
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

ABSTRACT

This paper describes how to achieve a desired speedup by
careful selection of appropriate algorithms for paralleliza-
tion. Our target simulation is the Total Airport and Air-
space Model (TAAM), a worldwide standard for aviation
analysis. TAAM is designed as a sequential program, and
we have increased its speed by incorporating multi-
threaded algorithms with minimal changes to the underly-
ing simulation architecture. Our method was to identify
algorithms that are bottlenecks in the computation and that
can be executed concurrently, producing a hybrid sequen-
tial and parallel simulation. Our results show a perform-
ance gain that varied between 14% and 33%.

1 INTRODUCTION

TAAM is a fast-time gate-to-gate simulator of airspace and
airports. It is a worldwide standard for air traffic simula-
tion, yet its use is limited because of its long run time.
TAAM is designed as a sequential program. We have in-
corporated parallel processing by adding multi-threading to
increase its speed. Converting sequential algorithms to par-
allel algorithms is difficult. One needs to take into consid-
eration processor architecture, software and data integrity.
Algorithms which are suitable for single-processor com-
puters are not always appropriate for parallel architectures.
Through multi-threading, we parallelized and integrated
two sequential algorithms in TAAM, the conflict detection
algorithm and the aircraft navigation/movement algorithm.
Parallelizing these two parts of the TAAM source code
proved beneficial, resulting in a 14% to 33% improvement
in speed over the baseline implementation.

As mentioned above, combining various parallel algo-
rithms is a difficult task. In TAAM, the difficulty was
caused by the fact that each algorithm ultimately changes
the data structures used by flights in TAAM. On the one
hand, the aim is to achieve as much independent, parallel

computation as possible in order to maximize the speed at
which computations occur. On the other hand, we must en-
sure that the parallel computations maintain data integrity
and do not write over each other’s data, which argues for
serializing the computations. This trade-off between paral-
lelism for speedup reasons vs. serialization required for
verification purposes produces a hybrid system—neither
entirely parallel nor entirely serial—whose performance
justifies these tradeoffs (Wieland, F., D. Carnes, P. Wang,
2001).

The approach taken and the motivation behind this
work are as follows. In many TAAM scenarios, conflict
detection comprises almost 50% of the total run time. It is
the slowest running algorithm. The second source of
TAAM bottlenecks involves the aircraft navigation algo-
rithm. We have incorporated parallel processing in both
algorithms to increase its speed. The first step in creating a
parallel program is ensuring that it has been properly paral-
lelized. This means:

• Enough of the program has been parallelized to
allow the program to attain the desired speedup.

• The workload is distributed evenly among the
central processing units (CPUs).

The integration, at first, posed some challenges and re-
sulted in many deadlock situations. However, these prob-
lems were finally resolved and some good performance re-
sults were achieved as a result of this study.

2 ALGORITHM SELECTION CRITERIA

When selecting a particular function, code section or algo-
rithm for parallelization in a sequential program, one must
be able to determine the following:

• Does it contain any inherent parallelism that can
be exploited?

• Is the program amenable to either data or func-
tional parallelism or both?

TOTAL AIRPORT AND AIRSPACE MODEL (TAAM) PARALLELIZATION
COMBINING SEQUENTIAL AND PARALLEL ALGORITHMS FOR PERFORMANCE ENHANCEMENT

Neera Sood
Frederick Wieland

Center for Advanced Aviation System Development
The MITRE Corporation

7515 Colshire Drive
McLean, Virginia 22102-7508, U.S.A.

Sood and Wieland

• Can the parts/algorithms identified for paralleliza-
tion be executed concurrently?

Movement and conflict detection processing in TAAM are
both time consuming. Therefore, they make good candi-
dates for parallelization. Both algorithms use data parallel-
ism and follow the Single Program Multiple Data (SPMD)
paradigm (Quinn 1994).

The Parallel Conflict Detection algorithm was de-
signed with two objectives in mind. As the quad tree data
structure is naturally suited for parallelization, the first ob-
jective was to provide an efficient geographical filter to
minimize the number of candidate aircraft pairs that re-
quire further checking. The second objective was to pr o-
vide a mechanism to perform conflict detection on multiple
aircraft pairs in parallel.

The Movement algorithm was designed to parallelize
the processing of ground-based and airborne aircraft,
which comprises most of the work in the movement func-
tion which is the second main source of TAAM simulation.

3 THE SEQUENTIAL CONFLICT DETECTION
ALGORITHM

Conflict Detection processing in TAAM entails the proc-
essing of the current flight envelope for each aircraft. This
design consists of a bounding box containing all the way-
points in an aircraft’s flight plan. Two flights are candi-
dates for conflict detection if their bounding boxes overlap.
This algorithm is quite inefficient as it evaluates more con-
flict pairs than its quad tree equivalent. For example, let us
consider the case of two flight plans of a pair of aircraft,
one from Seattle to New York and the other from San
Francisco to Washington D.C. If the bounding boxes of
these two aircraft intersect with each other, the Sequential
Conflict Detection algorithm will evaluate the two aircraft
even though they may not be in conflict.

4 PARALLEL CONFLICT DETECTION
ALGORITHM DESIGN

The Parallel Conflict Detection algorithm is based on the
principle of recursive decomposition of a rectangular
space, based on an array data structure. The number of
times that the decomposition process is applied can either
be fixed or is governed by the properties of the input data.
In parallel TAAM, the basic parallel strategy is based on
the SPMD model. The simulated world is divided into dif-
ferent regions of unequal geographic extent but roughly
equal aircraft density. Conflict detection is performed in
each region, simultaneously (in parallel), using a multi-
processor computer system. In the tree hierarchical struc-
ture, the root node corresponds to the entire bounded
space, a rectangle. Each child of a node represents a quad-
rant (labeled in order NW, NE, SW, SE) of the region rep-

resented by that node. A boundary area, equal to the size of
the maximum conflict distance, is created around the edge
of the parent node. The conflict distance is the largest dis-
tance in the simulation (since it can vary by sector) that
two planes can be from one another and still be in conflict
with one another. The reason for using the quad tree is the
need to reduce the amount of space necessary to store data
through the use of aggregation of homogeneous blocks
(Samet 1990). Each child node has an external boundary
region as well as an internal boundary region. This con-
figuration leads to the reduction of the execution time of a
number of operations. Conflict detection is performed only
on objects near enough to the space contained by node
boundaries to require it. For this reason this algorithm is
able to overcome the problem of evaluating aircraft that are
not in conflict. For more details about the Sequential Con-
flict Detection and the Parallel Conflict Detection algo-
rithms, refer to (Wieland, F., D. Carnes, G. Schultz, 2001).

5 MOVEMENT PARALLELIZATION

Movement in parallel TAAM implies high volumes of air
traffic movements and aircraft movement control strate-
gies. A movement control strategy defines the logic used in
controlling the aircraft. Each strategy or combination can
have different effects on aircraft movement and can there-
fore be used to resolve different situations. Such strategies
include organizing taxi paths for aircraft movement be-
tween gates and runways, aircraft navigation (ground or
airborne), scheduling dynamic sectors (changing and reas-
signing of sectors), setting in trail separation delays, recal-
culating Estimated Time of Arrival (ETA) for aircraft and
adjusting flight plans. These comprise the main operations
of TAAM and are one of the sources of TAAM bottle-
necks. The movement procedure within the TAAM source
code is scheduled to run once per time step. Time steps are
the speed at which the simulation runs and are user-
settable. Most often they vary between one and six simu-
lated seconds.

6 MOVEMENT ALGORITHM DESIGN

The Parallel Movement algorithm in parallel Taam follows
the SPMD parallel model, by dividing the number of air-
ports (and hence the number of aircraft assigned to a par-
ticular airport) among the threads. Parallelization is
achieved by multithreading and queuing the calls to a func-
tion/method called proc_acft(), which handles the bulk of
the work during movement (Wieland, F., D. Carnes, 2002).
Mutual exclusion is achieved by assigning different air-
ports to different threads, through the use of circular
queues and by locking the list data structure either by de-
parture airport for flights on the ground or by arrival air-
port for airborne flights. The idea is that each thread will

Sood and Wieland

process the data/aircraft from its airport’s circular queue.
This type of processing was achieved by implementing
airport-based threading. A given airport is assigned to a
thread, such that all flights requiring a lock on that airport
are always assigned to the same thread. Different threads
acquire locks on different airports, so that parallelism is
maintained. All flights requiring a lock on a given airport
are serially processed by the same thread, but flights re-
quiring locks on a different airport may be processed by a
different thread, in parallel (Wieland, F., D. Carnes, 2002).

The strategy of multithreading and queuing the call to
the function/method proc_acft() is similar to the one used
for conflict detection in the quad tree parallel implementa-
tion.

7 THREAD DESIGN CONSIDERATIONS

We used The Portable Operating System Interface for
UNIX (POSIX) threads for our multi-threading paralleliza-
tion design. There are different parallel programming para-
digms and no single scheme fits all designs. We considered
two parallel programming paradigms, Single Program
Multiple Data (SPMD) and Multiple Instruction Multiple
Data (MIMD) (Quinn 1994) for the two algorithms and se-
lected the SPMD model.

Although the basic thread design used for Movement
Parallelization is the same as that of the Conflict Detection
Parallelization because both are SPMD and exploit data
parallelism, there is a difference between the two designs.
For the Movement Parallelization, the thread design uses
thread-specific data in order to manage the threads and
their address spaces better. Unlike processes, all threads
within a process share the same address space. This means
that variables may be read and written by all threads within
the process. Such an action can and did lead to race condi-
tions. Using circular queues together with threads helped
avoid deadlock conditions between threads when accessing
shared memory areas/global variables. In order to enable
each thread to have its own value for a private variable and
locate it, it was necessary to use the thread-specific data
storage functionality provided by POSIX threads. Thread-
specific data allows each thread to have a separate copy of
a variable. This data structure is similar to an array of
thread-specific data values, which is indexed by a common
“key” value. A common key is created for all threads in the
same process, but each thread can associate its own inde-
pendent value with that shared key.

8 INTEGRATION OF CONFLICT DETECTION
PARALLELIZATION WITH MOVEMENT
PARALLELIZATION

The integration of Conflict Detection Parallelization with
the Movement Parallelization first resulted in race condi-

tions and caused the application to malfunction. The mal-
functioning was caused by the call, via the parallel Conflict
Detection callback function, to a function called
time_step(), which is part of the thread-specific data for the
Movement threads. This call resulted in a deadlock situa-
tion. The callback function, proximity() executes in a dif-
ferent process and is not synchronized with the Movement
worker threads. We considered three schemes to avoid this
deadlock and finally selected the third scheme.

In order to make the application thread safe, we first
considered incorporating the Conflict Detection worker
threads into the thread pool which is created for the
Movement Parallelization, thus following the MIMD pro-
gramming paradigm. According to this paradigm, each
thread can execute a separate stream of instructions on its
own data (Quinn 1994). We thought that this model would
enable better thread management. After conducting a few
experiments, this idea was soon abandoned because of load
balancing and synchronization overhead. We also realized
that it would not let us achieve the goal of the concurrent
execution of the two parallel algorithms in two different
processes. The two parallelizations are currently set up so
that the Conflict Detection worker threads run, in a differ-
ent process, in parallel with the Movement worker threads,
thereby increasing throughput. If we combined them with
the Movement worker threads we would lose this gain in
speed. In order to avoid this race condition, we then con-
sidered modifying the design of the Conflict Detection par-
allelization by modifying the Conflict Detection logic ac-
cording to the Movement “threadpool” package through
the incorporation of the thread-specific data storage func-
tionality. This design change would eliminate the need for
the callback function and the Conflict Detection worker
threads would still be able to run in parallel with the
Movement worker threads. This experiment, however, led
to more deadlock situations, which could only be avoided
by a significant change to the overall TAAM design.
Therefore it was decided to leave the Conflict Detection
parallelization logic in tact. The deadlock problem with the
callback function was finally resolved through the simple
use of parameters.

9 PERFORMANCE RESULTS ANALYSIS

Tables 1 through 3 and Figures 1 through 4 show the per-
formance results and the speedup, loss in speed and im-
provement statistics of what we call the 6Ctr scenario, with
the number of aircraft equal to 6747. These tests were run
on a four processor, 450 MHz Pentium III Xeon SMP with
2 gigabytes of RAM, using the Sun Solaris operating sys-
tem. The time step was set to six seconds with Conflict De-
tection on.

These results are for a maximum of four worker
threads for the Movement Parallelization and a maximum

Sood and Wieland

of four worker threads for the Conflict Detection paralleli-
zation. Seven timings are compared:

• Baseline.
• Parallel Conflict Detection (alone).
• Movement (alone).
• Four thread combinations of the Conflict Detec-

tion and Movement Parallelizations.

10 EFFICACY OF THE TWO ALGORITHMS

Tables 1 and 2 show the results of the two algorithms, Par-
allel Movement with Sequential Conflict Detection and
Parallel Conflict Detection with Sequential Movement. For
the 6Ctr Scenario, with the number of aircraft equal to
6747, the parallel Movement algorithm, when combined
with the Sequential Conflict Detection (Table 1), does not
show any speedup over the baseline. For the 6Ctr Scenario,
with the number of aircraft equal to 6747, the Parallel Con-
flict Detection algorithm (Table 2), even when not com-
bined with any other parallelization, resulted in a maxi-
mum improvement of 18.44% over the baseline, when run
with four threads.

Table 1 : Movement Parallelization Speedup

Worker Threads
Execution
Time (Sec-
onds)

Speedup Over Base-
line

Baseline 4349.6 --

1 Worker Thread 4919.7 0.88

2 Worker Threads 4411.1 0.98

3 Worker Threads 5384.9 0.8

4 Worker Threads 5123.0 0.85

Table 2: Conflict Detection Parallelization

Number of Conflict
Detection Worker

Threads

Execution
Time (Sec-

onds)

Speedup
Over

Baseline

Improve-
ment

Baseline 4349.6 -- --

1 3836.4 1.13 11.79%

2 3750.3 1.16 13.77%

3 3753.5 1.15 13.7%

4 3547.1 1.22 18.44%

Combining the two parallel algorithms, Movement and
Conflict Detection, lead to the best performance results.
Figures 1, 2 and Table 3 show that for the 6Ctr scenario,
the Conflict Detection and the Movement Parallelization,
combined, show much more improvement over the previ-
ous results, with a maximum improvement of almost 33%
over the baseline.

40

50

60

70

80

90

100

1 2 3 4

Worker Threads

E
xe

cu
ti

o
n

 T
im

e
in

 M
in

u
te

s

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Figure 1. TAAM Parallelization Results - 6Ctr Scenario

Figure 1 Legend:
Series 1 – Baseline
Series 2 – Movement Parallelization
 with Sequential Conflict
 Detection
Series 3 – Conflict Detection Parallelization
Series 4 – Movement Parallelization
 with Conflict Detection Parallelization –
 Movement Worker Thread = 1
Series 5 – Movement Parallelization
 with Conflict Detection Parallelization –
 Movement Worker Threads = 2
Series 6 – Movement Parallelization
 with Conflict Detection Parallelization –
 Movement Worker Threads = 3
Series 7 – Movement Parallelization
 with Conflict Detection Parallelization –

 Movement Worker Threads = 4

1

1.1

1.2

1.3

1.4

1.5

1.6

0 2 4 6 8

Number of Threads

S
p

ee
d

 U
p

Figure 2. Conflict Detection and Movement Parallelization

Sood and Wieland

Table 3 : Conflict Detection and Movement Parallelization
Number of

Conflict
Detection
Worker
Threads

Number of
Dynamic
Worker
Threads

for Move-
ment

Execution
Time

(Seconds)

Speedup
Over

Baseline

Improve
ment

Baseline 1 4349.6 --

1 1 3699.4 1.17 14.9%

2 3568.5 1.29 17.96%

3 3497.8 1.24 19.58%

4 3664.5 1.18 15.75%

2 1 3690.5 1.18 15.15%

2 3393.3 1.28 21.98%

3 3119.4 1.39 28.28%

4 3050.9 1.42 29.85%

3 1 3258.9 1.33 25.07%

2 3068.3 1.41 29.45%

3 2951.4 1.47 32.14%

4 2925.2 1.48 32.74%

4 1 3174.6 1.37 27.01%

2 2972.7 1.46 31.65%

3 2947.6 1.47 32.33%

11 MOVEMENT (ALONE) AND PARALLEL
CONFLICT DETECTION WITH MOVEMENT -
DISCREPANCY ANALYSIS

Our results in Figure 1 indicate a large discrepancy be-
tween the execution times of the Movement Parallelization
alone (Series 2) and the Movement Parallelization com-
bined with Conflict Detection Parallelization runs (Series
4, 5, 6 and 7). When we first noticed this difference in the
two execution times, we attributed it to the thread load im-
balance in the Movement algorithm.

In the Parallel Conflict Detection algorithm, the data
load is properly balanced among the threads. In the Move-
ment algorithm the data load among the threads is not bal-
anced, implying that some threads are working longer than
others, as indicated by Figure 3. We attribute this imbal-
ance to the overhead caused by assigning work to threads
and the overhead of locking the queues. In the Parallel
Move ment algorithm, each call to the function proc_acft()
takes a different amount of time to execute. Its execution
time depends on the current state of a particular aircraft.
For example, the processing of a ground-based aircraft,
which requires significant computations of taxi paths, takes
longer than the processing of an airborne aircraft in an un-
der loaded sector (Wieland, F., D. Carnes, 2002).

On measuring the thread variance between the two
runs, Movement Parallelization with the Sequential Con-

flict Detection algorithm and Movement Parallelization
with the Parallel Conflict Detection algorithm, it was dis-
covered that the thread variability between the two runs
does not change. Figure 3 indicates that the variability be-
tween the thread load imbalance remains almost exactly
the same.

0

200

400

600

800

1000

1200

1 2 3

Worker Threads

W
o

rk
er

 T
h

re
ad

 T
im

e
in

S

ec
o

n
d

s

Parallel Movement (with sequential Conflict Detection)
thread work time

Parallel Movement (with Parallel Conflict Detection)
thread work time

Parallel Conflict Detection thread work time

Figure 3. Worker Threads Load Balance Analysis

While it is true that the overhead incurred by the lock-
ing of data structures in the Movement Parallelization
minimizes parallelism, resulting in a net slowdown in exe-
cution time, it was not the cause of the discrepancy.

We speculate that the large discrepancy is caused by
the Sequential Conflict Detection algorithm when Move-
ment Parallelization is run with the Conflict Detection op-
tion turned on. The execution time of the Sequential Con-
flict Detection algorithm is double that of its parallel
equivalent.

Figure 4 is a comparison of the Movement Paralleliza-
tion when run with and without the Sequential Conflict De-
tection algorithm. This result is a clear indication of the in-
efficiency of the Sequential Conflict Detection algorithm.

Figure 4 shows that in spite of the thread load imbal-
ance, the Parallel Movement algorithm has a more predict-
able parallel performance without the Sequential Conflict
Detection. Its curve follows the same trend as the curves in
Figure 1. These curves indicate that the thread model that
gives the best run time is the “Many-to-few” thread model
(Butenhof 1997), thus validating the fact that increasing
the number of threads leads to an increase in speedup.

Sood and Wieland

30

40

50

60

70

80

90

100

1 2 3 4

Number of Worker Threads

E
xe

cu
ti

o
n

 T
im

e
in

 M
in

u
te

s

Movement
Parallelization
without
Sequential
Conflict
Detection

Movement
Parallelization
with Sequential
Conflict
Detection

Figure 4. Movement Parallelization

Thus the combined effect of load imbalance, concur-
rency control measures and inefficient sequential algo-
rithms can reduce realized parallelism by a substantial
amount.

12 CONCLUSION

We have shown that through careful selection of sequential
algorithms, amenable to parallelization and the use of ef-
fective parallel algorithms, it is possible to successfully
parallelize sequential simulations and achieve significant
speedup over the baseline, Figures 1, 2 and Table 3.

Through the use of POSIX threads for multi-threading
and parallelism, we were able to take advantage of the
pthreads library. This library allocates a varying number of
execution resources (CPUs) and dispatches them to the
runnable threads. These execution resources are allocated
and dispatched entirely in the user process space and do
not require the creation of UNIX processes (Butenhof
1997), thus avoiding excessive communication with the
kernel. Such a scheme makes multi-threading more effi-
cient, increases speedup and facilitates parallelization.

One may argue that a speedup of 33% is not worth the
effort of parallelizing a sequential application. With to-
day’s advance in technology and increase in CPU capacity,
this speedup may be achieved in less than six months.
However, one must bear in mind that the 33% increase is
multiplied by whatever hardware advances occur. If hard-
ware doubles the speed of TAAM, then with the parallel
software the speed increase will be approximately 2.66
times (because the speed improvements will also have been
doubled). Hardware gains do not obviate software gains;
they multiply them.

Further work still needs to be performed on TAAM, to
eliminate the thread load imbalance in the Movement Par-
allelization algorithm in order to achieve additional
speedup. This will require the implementation of a more
efficient locking mechanism. Parallelizing movement in
TAAM was, however, difficult. This is because the move-
ment function processes not just aircraft but also sectors,
sector bodies, airports and in-trail separation delays, if re-

quired. In order to maximize the advantages of our ap-
proach it will be necessary to separate the different proc-
essing algorithms and identify the ones that can be further
parallelized. A faster TAAM will allow airport clients
worldwide to exploit its full potential.

ACKNOWLEDGMENTS

We gratefully acknowledge the assistance provided by
Curt Holden and David Bodoh of The MITRE Corpora-
tion and the help provided by Preston Aviation Solutions.
The contents of this material reflect the views of the au-
thors. Neither the Federal Aviation Administration nor the
Department of Transportation makes any warranty or guar-
antee, or promise, expressed or implied, concerning the
content or accuracy of the views expressed herein.

REFERENCES

David R. Butenhof, 1997. Programming with POSIX
Threads. Addison-Wesley.

Wieland, F., D. Carnes, P. Wang, 2001, Parallelizing Con-
flict Detection in the Total Airport and Airspace
Model (TAAM), McLean Va: The MITRE Corpora-
tion.

Wieland, F., D. Carnes, G. Schultz, 2001, Using Quad
Trees for Parallelizing Conflict Detection in a Sequen-
tial Simulation. PADS 2001 Proceedings.

Wieland, F., D. Carnes, 2002, Parallelizing Movement in
the Total Airport and Airspace Model (TAAM),
McLean Va: The MITRE Corporation.

Michael J. Quinn, 1994. Parallel Computing Theory and
Practice. 2nd ed. New York: McGraw-Hill, Inc.

Hanen Samet, 1990. Applications of Spatial Data Struc-
tures: Computer Graphics, Image Processing and
GIS. Massachusetts: Addison-Wesley.

AUTHOR BIOGRAPHIES

NEERA SOOD received her Post-Bachelor’s Degree in
Computer Science from Wayne State University and M.S.
in Computer Science from George Mason University and is
currently working with Air Traffic Simulation and Model-
ing. Her email is <nsood@mitre.org>.

FREDERICK WIELAND holds a PhD in information
technology/applied probability theory from George Mason
University. He is the developer of numerous simulations
for the U.S. Department of Defense as well as the Federal
Aviation Administration, including CTLS, DPAT, and oth-
ers, and has done extensive research in the parallelization
of large-scale simulations such as TAAM. He has been
working in the simulation field for 20 years. He can be
contacted by e-mail at <fwieland@mitre.org>

mailto:<tholden@mitre.org>
mailto:nsood@mitre.org

Sood and Wieland

