

HPCS Application Analysis and Assessment

- Phase 1 Summary -

David Koester / MITRE Jeremy Kepner / MIT Lincoln Laboratory

HPC User Forum Sundance, Utah

- Workflows
- Benchmarks
- Continuing Challenges
- Summary

- Overview
- Process Flow
- Assessment Framework
- Defining Productivity

Productivity Framework Overview

- Program continuously integrates mission and vendor input
 - Enables vendors to perform design assessments and measure HPCS objectives progress
 - Enables mission partners and program management to understand vendor designs via scaled models/tools using vendor supplied parameters

Slide-3 MITRE HPCS Application Analysis and Assessment

Application Analysis/ Performance Assessment

HPCS Assessment Framework

HPCS Application Analysis and Assessment

HPC Productivity: A New Era

A New HPC Sub-discipline

Overview

•

• Definitions

Common Challenges

- Assessment and Metrics
- Workflows
- Benchmarks
- Summary

- Missions (development): Cryptanalysis, Signal Processing, Weather, Electromagnetics
- Process Overview
 - Goal: solve a compute intensive domain problem: crack a code, incorporate new physics, refine a simulation, detect a target
 - Starting point: inherited software framework (~3,000 lines)
 - Modify framework to incorporate new data (~10% of code base)
 - Make algorithmic changes (~10% of code base); Test on data; Iterate
 - Progressively increase problem size until success
 - Deliver: code, test data, algorithm specification
- Environment overview

MITRE

Slide-9 HPCS Application Analysis and Assessment

- Duration: months
 Team size: 1
- Machines: workstations (some clusters), HPC decreasing
- Languages: FORTRAN, C \rightarrow Matlab, Python
- Libraries: math (external) and domain (internal)
- Software productivity challenges
 - Focus on rapid iteration cycle
 - Frameworks/libraries often serial

- Missions (development): Weapons Simulation, Image Processing
- Process Overview
 - Goal: develop or enhance a system for solving a compute intensive domain problem: incorporate new physics, process a new surveillance sensor
 - Starting point: software framework (~100,000 lines) or module (~10,000 lines)
 - Define sub-scale problem for initial testing and development
 - Make algorithmic changes (~10% of code base); Test on data; Iterate
 - Progressively increase problem size until success
 - Deliver: code, test data, algorithm specification, iterate with user
- Environment overview

MITRE

Slide-10 HPCS Application Analysis and Assessment

- Duration: ~1 year
 Team size: 2-20
- Machines: workstations, clusters, hpc
- Languages: FORTRAN, C, \rightarrow C++, Matlab, Python, IDL
- Libraries: open math and communication libraries
- Software productivity challenges
 - Legacy portability essential Avoid machine specific optimizations (SIMD, DMA, ...)
 - Later must convert high level language code

Production

- Missions (production): Cryptanalysis, Sensor Processing, Weather
- Process Overview
 - Goal: develop a system for fielded deployment on an HPC system
 - Starting point: algorithm specification, test code, test data, development software framework
 - Rewrite test code into development framework; Test on data; Iterate
 - Port to HPC; Scale; Optimize (incorporate machine specific features)
 - Progressively increase problem size until success
 - Deliver: system
- Environment overview

MITRE

Slide-11 HPCS Application Analysis and Assessment

- Duration: ~1 year
 Team size: 2-20
- Machines: workstations and HPC target
- Languages: FORTRAN, C, \rightarrow C++
- Software productivity challenges
 - Conversion of higher level languages
 - Parallelization of serial library functions
 - Parallelization of algorithm
 - Sizing of HPC target machine

- Workstations are dominant development platform
 - Scaling from workstations to clusters to HPC is difficult
 - Special hardware features (SIMD, DMA, ...) are avoided
 - Need transparent portability that preserves performance
- Code reuse is essential
 - Frameworks commonly employed for functional reuse, but No formal application programmer interface (API) Serial (difficult to make parallel) Development and production are different
 - Need mission specific software frameworks that span Development and production Workstations, clusters, HPC+special hardware
- Increased use of high level languages
 - Preferred by domain experts, not software engineers
 - Limited availability on HPCs
 - Not high performance
- A new approach: development code is HPC production quality?

Slide-12 HPCS Application Analysis and Assessment

- Assessment and Metrics
- Workflows
- Benchmarks
- Summary

- Scope
- Relationships
- Learning from History
- Credible System Performance
- Interrelationships

Slide-13 MITRE HPCS Application Analysis and Assessment

HPCS Phase 1 Kernel and Application Scope Benchmarks HPC

Mission Area	Kerneis	Application	Source				
Stockpile Stewardship	Random Memory Access	LIMT2000	ASCI Purple Benchmarks				
	Unstructured Grids	01112000					
	Eulerian Hydrocode	SAGE3D	ASCI Purple Benchmarks				
	Adaptive Mesh					1	
				Bio-Application	<u>Kernels</u>	Application	Source
	Unstructured Finite						
	Element Model	ALEGRA	Sandia National Labs	Quantum and			
	Adaptive Mesh Refinement			Molecular			
				Mechanics	Macromolecular Dynamics	CHARMM	http://yuri.harvard.edu/
Operational Weather					Energy Minimization		
and Ocean					MonteCarlo Simulation		
Forecasting	Finite Difference Model	NLOM	Dod HPCMP TI-03				
Amura Future Combot				Whole Genome		Needleman	http://www.med.nvu.edu/
Army Future Combat Weapons Systems	Finite Difference Medel	OTH		Analysis	Sequence Comparison	Wunceh	ror/ror/course/sim sw html
	Adaptive Mach Pofinement	CIH	DOD HPCMP 11-03	Analysis	Sequence comparison		http://www.pabi.plm.pib.gov/PLACT/
	Adaptive wesh kennement					BLAST	http://www.ncbi.nim.nin.gov/BLAS1/
Crashworthiness	Multiphysics Nonlinear					FASTA	nttp://www.ebi.ac.uk/fasta33/
Simulations	Finite Flement	LS-DYNA	Available to Vendors			HMMR	http://hmmer.wustl.edu/
onnulations		LODINA					
	Lower / Upper Triangular			-		BioSpice	http://genomics.lbl.gov/~aparkin/
Other Kernels	Matrix Decomposition	LINPACK	Available on Web	Systems Biology	Functional Genomics	(Arkin, 2001)	Group/Codebase.html
	Conjugate Gradient Solver		DoD HPCMP TI-03		Biological Pathway Analysis		
	QR Decomposition		Paper & Pencil for Kernels				
				Bio-Application	Kernels	Application	Source
	1D FFT		Paper & Pencil for Kernels				
	2D FFT		Paper & Pencil for Kernels	Quantum and			
				Molocular			
	Table Toy (GUP/s)		Paper & Pencil for Kernels	Mochanico	Magram alagular Dynamica		http://www.iharward.adu/
	Multiple Precision			Wiechanics		CHARININ	nup.//yun.narvaru.euu/
	Mathematics		Paper & Pencil for Kernels		Energy Minimization		
	Dynamic Programming		Paper & Pencil for Kernels		Monte Carlo Simulation		
	Rinary manipulation		Papar & Papail for Korpola				
	[Billary Inallipulation]		Faper & Fencil for Kenters	Whole Genome			
	With large multiword keyl		Paper & Pencil for Kernels	Analysis	Sequence Comparison	BLAST	http://www.ncbi.nlm.nih.gov/BLAST/
	Binary Equation Solution		Paper & Pencil for Kernels	-			
				-		BioSpice	http://genomics.lbl.gov/~aparkin/
	Graph Extraction			Systems Biology	Functional Genomics	(Arkin, 2001)	Group/Codebase.html
	(Breadth First) Search		Paper & Pencil for Kernels		Biological Pathway Analysis		
	Sort a large set		Paper & Pencil for Kernels			1	
	Construct a relationship						
	graph based on proximity		Paper & Pencil for Kernels				
	Various Convolutions		Paper & Pencil for Kernels				
	Various Coordinate						
	Transforms		Paper & Pencil for Kernels				
	Various Block Data Transfers	6	Paper & Pencil for Kernels				

Slide-14 **HPCS** Application Analysis and Assessment

	Fixed Size	Scalable		
Activity Based (Well Suited for Execution Measurement)	LINPACK (Dongarra's performance.ps) NAS Parallel SPEC HPC2002 HPCS Activity Applications	LINPEAK (Top500) Streams, Table Toy HPCS Activity Kernels		
Purpose Based (Ideal for Development Measurement)	"Discrete Math" Many RFP Suites	TPC-x, ECPerf HPCS Purpose Suite HPCS Focu:		

HPCS Phase 1 – Scope Benchmarks HPCS Phase 2 – Activity and Purpose Benchmarks

Slide-15 MITRE HPCS Application Analysis and Assessment

Learning from History

1990s HPC technology producers: Alliant, Cray Computer, Supercomputing Systems, Thinking Machines, Kendall Square Research, ...

High Performance Computing Challenges for Future Systems

Demonstrate credible performance

"users can develop programs of infinite variety, and many types of programs lead to disastrous performance degradation on any particular system"

Demonstrate (not claim) benefits across all mission areas Community is actively engage metrics development

Greatest grand challenge: *practical* parallelism (i.e. time-to-solution) "solve the problem of designing practical parallel systems so that we will be able, forevermore, to improve computer performance through practical parallelism"

•Extract parallel performance without heroic programming efforts

David J Kuck, 1996

HPCS: Mission Decomposition DoD HPCMP Resource Center

Credible System Performance Across a Mission Area

All Codes

- Acceptable performance across an entire mission area
 - mission area \leftrightarrow all applications for a mission partner
- Current computing systems are unstable
 - small (ϵ) code change can produce a large decrease in performance
 - some applications exhibit acceptable performance, many don't

Slide-18 HPCS Application Analysis and Assessment

MITRE

Slide-19 HPCS Application Analysis and Assessment

Summary

- Assessment and Metrics
 - Initial framework consisting of
 - Productivity Metrics (e.g. development time and execution time)
 - System Parameters (e.g. bandwidth, flops/cycle, size, power, lines-of-code, ...)
 - Productivity Factors (performance, programmability, portability and robustness)
 - Ground breaking activity in understanding HPC productivity
- Workflows
 - Lone Researcher, Enterprise Development and Production with different mission and development cycles
 - Several common productivity challenges
 Workstations for development; Code reuse; High level languages
- Benchmarks
 - Defines scope of applications of interest
 - Targets different aspects of workflow (activity vs. process)
 - Goal is performance across mission areas