly available on the DMSO web site at
[ftp://ftp.dmso.mil/pub/documents/initiatives/hla/rti/ve
rify/spec_ambiguities.pdf].

If the requirement is found to be valid based on the
Interface Specification, the next step is to determine
whether the test as written is correctly testing the
requirement. If the test is found to be in error, then it
is fixed and re-run. If the test is found to be correct,
the analyst writes up a textual description of the test
that describes the behavior that is expected and how it
deviates from the behavior that was observed. This text

is inserted automatically into the test report to be
generated and provided to the developer.

5. Verification of Successive Releases

When an RTI is verified, it is verified according to a
particular RTI version, HLA Version, HLA API,
Operating System, and API language. If a new version
of the RTI is released with any changes at all, that new
version is not considered to have been verified. Any
change made to a verified version of an RTI, no matter
how seemingly small or insubstantial, has the potential
to cause unanticipated problems with the way that the
RTI operates, possibly resulting in an RTI that would
not pass all tests in the verification test suite. Our
recommendation, therefore, is that all new RTI
versions should be verified before being released.

In order to accomplish verification prior to releasing a
particular version of an RTI, the developer should
budget an appropriate amount of time into the release
schedule: one or two weeks for versions that do not
incorporate substantial changes from a previous
version that has already verified, and more time for

NNoo

YYeess

IIss tthhee tteesstt
ccoorrrreecctt??

IIss tthhee tteesstt
rreeqquuiirreemmeenntt vvaalliidd??

NNoo FFiixx aanndd rreerruunn tteesstt

YYeess

PPuutt ffaaiilluurree aannaallyyssiiss iinnttoo tteesstt rreeppoorrtt

DDooccuummeenntt ddeecciissiioonn iinn
DDOODD IInntteerrpprreettaattiioonnss

DDooccuummeenntt

AAddvviissee ddeevveellooppeerr

DDiissccaarrdd oorr kkeeeepp tteesstt,,
aass aapppprroopprriiaattee

Figure 4: Quality Assurance Analysis Process Flowchart

versions with more substantial changes. Several weeks
may seem like too long a delay for a release that has
been changed only minimally, but it is well worth the
assurance that verification provides to the RTI users.
The tradeoff is between a timely release and a correct
release. Most users, we suspect, would rather have a
correct release a little later than a buggy one earlier.
Assurance that a newer version will function at least
as well as the version currently in use would seem to
be a minimal incentive required for a user to upgrade
to a new version.

Sometimes it may make more sense to run a version
through the verification test suite and note the failures
in the release notes rather than subject that version to
successive verification/revisions until verification is
achieved. (This approach may be appropriate, for
example, if the anticipated useful life of the RTI
version is short, or if the RTI is not expected to be
used to support any major federation executions.) This
way, the users would be fully informed of the known
problems with a new release and have the option of
upgrading to it or not.

Practically speaking, however, budgeting an extra few
weeks into the release cycle may be too much to ask. If
there is not enough time to verify all releases, then
what criteria should be used for determining whether
or not to verify a given release? We recommend
picking an amount of time, such as six months, and
routinely verifying whichever version is released next
after that period has elapsed. This would be a policy
of periodic verification. It must be recognized,
however, that a risk is being taken every time an
unverified RTI is released. The potential damage
includes user frustration, exasperation, and loss of
confidence in the RTI developer and the Verification
Facility. So, we further recommend that once a
particular version of an RTI has been verified and
advertised as such, every subsequent version of that
RTI that is released be labeled either "verified" or
"unverified". This will avoid having users fall into the
trap of assuming that because one version of an RTI
has been verified, all subsequent versions will
automatically have been verified before being released.
This will also provide users with the information that
they will want to consider when deciding whether or
not to upgrade to the next version.

5.1 Summary of our recommendations:
• Always verify (When in doubt, verify. With any

code change, there is always doubt, so always
verify.)

• Budget time for verification. View the issue as not
whether to verify, but how much time to budget
into the release schedule for verification. (One
week for minimal changes to the RTI that aren't
expected to introduce bugs, several weeks for
more extensive changes.)

• Weigh the potential costs of not verifying a given
RTI (including user frustration and loss of
confidence that will be caused by potential bugs)
against the cost of verifying.

• Practice full disclosure with new releases: label all
new releases as verified or unverified. If a buggy
RTI is released, fully disclose the tests that it fails
in its release notes.

6. Ongoing Evolution of the RTI Verifier

Over the life of the RTI Verification Facility, the
Verifier software has continued to evolve as we have
gained a better understanding of what the tools need to
do. With increased experience in the process of
verifying RTIs has come a more complete articulation
of the requirements for the Verifier system, which has
necessitated ongoing enhancements. Such
enhancements have helped to make the software more
usable and the team more productive.

Many of the software enhancements were added
incrementally, as the need for them was discovered.
For example, the first time that we attempted to re-run
the complete set of tests on an RTI in a short time
frame, we discovered that we needed a less labor-
intensive method of aggregating the results of a run
for a particular RTI version. Around this same time
we also realized that the generation of the test reports
(with their associated logs) could be automated
further. Other needs that surfaced as we began
performing large numbers of tests included: being able
to run the software remotely using a command-line
interface, being able to easily re-run only those tests
that had failed previously, and having the software
automatically recover (i.e., “clean up”) from any kind
of RTI or test-federate failure during a test.

6.1 Version 2.0 of the Verifier Software

With the successful verification of two RTIs becoming
a reality early this year, we felt that the time was right
for a more systematic overhaul of the system. A
couple of factors precipitated this decision. First, it
had become increasingly clear that the software
requirements had grown significantly beyond the
scope of the original design. Second, the impending

approval of the IEEE 1516 series of HLA standards
meant that we would need to be prepared to verify
RTIs written to newer versions of the HLA
specification.

A complete re-design and re-implementation effort for
both the database and Java-based tools was therefore
initiated late in 1999. This effort resulted in version
2.0 of the RTI Verifier, which was largely complete as
of June 2000. This version incorporates all of the
previous enhancements and includes many other new
or improved features. Some of the most significant
are:
• A new database format, database front-end tools,

and Java GUI.
• Support for an enhanced SDL scripting language.

Our experience writing the existing 1500 tests
convinced us that changes could be made to the
SDL grammar in order to make it more concise
and expressive in describing an RTI's expected
behavior. The new grammar includes features
like assertion-based constructs to painlessly check
return values and callback parameters, automatic
handle lookup and translation, and parameterized
subroutines.

• Backward compatibility with existing tests and
databases.

• The ability to work with multiple RTI APIs. The
previous version of the Verifier had the RTI
services from the 1.3 API “hard-coded” in both
the Java code and the SDL interpreter. The
current version takes advantage of the Java
“reflection” capabilities to be completely
independent of any particular API. An API is
loaded dynamically at runtime and used to build a
table of services, callbacks, and GUI menus.
Invoked services (either from a script or from the
GUI) and returned callbacks are then looked up by
name.

• A more modular design, allowing the different
components of the system to be used
independently. For example, the system can read
tests from and write results to either a database or
a file system (the latter being useful if one wants
to run without a database connection). It can
likewise be run either with the GUI or in
command-line mode. It can even be configured to
behave as a single, local, API-independent test
federate to work with any RTI.

The RTI Verifier 2.0 is thus both robust and flexible,
and well equipped to meet the future needs of the
Verification Facility. More complete details about its

design and features will be presented in a forthcoming
paper.

6.2 Preparing for the IEEE Specification

Although the Verifier software is versatile enough that
it can be used to test RTIs that implement different
versions of the HLA specification, many of the tests
that the Verifier software runs must be written anew
for each new version of the specification. A new
specification implies a new set of requirements, which
in turn requires a new set of tests. Even existing tests
that remain valid must be translated to conform to a
new specification's API. The Verification Facility staff
is currently in the process of writing new requirements
and their corresponding tests for the IEEE 1516
version of the HLA specification.

7. Lessons Learned & Recommendations

Given our experience thus far with successfully
verifying two RTIs, we have the following
recommendations for RTI developers:
• Read the HLA Interface Specification carefully.

When in doubt, contact the Verification Facility
for clarification.

• For RTIs being implemented to the 1.3 Interface
Specification, read the DoD Interpretations
document that specifies the expected behavior for
those portions of the specification that are
ambiguous
[ftp://ftp.dmso.mil/pub/documents/initiatives/hla/r
ti/verify/spec_ambiguities.pdf].

• Schedule time early in your development cycle for
verification. Do not tack 3-4 weeks on the end of
your development cycle and expect verification to
both begin and complete successfully in that time
frame. Expect development to complete 4-6
months after verification begins. This is true
because often failures in earlier runs through the
Verifier mask failures that are uncovered later,
after the early failures have been corrected. Also,
fixing one problem may inadvertently cause
another problem to be introduced, and our
experience has shown that the bugs that are still
in the RTI implementation near the end of the
process are often the most difficult to fix.
Furthermore, even if there is only one error in an
implementation, the RTI must be fixed and the
corrected version of the RTI must be run through
all Verifier tests again. This takes time.

8. References

[1] Tufarolo, J., Nielsen J., Symington, S., Weatherly,
R., Wilson, A., Ivers, J., and Hyon, T.: "Automated
Distributed System Testing: Designing an RTI
Verification System", 1999 Winter Simulation
Conference, pp. 1094-1102, December 1999.

[2] Tufarolo, J., Nielsen J., Symington, S., Weatherly,
R., Wilson, A., Ivers, J., and Hyon, T.: "Automated
Distributed System Testing: Application of an RTI
Verification System", 1999 Winter Simulation
Conference, pp. 1103-1108, December, 1999.

[3] U.S. Department of Defense, Defense Modeling
and Simulation Office, High Level Architecture
Interface Specification, v1.3, April 2, 1998.

Acknowledgments

The authors would like to thank Dr. Ernest Page of
The MITRE Corporation for his contribution to the
development of Verifier software and Verification
testing as a member of the Verification Facility staff.

Author Biographies

JOSEPH A. KAPLAN is a Senior Simulation and
Modeling Engineer in the Information Systems and
Technology Division at The MITRE Corporation in
Reston, Virginia. He is currently supporting the HLA
RTI Verification Facility as a member of the software
development team. His professional interests include
real-time software systems and distributed computing.
Mr. Kaplan has a B.S. in Computer Science from
Virginia Polytechnic Institute and State University and
a M.S. in Computer Science from the College of
William and Mary.

DR. FREDERICK KUHL is a senior principal
engineer with The MITRE Corporation. He has been a
leader since the beginning in the activities to prototype
implementations of the HLA infrastructure. He
presently leads the international standardization effort
for the HLA. He has applied object-oriented
programming to prototype air traffic control systems,
and distributed object computing technology to
distributed simulation. Dr. Kuhl holds the Ph.D. in
computer science from Texas A&M University.

JEFF NIELSEN is a senior consultant and
Infrastructure Specialist at ObjectSpace, Inc., where he
helps organizations design and implement distributed
object-based software systems. He was previously lead
designer and developer for the HLA RTI Verifier

software at the MITRE Corporation. He also
participated in a variety of HLA-related activities,
providing technical and management support to
DMSO-sponsored federation efforts and contributing
to the development and balloting of the HLA IEEE
specification. Mr. Nielsen holds an M.S. in Computer
Science and an M.A.Ed. in Instructional Technology.

SUSAN SYMINGTON is a Lead Scientist at the
MITRE Corporation where she serves as the point of
contact for the RTI Verification Facility. She is also
the chair of the IEEE High Level Architecture
Working Group that drafted the three M&S HLA draft
standards: P1516, P1516.1, and P1516.2. She holds a
B.A. in Mathematics and Philosophy from Yale
University and an M.S. in Computer Science from the
University of Maryland at College Park.

JOHN A. TUFAROLO is a Lead Simulation Systems
Engineer for the MITRE Corporation in Reston,
Virginia, where he is currently involved in High Level
Architecture (HLA) testing and HLA federation
development activities. Mr. Tufarolo is the
Information Director for the Association of Computing
Machinery (ACM) Special Interest Group on
Simulation (SIGSIM), and a member of the ACM,
IEEE CS, and SIGSIM. His professional interests
include discrete event simulation, simulation systems
development, and military modeling and simulation.
Mr. Tufarolo has a B.S. degree in Electrical
Engineering from Drexel University and an M.S. in
Systems Engineering from George Mason University.

RICHARD WEATHERLY is a Consulting Engineer
of The MITRE Corporation’s Information Systems and
Technology division where he leads various HLA
infrastructure development and verification projects.
Prior to that he was the project leader and designer of
the Aggregate Level Simulation Protocol system. He is
currently serving as the Joint Simulation System
(JSIMS) Chief Engineer. He received his Ph.D. in
electrical engineering from Clemson University in
1984.

