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ABSTRACT

The FAA’s Local Area Augmentation System (LAAS)
broadcasts a parameter σpr_gnd to describe the errors in the
differential corrections due to the ground facility.  An
aircraft using LAAS computes an upper bound with high
probability on the resulting error in the position domain
based on σpr_gnd assuming that the errors are Gaussian
distributed.  This paper compares five bounding methods
in terms of assumptions and resulting performance.
Assumptions regarding the tails of the error distribution
range from a Gaussian model to an exponential model.
Performance is compared in terms of the factor by which
the estimated value of σpr_gnd must be inflated before
broadcast to ensure the bound is provided with known
confidence.  For fixed, desired confidence the inflation
factor varies with the number of independent samples
used to estimate σpr_gnd.  Results show that using the same
number of samples, methods assuming Gaussian tails give
significantly smaller inflation factors than does the
exponential tail method.  Between these two extremes, is
a more recently conceived method that assumes the error
distribution is a mixture of Gaussian distributions with
different standard deviations.  The Gaussian mixture
method gives inflation factors that are smaller than for the
exponential tail method and may most closely correspond
to the manner in which errors are present in real data.

INTRODUCTION

Background

The FAA’s Local Area Augmentation System (LAAS)
broadcasts differential corrections for each visible
satellite, which are the average of corrections from M
reference receivers.  A quantity σpr_gnd is also broadcast to
describe the error in the corrections due to the LAAS
Ground Facility (LGF), assuming it is fault free.  Since a
separate value of  σpr_gnd is broadcast for each satellite, the
correction errors are characterized in the range domain.
In the aircraft using LAAS, protection levels are
computed to bound the navigation error in the position
domain that results from the broadcast corrections and
other error sources such as in the avionics and data
latency.  These protection levels assume that the position
error distribution is overbounded by a Gaussian
distribution with standard deviation (herein referred to as
σvert(M)) derived from the broadcast values of σpr_gnd and
the geometry of the satellites being used for navigation.
One such bound known as VPLH0 [1] is given for CAT I
and M = 3 reference receivers at the LGF by

VPLH vert M0 5 81= ×. ( )σ (1)

The probability associated with VPLH0 is

Prob{Fault - Free Vert Error  >  VPL }H0

= = × −2 5 81 6 25 10 9Q( . ) .
(2)

where Q is the tail probability (single sided) for a
Gaussian distribution with σ = 1.0.  Thus, the fault-free
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vertical position error is assumed to exceed VPLH0 with
an extremely small probability.

Another such bound known as VPLH1,i [1] is used to test
the hypothesis that only the ith reference receiver (RRi)
may be faulted.  For CAT I and M = 3 reference receivers
this bound is given for RR1 by

VPLH

vert M

11

12 90

,

( ).

=

+ × −

Estimated Vert Error RR1

σ
(3)

The probability associated with VPLH1,1 is the probability
of not detecting a fault on RR1 given by

Prob{Fault - Free Vert Error RR & RR

> 2.90 }

2 3

vert M-1σ ( )
−= = ×Q( . ) .2 90 1 9 10 3 (4)

Thus, the probability associated with the VPLH1 bound is
not nearly as small as that associated with the VPLH 0

bound.

A significant challenge is associated with verifying that
the broadcast values of σpr_gnd do in fact provide the
assumed bounds, particularly the VPLH0 bound.  Although
the core of the error distribution appears to be Gaussian,
its tails may not be Gaussian.  An extremely large amount
of data would be needed to observe and precisely
characterize the tails of the error distribution.  A general
approach to this challenge has been proposed and
investigated by a number of researchers.  In this approach,
an estimate of the standard deviation (herein referred to as
σpr_gnd_estimate) is computed from observed values of the
error.  An inflation factor (herein referred to as INF) is
then applied to give the broadcast value as

σ σpr gnd pr gnd estimateINF_ _ _= × (5)

The value of INF is determined so that the assumed
bounds are theoretically provided.  A previous paper [2]
analyzed one particular method of computing INF which
involves assuming the tail is exponential beyond an
analysis point.

Purpose and Organization of Paper

This paper compares five overbounding methods
including the previously analyzed exponential tail
method.  The paper begins with general assumptions,
considerations and an initial observation.  Then a very
brief description of each method is presented.  Thereafter,
each method is discussed in turn, including underlying
assumptions regarding the postulated error distribution,
development, resulting values of INF and observations.
The paper concludes with a comparison of all methods, a
summary and recommendation.

Considerations and Assumptions

Research is currently underway to develop theoretical
characterizations for LAAS errors that may not be
Gaussian, particularly those due to multipath.  However,
such theories that can be verified from data have not yet
been developed.  Consequently, the emphasis in this paper
is on what can actually be estimated or confirmed from
observed data in conjunction with additional a priori
assumptions that must be taken on judgment.

An important consideration when characterizing the
performance of estimation techniques is the confidence
associated with the result.  Therefore, a procedure for
quantifying confidence is developed for each method.  A
confidence value of 0.90 was used in the analysis.  While
this value may seem rather small, it was chosen because
inflation factors are difficult to compute for Method 5
(see list below) for confidence higher than 0.90 and it was
desired to compare all methods using the same value of
confidence.

For simplicity, several other factors that may be relevant
are not considered in this paper.  Theory for quantifying
confidence assumes that samples are independent.  Carrier
smoothing of data with a 100 s time constant introduces
autocorrelation of data samples.  This analysis assumes
that independence of data has been ensured by procedures
such as taking samples at least 200 s apart during any
single day.  Multipath that repeats from day to day is
assumed to be avoided by skipping an appropriate number
of days between data gathering sessions.  Correlation of
errors can also be present between reference receivers due
to specular ground multipath.  Possible ways of
addressing this factor have been treated in [3].
Crosscorrelation of errors between reference receivers is
assumed negligible in the present analysis.

Initial Observations

The characteristics of LAAS errors that can be verified
depend on the number of independent samples that can be
collected in practice.  Based on assumptions similar to
those mentioned above, it was observed in [2] that
roughly 25,000 independent samples could be collected
per satellite elevation bin per year. The probability Pany>Kσ
of observing any samples greater than Kσ can easily be
computed for the Gaussian distribution as a function of
the number of samples taken (refer to Figure 1 in [2]).
Assuming 25,000 samples, for K = 3.72, Pany>3.72σ ~ 0.9,
while for K = 4.27, Pany>4.27σ ~ 0.2.  Thus, even for a year’s
worth of data, the observations will be limited to roughly
± 4σ.  Thus, only characteristics relevant to the VPLH1

bound, which uses 2.90σ can be verified from data.  For
the VPLH0 bound, which uses 5.81σ , some a priori
assumptions must be made regarding the tail of the error
distribution beyond what can actually be observed from
data.
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Methods Analyzed

The following brief list is intended to suggest only the
essence of the five methods analyzed.

Method 1: Gaussian tail, inflation factor determined
from σpr_gnd_estimate alone

Method 2: Gaussian tail, inflation factor determined
from tail observed at KLσpr_gnd_estimate

Method 3: Gaussian tail, inflation factor determined
from largest observed value

Method 4: Overbounding at 5.8INFσpr_gnd_estimate, tail
from mixed Gaussians beyond KLσpr_gnd_estimate

Method 5: Overbounding at 5.8INFσpr_gnd_estimate, tail is
exponential beyond KLσpr_gnd_estimate

METHOD 1

Method 1 is based on accepting the a priori assumption
that the entire error distribution is Gaussian.  The standard

deviation σpr_gnd_estimate is estimated in the usual manner
from the square root of the sample variance computed
from N independent samples.  To achieve the desired
confidence, the estimate thus derived need only be
inflated due to the finite number of samples used.  The
value of INF to give an upper confidence limit σest_conf =
INFσpr_gnd_estimate is based on the well-known Chi-Square
distribution with N-1 degrees of freedom.  Method 1
provides a bound for all values of error, even beyond
5.81σpr_gnd needed for VPLH0.

Figure 1 shows values of INF versus N for Method 1.  At
the first point plotted (N = 100), INF ~ 1.1.  For larger
values of N, INF decreases rapidly and is negligible
(< 1.02) for N > 2,000.  Method 1 makes the most
idealized assumption and thus gives by far the smallest
values of INF of all methods.  The goal of current
research is to establish the plausibility of the assumption
underlying Method 1 that the entire error distribution is
Gaussian.  However, as of this writing no data has
produced an observed distribution that can be
overbounded without inflating σpr_gnd considerably more
than this method would predict.
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Figure 1.  Method 1 Inflation Factor vs. Number of Samples (Confidence = 0.90)
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METHOD 2

The next two methods assume the tail of the error
distribution is Gaussian, but tie the broadcast value of
σpr_gnd to some point on the observed distribution rather
than just the value of σpr_gnd_estimate computed from the
sample variance.  Method 2 is based on accepting the a
priori assumption that the distribution is Gaussian beyond
some analysis point EL = KLσpr_gnd_estimate.  This method is
equivalent to finding the σ (larger than σpr_gnd_estimate) of a
Gaussian distribution that has the tail probability actually
observed (with desired confidence) at EL.  The tail
probability is estimated from the number of samples n
(out of all N gathered) whose values are greater than EL.
The binomial distribution is then used to compute an
upper confidence limit P T_conf on the observed tail
probability at EL.  The value of INF is then determined so
that PT_Gaussian(KL / INF) = PT _ c o n f .  By the a priori

assumption bounding is provided beyond EL, and thus at
5.8σpr_gnd.  The analysis was done assuming KL = 2.9 for
two reasons.  First, K = 2.9 in VPLH1.  Second, since
PT_Gaussian(2.9) ~ 0.002, it is anticipated that the tail
probability can be estimated with reasonable confidence
for N on the order of a few thousand samples.

For Method 2 the value of INF that would be computed
from real data depends on the value of n actually
observed.  While n is a random variable having a
binomial distribution, it is assumed in this analysis that n
takes on its expected value, i.e., n = 0.002N.  Figure 2
shows these “expected” values of INF for Method 2.  A
comparison with Figure 1 indicates that Method 2 gives
slightly larger values of INF than does Method 1 for the
same N.  While any use of Method 2 is unknown to this
author, it is included here for completeness as a plausible
technique.
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Figure 2.  Method 2 Inflation Factors (Expected) Assuming Gaussian Tail Beyond 2.9 σσσσpr_gnd_estimate (Confidence = 0.90)
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METHOD 3

Method 3 ties the broadcast value of σpr_gnd to the largest
error value observed, Emax = Kmaxσpr_gnd_estimate, rather than a
selected value EL.  This method is based on the a priori
assumption that the tail of the error distribution is
Gaussian beyond Emax.  Method 3 is equivalent to finding
the σ (larger than σpr_gnd_estimate) of a Gaussian distribution
that has the tail probability actually observed (i.e., zero
plus upper confidence limit) beyond Emax.  The upper
confidence limit PT _ c o n f  on the tail probability is
determined from the binomial distribution when 0 of N
are observed.  A value of Kg is then determined such that
PT_Gaussian(Kg ) = PT_conf.  Then, since Em a x = Kgσ g =
Kmaxσpr_gnd_estimate, INF = σg / σpr_gnd_estimate = Kmax / Kg.  By
the a priori assumption bounding is provided beyond Emax

and thus at 5.8σpr_gnd.

For Method 3 the value of INF that would be computed
depends on the value of Emax actually observed.  While
Emax is a random variable, it is assumed in this analysis

that Emax takes on its expected value.  Figure 3 shows the
expected value of Emax in multiples of σ (i.e., Kmax) as a
function of N.  Note from the figure that for N = 1,000
Kmax ~ 3.5 and increases to roughly 4.0 for N = 10,000.
Beyond that point the expected value of Emax increases
slowly due to the very small probabilities involved.

Figure 4 shows values of INF for Method 3 assuming the
expected value of Emax is actually observed.  Note that
INF does not vary as much with N, and for large N
stabilizes at a higher value, than for Method 2 (Figure 2).
A procedure similar to Method 3 has often been used to
justify an overbound by graphical presentation.  In that
case, an error distribution from data is plotted along with
a so-called “overbounding” Gaussian curve based on an
inflated σ.  As typically illustrated, the Gaussian tail
probability is larger than the probability from the data for
the largest observed value.  However, such a method does
not quantify the confidence in the overbound unless the
probabilities for the observed distribution have already
been appropriately increased.
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Figure 3.  Expected Value of Largest Observed Magnitude
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Figure 4.  Method 3 Inflation Factors (Expected) Assuming Gaussian Tail Beyond Largest Observed Value
(Confidence = 0.90)

METHOD 4

Method 4 is based on the a priori assumption that the tail
of the error distribution is from a mixture of Gaussian
distributions.  This could be the case for the following
reasons.  Data are often pooled from different azimuths
and even elevations for the same satellite.  Moreover, data
from more than one satellite are sometimes pooled in
order to obtain enough independent samples for the
analysis to have any meaning at all.  If the data pooled in
this manner were all Gaussian distributed with the same
mean and standard deviation, the result would obviously
be Gaussian distributed.  However, the multipath error
characteristics are likely to be a function of satellite
azimuth and elevation.  If elevations are combined there is
often an attempt to normalize the data using the standard
deviation for each elevation bin.  The imperfection in the
bin standard deviation estimates can lead to the pooling
producing a mixture of Gaussians with standard
deviations different from unity.  Even if just azimuths are
combined, there is insufficient data or theory to attempt
any kind of normalization.  Thus, the actual distribution
of the data to be analyzed might at best be a mixture of
Gaussians with different standard deviations.

Method 4 attempts to estimate parameters that describe a
mixed Gaussian model probability density function (PDF)

pmixed_Gaussian_model(x) beyond EL with desired confidence.
The value of INF is determined so that bounding is
provided at 5.8INFσpr_gnd_estimate.  This is accomplished if
PT_mixed_Gaussian_model(5.8INFσpr_gnd_estimate) = PT_Gaussian(5.8)
where PT_mixed_Gaussian_model(Ee) is the tail probability of the
mixed Gaussian model beyond EL.

A model which represents pooling of sigmas uniformly
distributed between two extremes might be appropriate.
Such a model was investigated and found to require
numerical solution for estimating the parameters.
Therefore, to be more informative and to illustrate the
potential of this method, this paper analyzes the case
assuming the mixture combines errors in equal amounts
from distributions with just two distinct values of σ, i.e.,
σ1 and σ2 > σ1.

The overbounding model for this case simply assumes a
Gaussian distribution with σ  = σ2.  The overbounding
provided by this model is illustrated in Figure 5.  The top
curve is the tail of a Gaussian distribution with σ = σ2.
The next curve is the tail for the actual distribution from
the mixture of data.  Note that the model tail closely
bounds the actual distribution in this example.  The lowest
curve is the tail of a Gaussian with the expected value of
the σ that would be observed from the pooled data.
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2
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1 1

. .
. (6)

the tail based on σobs underestimates the probability by
roughly five orders of magnitude at the 5.8σ  point of
interest.  INF in this case is given by

INF
obs

= = =σ
σ

2 1 5

1 1
1 34

.

.
. (7)

The values of σ1 and σ2 can be estimated from the data
using the method of moments [4].  The second and fourth
moments (designated m2 and m4, respectively) are
expressed in terms of σ1 and σ2 by

m E2
2 1

2
2
2

2
= = +σ σ

(8)

m E4
4 1

4
2
43

2
= =

+( )σ σ
(9)

Values of σ1 and σ2 may then be estimated using the
moments observed from the data

σ1 2
4

2
2

3_ est m
m

m= − − (10)

σ2 2
4

2
2

3_ est m
m

m= + − (11)

In order to find an upper confidence limit on σ2_est it is
necessary to find the variance of σ2_est.  Use of methods in
[4] gives

var var

cov ,

var( )

_
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_ _

_
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∂σ

∂
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∂
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∂
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m

( ) = ( )





+ ( )

+






(12)

Evaluating the variance and covariance terms gives

var m
n2

1
4

2
4

( ) =
+( )σ σ

(13)

cov ,m m
n2 4

1
6

2
66

( ) =
+( )σ σ

(14)
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var m
n4

1
8

2
848

( ) =
+( )σ σ

(15)

Evaluating the partial derivatives gives

∂σ
∂

σ
σ σ σ

2

2

1
2

2 2
2

1
2

_ est

m
= −

−( ) (16)

∂σ
∂ σ σ σ
2

4 2 2
2

1
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1

6

_ est

m
=

−( ) (17)

Substituting equations (13) through (17) into equation
(12) gives

sigma

n

estσ

σ σ σ σ σ σ

σ σ σ

2

1
8

1
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2
4

1
2

2
6

2
8

2 2
2

1
2

3 6 4

3

_( ) =

+ − +( )
−( )

(18)

According to [4] σ2_est is asymptotically Gaussian (with
respect to sample size) with expected value equal to σ2.  If
the observed estimate is denoted σ2_observed, the upper
confidence bound σ2_est_conf satisfies

Pr
_ _

_ _
ob conf

est observed

est conf

σ σ

σ σ
2 2

2 2
1

≤

=








= −
if  

(19)

The upper confidence limit σ2_est_conf is the largest that σ2

could be and still have probability 1-conf that the
estimated value σ2_est would be less than the actually
observed value σ2_observed.  This is equivalent to

σ

σ σ

σ

σ

2

2 2

2

2

_ _

_

_ _

_

est conf

est

est conf

observed

CF sigma− ×
=








=

 Given 
(20)

1

2

2

2
π

e dx conf

x

CF

−

−

∞
∫ = (21)

The inflation factor is then given by

INF est conf

pr gnd estimate
=

σ
σ

2 _ _

_ _
(22)

The value computed for INF depends on the value of σ2_est

that results from the data analysis.  Values of INF are
shown in Figure 6, under the assumption that σ2_est takes
on its expected value, i.e., σ2_est = σ2.  Several curves are
shown corresponding to different spreads between the
values of σ1 and σ2.  The top curve corresponds to the
bounding example given in Figure 5 with σ1 = 0.5 and σ2

= 1.5, or a spread of ±0.5 relative to 1.0.  The bottom two
curves correspond to smaller spreads of ±0.1 and ±0.05.
Spreads of this smaller size might correspond to the
residual difference in standard deviation resulting from
normalization of two groups of data by their own standard
deviation estimates.  Note that all curves flatten rapidly
with increasing number of samples, as was the case for
Method 3.  Note, however, that for the lowest curves, the
inflation factors are at best somewhat larger than for
Methods 1 through 3.

METHOD 5

Since Method 5 has been described extensively elsewhere
by the author [2], the discussion in this paper is limited to
a brief summary of the method concept and presentation
of the resulting inflation factors for comparison to the
other methods.  Method 5 assumes that the error
distribution for a single reference receiver has a Gaussian
core and an exponential (Laplacian) tail beyond the
analysis point EL = KL σpr_gnd_est.  The two parameters
needed to fully describe the exponential tail are verified
through hypothesis tests on the data.  One of these tests is
conducted on the value of the PDF at EL and the other test
is conducted on the total value of the tail beyond EL, i.e.,
the probability that E exceeds EL.  Computation of these
two parameters considers the confidence that is associated
with the limited number of data samples analyzed.  The
error corresponding to averaging differential corrections
is modeled by convolution of the individual model PDFs
for three reference receivers.  The inflation factor is
determined so as to provide bounding of the resulting
average error at 5.8INFσpr_gnd_est.  For further details on the
method, the reader is referred to [2].

Figure 7 shows values of inflation factors for Method 5
versus the number of independent samples.  Three curves
are shown corresponding to different values of KL.  Note
that the lowest inflation factors are associated with the
smallest value of KL = 1.96.  This occurs because the
probabilities to be confirmed by hypothesis testing are
largest in that case.  Recall that the model in Method 5
assumes an exponential tail for an individual reference
receiver.  The averaging process reduces this tail
somewhat.  Even with this advantage of averaging after
applying the model, Method 5 still has significantly larger
inflation factors than Methods 1 through 4.  Method 5 is
believed to provide a limit for Method 4, particularly for
the case of pooling data from Gaussian distributions with
uniformly distributed σ.  Further work beyond the scope
of this paper is needed to quantify the relationship
between the bounds provided by Methods 4 and 5.
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Figure 6.  Method 4 Inflation Factors (Expected) 50-50 Mixture of Two Gaussians (Confidence = 0.90)
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Figure 7.  Method 5 Inflation Factors (Exponential Tail Before Averaging References, Confidence = 0.90)
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SUMMARY

A convenient comparison of inflation factors for all
methods is presented in Figure 8.  Representative curves
with mid-range parameter values are shown for Methods
4 and 5.  Note how much smaller the inflation factors are
for Methods 1 through 3.  These methods require the
strongest a priori assumption, that the error distribution
has a Gaussian tail.  Note how much more conservative
the inflation factors of Method 5 are, particularly for
smaller numbers of independent samples.  This method
requires the least restrictive assumption, that the error
distribution has an exponential tail (before averaging
reference receivers).  Method 4 gives somewhat moderate
inflation factors and requires perhaps the most plausible a
priori assumption, that the data pools Gaussian distributed
errors with different standard deviations.  Consequently, it
is recommended that Method 4 be developed further and
applied to field data.
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Figure 8.  Inflation Factor Comparison (Confidence = 0.90)


