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ABSTRACT

This paper describes how to achieve a desired speedup by 
careful selection of appropriate algorithms for paralleliza-
tion. Our target simulation is the Total Airport and Air-
space Model (TAAM), a worldwide standard for aviation 
analysis. TAAM is designed as a sequential program, and 
we have increased its speed by incorporating multi-
threaded algorithms with minimal changes to the underly-
ing simulation architecture.  Our method was to identify 
algorithms that are bottlenecks in the computation and that 
can be executed concurrently, producing a hybrid sequen-
tial and parallel simulation.  Our results show a perform-
ance gain that varied between 14% and 33%.

1 INTRODUCTION

TAAM is a fast-time gate-to-gate simulator of airspace and 
airports. It is a worldwide standard for air traffic simula-
tion, yet its use is limited because of its long run time.
TAAM is designed as a sequential program. We have in-
corporated parallel processing by adding multi-threading to 
increase its speed. Converting sequential algorithms to par-
allel algorithms is difficult. One needs to take into consid-
eration processor architecture, software and data integrity. 
Algorithms which are suitable for single-processor com-
puters are not always appropriate for parallel architectures.
Through multi-threading, we parallelized and integrated 
two sequential algorithms in TAAM, the conflict detection 
algorithm and the aircraft navigation/movement algorithm. 
Parallelizing these two parts of the TAAM source code 
proved beneficial, resulting in a 14% to 33% improvement 
in speed over the baseline implementation.

As mentioned above, combining various parallel algo-
rithms is a difficult task. In TAAM, the difficulty was 
caused by the fact that each algorithm ultimately changes 
the data structures used by flights in TAAM.  On the one 
hand, the aim is to achieve as much independent, parallel 

computation as possible in order to maximize the speed at 
which computations occur. On the other hand, we must en-
sure that the parallel computations maintain data integrity 
and do not write over each other’s data, which argues for 
serializing the computations.  This trade-off between paral-
lelism for speedup reasons vs. serialization required for 
verification purposes produces a hybrid system—neither 
entirely parallel nor entirely serial—whose performance 
justifies these tradeoffs (Wieland, F., D. Carnes, P. Wang, 
2001).

The approach taken and the motivation behind this 
work are as follows. In many TAAM scenarios, conflict 
detection comprises almost 50% of the total run time. It is 
the slowest running algorithm. The second source of 
TAAM bottlenecks involves the aircraft navigation algo-
rithm. We have incorporated parallel processing in both 
algorithms to increase its speed. The first step in creating a
parallel program is ensuring that it has been properly paral-
lelized. This means:

• Enough of the program has been parallelized to 
allow the program to attain the desired speedup.

• The workload is distributed evenly among the 
central processing units (CPUs).

The integration, at first, posed some challenges and re-
sulted in many deadlock situations. However, these prob-
lems were finally resolved and some good performance re-
sults were achieved as a result of this study.

2 ALGORITHM SELECTION CRITERIA

When selecting a particular function, code section or algo-
rithm for parallelization in a sequential program, one must 
be able to determine the following:

• Does it contain any inherent parallelism that can 
be exploited?

• Is the program amenable to either data or func-
tional parallelism or both?
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• Can the parts/algorithms identified for paralleliza-
tion be executed concurrently?

Movement and conflict detection processing in TAAM are
both time consuming. Therefore, they make good candi-
dates for parallelization. Both algorithms use data parallel-
ism and follow the Single Program Multiple Data (SPMD) 
paradigm (Quinn 1994).

The Parallel Conflict Detection algorithm was de-
signed with two objectives in mind.  As the quad tree data 
structure is naturally suited for parallelization, the first ob-
jective was to provide an efficient geographical filter to 
minimize the number of candidate aircraft pairs that re-
quire further checking.  The second objective was to pr o-
vide a mechanism to perform conflict detection on multiple 
aircraft pairs in parallel.

The Movement algorithm was designed to parallelize 
the processing of ground-based and airborne aircraft, 
which comprises most of the work in the movement func-
tion which is the second main source of TAAM simulation.

3 THE SEQUENTIAL CONFLICT DETECTION 
ALGORITHM

Conflict Detection processing in TAAM entails the proc-
essing of the current flight envelope for each aircraft. This 
design consists of a bounding box containing all the way-
points in an aircraft’s flight plan. Two flights are candi-
dates for conflict detection if their bounding boxes overlap. 
This algorithm is quite inefficient as it evaluates more con-
flict pairs than its quad tree equivalent.  For example, let us 
consider the case of two flight plans of a pair of aircraft, 
one from Seattle to New York and the other from San 
Francisco to Washington D.C. If the bounding boxes of 
these two aircraft intersect with each other, the Sequential 
Conflict Detection algorithm will evaluate the two aircraft 
even though they may not be in conflict.

4 PARALLEL CONFLICT DETECTION 
ALGORITHM DESIGN

The Parallel Conflict Detection algorithm is based on the 
principle of recursive decomposition of a rectangular 
space, based on an array data structure. The number of 
times that the decomposition process is applied can either 
be fixed or is governed by the properties of the input data. 
In parallel TAAM, the basic parallel strategy is based on 
the SPMD model. The simulated world is divided into dif-
ferent regions of unequal geographic extent but roughly 
equal aircraft density. Conflict detection is performed in 
each region, simultaneously (in parallel), using a multi-
processor computer system. In the tree hierarchical struc-
ture, the root node corresponds to the entire bounded 
space, a rectangle. Each child of a node represents a quad-
rant (labeled in order NW, NE, SW, SE) of the region rep-

resented by that node. A boundary area, equal to the size of 
the maximum conflict distance, is created around the edge 
of the parent node. The conflict distance is the largest dis-
tance in the simulation (since it can vary by sector) that 
two planes can be from one another and still be in conflict 
with one another. The reason for using the quad tree is the 
need to reduce the amount of space necessary to store data 
through the use of aggregation of homogeneous blocks 
(Samet 1990). Each child node has an external boundary 
region as well as an internal boundary region. This con-
figuration leads to the reduction of the execution time of a 
number of operations. Conflict detection is performed only 
on objects near enough to the space contained by node 
boundaries to require it. For this reason this algorithm is 
able to overcome the problem of evaluating aircraft that are 
not in conflict. For more details about the Sequential Con-
flict Detection and the Parallel Conflict Detection algo-
rithms, refer to (Wieland, F., D. Carnes, G. Schultz, 2001).

5 MOVEMENT PARALLELIZATION

Movement in parallel TAAM implies high volumes of air 
traffic movements and aircraft movement control strate-
gies. A movement control strategy defines the logic used in 
controlling the aircraft. Each strategy or combination can 
have different effects on aircraft movement and can there-
fore be used to resolve different situations. Such strategies 
include organizing taxi paths for aircraft movement be-
tween gates and runways, aircraft navigation (ground or 
airborne), scheduling dynamic sectors (changing and reas-
signing of sectors), setting in trail separation delays, recal-
culating Estimated Time of Arrival (ETA) for aircraft and 
adjusting flight plans. These comprise the main operations 
of TAAM and are one of the sources of TAAM bottle-
necks. The movement procedure within the TAAM source 
code is scheduled to run once per time step.  Time steps are 
the speed at which the simulation runs and are user-
settable.  Most often they vary between one and six simu-
lated seconds.

6 MOVEMENT ALGORITHM DESIGN

The Parallel Movement algorithm in parallel Taam follows 
the SPMD parallel model, by dividing the number of air-
ports (and hence the number of aircraft assigned to a par-
ticular airport) among the threads. Parallelization is 
achieved by multithreading and queuing the calls to a func-
tion/method called proc_acft(), which handles the bulk of 
the work during movement (Wieland, F., D. Carnes, 2002).
Mutual exclusion is achieved by assigning different air-
ports to different threads, through the use of circular 
queues and by locking the list data structure either by de-
parture airport for flights on the ground or by arrival air-
port for airborne flights. The idea is that each thread will 
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process the data/aircraft from its airport’s circular queue. 
This type of  processing was achieved by implementing
airport-based threading.  A given airport is assigned to a 
thread, such that all flights requiring a lock on that airport 
are always assigned to the same thread. Different threads 
acquire locks on different airports, so that parallelism is 
maintained. All flights requiring a lock on a given airport 
are serially processed by the same thread, but flights re-
quiring locks on a different airport may be processed by a 
different thread, in parallel (Wieland, F., D. Carnes, 2002).

The strategy of multithreading and queuing the call to 
the function/method proc_acft() is similar to the one used 
for conflict detection in the quad tree parallel implementa-
tion.

7 THREAD DESIGN CONSIDERATIONS

We used The Portable Operating System Interface for 
UNIX (POSIX) threads for our multi-threading paralleliza-
tion design. There are different parallel programming para-
digms and no single scheme fits all designs. We considered 
two parallel programming paradigms, Single Program 
Multiple Data (SPMD) and Multiple Instruction Multiple 
Data (MIMD) (Quinn 1994) for the two algorithms and se-
lected the SPMD model.

Although the basic thread design used for Movement 
Parallelization is the same as that of the Conflict Detection
Parallelization because both are SPMD and exploit data 
parallelism, there is a difference between the two designs. 
For the Movement Parallelization, the thread design uses 
thread-specific data in order to manage the threads and 
their address spaces better. Unlike processes, all threads 
within a process share the same address space. This means 
that variables may be read and written by all threads within 
the process. Such an action can and did lead to race condi-
tions. Using circular queues together with threads helped 
avoid deadlock conditions between threads when accessing 
shared memory areas/global variables. In order to enable 
each thread to have its own value for a private variable and 
locate it, it was necessary to use the thread-specific data 
storage functionality provided by POSIX threads. Thread-
specific data allows each thread to have a separate copy of 
a variable. This data structure is similar to an array of 
thread-specific data values, which is indexed by a common 
“key” value. A common key is created for all threads in the 
same process, but each thread can associate its own inde-
pendent value with that shared key.

8 INTEGRATION OF CONFLICT DETECTION
PARALLELIZATION WITH MOVEMENT 
PARALLELIZATION

The integration of Conflict Detection Parallelization with 
the Movement Parallelization first resulted in race condi-

tions and caused the application to malfunction. The mal-
functioning was caused by the call, via the parallel Conflict 
Detection callback function, to a function called 
time_step(), which is part of the thread-specific data for the 
Movement threads. This call resulted in a deadlock situa-
tion. The callback function, proximity() executes in a dif-
ferent process and is not synchronized with the Movement 
worker threads. We considered three schemes to avoid this 
deadlock and finally selected the third scheme. 

In order to make the application thread safe, we first 
considered incorporating the Conflict Detection worker 
threads into the thread pool which is created for the 
Movement Parallelization, thus following the MIMD pro-
gramming paradigm. According to this paradigm, each 
thread can execute a separate stream of instructions on its 
own data (Quinn 1994). We thought that this model would 
enable better thread management. After conducting a few 
experiments, this idea was soon abandoned because of load 
balancing and synchronization overhead. We also realized 
that it would not let us achieve the goal of the concurrent 
execution of the two parallel algorithms in two different 
processes. The two parallelizations are currently set up so 
that the Conflict Detection worker threads run, in a differ-
ent process, in parallel with the Movement worker threads, 
thereby increasing throughput. If we combined them with 
the Movement worker threads we would lose this gain in 
speed. In order to avoid this race condition, we then con-
sidered modifying the design of the Conflict Detection par-
allelization by modifying the Conflict Detection logic ac-
cording to the Movement “threadpool” package through 
the incorporation of the thread-specific data storage func-
tionality. This design change would eliminate the need for 
the callback function and the Conflict Detection worker 
threads would still be able to run in parallel with the 
Movement worker threads. This experiment, however, led 
to more deadlock situations, which could only be avoided 
by a significant change to the overall TAAM design. 
Therefore it was decided to leave the Conflict Detection
parallelization logic in tact. The deadlock problem with the 
callback function was finally resolved through the simple 
use of parameters.

9 PERFORMANCE RESULTS ANALYSIS

Tables 1 through 3 and Figures 1 through 4 show the per-
formance results and the speedup, loss in speed and im-
provement statistics of what we call the 6Ctr scenario, with 
the number of aircraft equal to 6747. These tests were run 
on a four processor, 450 MHz Pentium III Xeon SMP with 
2 gigabytes of RAM, using the Sun Solaris operating sys-
tem. The time step was set to six seconds with Conflict De-
tection on.

These results are for a maximum of four worker 
threads for the Movement Parallelization and a maximum 
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of four worker threads for the Conflict Detection paralleli-
zation. Seven timings are compared:

• Baseline.
• Parallel Conflict Detection (alone).
• Movement (alone).
• Four thread combinations of the Conflict Detec-

tion and Movement Parallelizations.

10 EFFICACY OF THE TWO ALGORITHMS

Tables 1 and 2 show the results of the two algorithms, Par-
allel Movement with Sequential Conflict Detection and 
Parallel Conflict Detection with Sequential Movement. For 
the 6Ctr Scenario, with the number of aircraft equal to 
6747, the parallel Movement algorithm, when combined 
with the Sequential Conflict Detection (Table 1), does not 
show any speedup over the baseline. For the 6Ctr Scenario, 
with the number of aircraft equal to 6747, the Parallel Con-
flict Detection algorithm (Table 2), even when not com-
bined with any other parallelization, resulted in a maxi-
mum improvement of 18.44% over the baseline, when run 
with four threads.

Table 1 : Movement Parallelization Speedup

Worker Threads
Execution 
Time (Sec-
onds)

Speedup Over Base-
line

Baseline 4349.6 --

1 Worker Thread 4919.7 0.88

2 Worker Threads 4411.1 0.98

3 Worker Threads 5384.9 0.8

4 Worker Threads 5123.0 0.85

Table 2: Conflict Detection Parallelization

Number of Conflict 
Detection Worker 

Threads

Execution 
Time (Sec-

onds)

Speedup 
Over 

Baseline

Improve-
ment

Baseline 4349.6 -- --

1 3836.4 1.13 11.79%

2 3750.3 1.16 13.77%

3 3753.5 1.15 13.7%

4 3547.1 1.22 18.44%

Combining the two parallel algorithms, Movement and 
Conflict Detection, lead to the best performance results. 
Figures 1, 2 and Table 3 show that for the 6Ctr scenario,
the Conflict Detection and the Movement Parallelization, 
combined, show much more improvement over the previ-
ous results, with a maximum improvement of almost 33% 
over the baseline.
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Figure 1. TAAM Parallelization Results - 6Ctr Scenario

Figure 1 Legend:
Series 1 – Baseline
Series 2 – Movement Parallelization
                with Sequential Conflict
                Detection
Series 3 – Conflict Detection Parallelization 
Series 4 – Movement Parallelization
                with Conflict Detection Parallelization –
                Movement Worker Thread = 1
Series 5 – Movement Parallelization
                 with Conflict Detection Parallelization –
                Movement Worker Threads = 2
Series 6 – Movement Parallelization
                with Conflict Detection Parallelization –
                Movement Worker Threads = 3
Series 7 – Movement Parallelization
                with Conflict Detection Parallelization –
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Figure 2. Conflict Detection and Movement Parallelization 
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Table 3 : Conflict Detection and Movement Parallelization
Number of 

Conflict 
Detection
Worker 
Threads

Number of 
Dynamic
Worker 
Threads

for Move-
ment

Execution 
Time

(Seconds)

Speedup
Over 

Baseline

Improve
ment

Baseline 1 4349.6 --

1 1 3699.4 1.17 14.9%

2 3568.5 1.29 17.96%

3 3497.8 1.24 19.58%

4 3664.5 1.18 15.75%

2 1 3690.5     1.18 15.15%

2 3393.3 1.28 21.98%

3 3119.4 1.39 28.28%

4 3050.9 1.42 29.85%

3 1 3258.9 1.33 25.07%

2 3068.3 1.41 29.45%

3 2951.4 1.47 32.14%

4 2925.2 1.48 32.74%

4 1 3174.6 1.37 27.01%

2 2972.7 1.46 31.65%

3 2947.6 1.47 32.33%

11 MOVEMENT (ALONE) AND PARALLEL 
CONFLICT DETECTION WITH MOVEMENT -
DISCREPANCY ANALYSIS

Our results in Figure 1 indicate a large discrepancy be-
tween the execution times of the Movement Parallelization 
alone (Series 2) and the Movement Parallelization com-
bined with Conflict Detection Parallelization runs (Series 
4, 5, 6 and 7). When we first noticed this difference in the 
two execution times, we attributed it to the thread load im-
balance in the Movement algorithm.

In the Parallel Conflict Detection algorithm, the data 
load is properly balanced among the threads. In the Move-
ment algorithm the data load among the threads is not bal-
anced,  implying that some threads are working longer than 
others, as indicated by Figure 3. We attribute this imbal-
ance to the overhead caused by assigning work to threads 
and the overhead of locking the queues. In the Parallel 
Move ment algorithm, each call to the function proc_acft()
takes a different amount of time to execute. Its execution 
time depends on the current state of a particular aircraft. 
For example, the processing of a ground-based aircraft, 
which requires significant computations of taxi paths, takes 
longer than the processing of an airborne aircraft in an un-
der loaded sector (Wieland, F., D. Carnes, 2002).

On measuring the thread variance between the two 
runs, Movement Parallelization with the Sequential Con-

flict Detection algorithm and Movement Parallelization 
with the Parallel Conflict Detection algorithm, it was dis-
covered that the thread variability between the two runs 
does not change. Figure 3 indicates that the variability be-
tween the thread load imbalance remains almost exactly 
the same.
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While it is true that the overhead incurred by the lock-
ing of data structures in the Movement Parallelization 
minimizes parallelism, resulting in a net slowdown in exe-
cution time, it was not the cause of the discrepancy.

We speculate that the large discrepancy is caused by 
the Sequential Conflict Detection algorithm when Move-
ment Parallelization is run with the Conflict Detection op-
tion turned on. The execution time of the Sequential Con-
flict Detection algorithm is double that of its parallel 
equivalent.

Figure 4 is a comparison of the Movement Paralleliza-
tion when run with and without the Sequential Conflict De-
tection algorithm. This result is a clear indication of the in-
efficiency of the Sequential Conflict Detection algorithm.

Figure 4 shows that in spite of the thread load imbal-
ance, the Parallel Movement algorithm has a more predict-
able parallel performance without the Sequential Conflict 
Detection. Its curve follows the same trend as the curves in 
Figure 1. These curves indicate that the thread model that 
gives the best run time is the “Many-to-few” thread model 
(Butenhof 1997), thus validating the fact that increasing 
the number of threads leads to an increase in speedup.
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Thus the combined effect of load imbalance, concur-
rency control measures and inefficient sequential algo-
rithms can reduce realized parallelism by a substantial 
amount.

12 CONCLUSION

We have shown that through careful selection of sequential 
algorithms, amenable to parallelization and the use of ef-
fective parallel algorithms, it is possible to successfully 
parallelize sequential simulations and achieve significant 
speedup over the baseline, Figures 1, 2 and Table 3.

Through the use of POSIX threads for multi-threading 
and parallelism, we were able to take advantage of the 
pthreads library. This library allocates a varying number of 
execution resources (CPUs) and dispatches them to the 
runnable threads. These execution resources are allocated 
and dispatched entirely in the user process space and do 
not require the creation of UNIX processes (Butenhof
1997), thus avoiding excessive communication with the 
kernel. Such a scheme makes multi-threading more effi-
cient, increases speedup and facilitates parallelization.

One may argue that a speedup of 33% is not worth the 
effort of parallelizing a sequential application. With to-
day’s advance in technology and increase in CPU capacity, 
this speedup may be achieved in less than six months.  
However, one must bear in mind that the 33% increase is 
multiplied by whatever hardware advances occur. If hard-
ware doubles the speed of TAAM, then with the parallel 
software the speed increase will be approximately 2.66 
times (because the speed improvements will also have been 
doubled).  Hardware gains do not obviate software gains; 
they multiply them.

Further work still needs to be performed on TAAM, to 
eliminate the thread load imbalance in the Movement Par-
allelization algorithm in order to achieve additional 
speedup. This will require the implementation of a more 
efficient locking mechanism. Parallelizing movement in 
TAAM was, however, difficult. This is because the move-
ment function processes not just aircraft but also sectors, 
sector bodies, airports and in-trail separation delays, if re-

quired. In order to maximize the advantages of our ap-
proach it will be necessary to separate the different proc-
essing algorithms and identify the ones that can be further
parallelized. A faster TAAM will allow airport clients 
worldwide to exploit its full potential.
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