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Abstract. In mission critical applications of distributed information systems, 
autonomous information resources are coordinated to meet the information 
demands of client specific decision-support views. A major challenge is 
handling dynamic changes in QoS constraints of the clients and/or changes in 
QoS properties of the resources. This paper presents a negotiation-based 
adaptive view coordination approach to address such run-time changes. The 
three key ideas are as follows. a) A negotiation-based reasoning model for 
adapting view maintenance policies to meet changes in QoS needs and context 
constraints. b) A dynamic software architecture of the collaborating information 
resources supporting the client task of maintaining a specific view. 
c) Coordination mechanisms in the architecture that realize negotiated changes 
in the policies for view maintenance. The paper describes an initial prototype of 
the support system for the supply-chain task domain. 

1   Introduction 

In mission critical applications of distributed information systems, autonomous 
information resources are coordinated to meet the information demands of client 
specific decision-support views. . A major challenge is handling dynamic changes in 
quality of service (QoS) properties and constraints of the clients, information 
resources, and shared infrastructure resources. Current view coordination approaches 
are static in nature and cannot be dynamically changed to meet changing demands. 
Consider the following scenario from the supply-chain domain. 

A decision-support view for inventory management is maintained from multiple 
autonomous information resources within the supply-chain. Customer order 
information from customer sites, product assembly information from manufacturer 
sites, and parts inventories from parts supplier sites are configured to support an 
“Order-Fulfillment” view used by inventory managers of the suppliers and 
consumers. As orders, product assembly requirements, and parts inventories 
constantly change, changes in the view must be coordinated to achieve consistency 
and to support management decisions. 



There are multiple view change coordination policies available to support the 
above inventory management task. When selecting a policy to implement, one must 
consider tradeoffs between consistency, communications costs, and processing costs. 
Currently, the view coordination policy is set at design-time and is static. Suppose a 
high-cost complete consistency view maintenance policy was selected for 
implementation at design-time. Further suppose that several inventory managers are 
simultaneously executing intensive on-line analytical processing queries against the 
Order-Fulfillment view. The queries are competing with the view coordination 
policy for system resources. Under these conditions, both the queries and the view 
maintenance task are likely to suffer from poor performance. Short of shutting down, 
reconfiguring, and restarting the system, current view coordination approaches have 
no way of prioritizing preferences and dynamically responding to changing 
preferences and constraints. 

1.1   Self-Adaptive Software: Requirements and NAVCo Approach 

Self-adaptive software systems that can dynamically adapt internal mechanisms and 
components in response to changing needs and context are required for addressing the 
above problems. There are four major requirements that a self-adaptive software 
system must meet. i) Detecting a change in context or a change in needs. It should be 
able to monitor its behavior and detect deviations from commitments or the presence 
of new opportunities. It should be able to accept new needs from external sources and 
evaluate for deviations with respect to current commitments. ii) Knowing the space of 
adaptations. It must have knowledge of the space of self-changes it can choose from 
to reduce deviations. iii) Reasoning for adaptation decision. It should be able to 
reason and make commitments on the self-changes and commitments on revised 
goals. iv) Integrating the change. It should be able to package the change if required 
and do assembly/configuration coordination to insert the change into the existing 
system with minimal disruption to existing behaviors. 

The NAVCo approach described in this paper considers a family of adaptive 
systems that involve information view management and makes specific design 
choices to meet the requirements. In particular, the approach considers the following. 
a) Changes in committed preferences and context assumptions to trigger the 
adaptation process. b) An adaptation space defined by a set of view coordination 
policy objects. c) Reasoning for change as a negotiation-based process involving 
client and information resource agents. d) Use of assembly plans for change 
integration. Our current change integration approach relies on forcing the active view 
coordination objects to a quiescent state and then, based on the results of the 
negotiation-based reasoning, dynamically switching to an alternate set of objects 
within the space of adaptation. 

The following sections of the paper focus primarily on the negotiation-based 
coordination to decide on the adaptation. Section 2 presents background information. 
Section 3 presents the NAVCo approach and architecture. An initial prototype of the 
support system for the supply-chain task domain is described in Section 4. Related 
work is discussed in Section 5. A summary is presented and future work discussed in 
Section 6. 



2   Multi-Resource View Coordination Architecture 

Multi-resource view maintenance falls within the domain of distributed decision-
support database systems. A simplified model of this domain is illustrated in Figure 1. 
As illustrated in Figure 1, a view (V) is maintained from a set of autonomous data 
sources (S1, S2,… ,Sn). The view is a join of relations (r1,r2,… ,rn) within the data 
sources. The update/query processor and view coordination object execute a 
distributed algorithm for incrementally maintaining the view. As data within a source 
changes, the associated update/query processor sends notification of the update to the 
view coordination object in Figure 1 which in turn queries the other sources to 
compute the incremental effect of the source update. After the incremental effect of 
the update has been computed, it is propagated to the client view. Client applications, 
such as on-line analytical processing and data mining applications, execute queries 
against the view. The data sources also support transactional environments, which 
result in updates to source relations that participate in the view. 

Fig. 1. Distributed Decision-Support Database System Domain 

2.1   View Coordination Objects: Background 

View coordination object (VCOs) are algorithmic objects that correspond to different 
policies for view maintenance. These view maintenance algorithms focus on 
maintaining a materialized view at the client in the presence of concurrent updates to 
the data resources. Four VCOs are briefly discussed and compared in this section. A 
complete description of these algorithms can be found in [1, 27] and is beyond the 
scope of this paper. 

View coordination objects can be differentiated based on the level of consistency 
provided. Four levels of consistency (convergence, weak, strong, and complete) have 
been defined [1]. Here we consider VCOs that provide either a strong or a complete 
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level of consistency. Strong consistency requires the order of the view states to match 
the order of source updates. Strong consistency allows global states to be skipped 
(i.e., every source update need not result in a distinct view update). Complete 
consistency is more restrictive requiring every source state to be reflected as a distinct 
view state. With complete consistency there is a complete order-preserving mapping 
between view states and source states. 

The Strobe algorithm is an incremental algorithm that achieves strong consistency. 
The Strobe algorithm processes updates as they arrive, sending queries to the sources 
when necessary. However, the updates are not performed immediately on the 
materialized view; instead, a list of actions to be performed on the view is generated. 
The materialized view is updated only when it is certain that applying all of the 
actions in the action list as a single transaction at the client will bring the view to a 
consistent state. This occurs when there are no outstanding queries and all received 
updates have been processed. 

The Complete-Strobe (C-Strobe) algorithm achieves complete consistency by 
updating the materialized view after each source update. The C-Strobe algorithm 
issues compensating queries for each update that arrives at the VCO between the time 
that a query is sent from the VCO and its corresponding answer is received from a 
source. The number of compensating queries can be quite large if there are continuous 
source updates. 

The SWEEP algorithm achieves complete consistency of the view by ordering 
updates as they arrive at the VCO and ensuring that the state of the view at the client 
preserves the delivery of updates. The key concept behind SWEEP is on-line error 
correction in which compensation for concurrent updates is performed locally by 
using the information that is already available at the VCO. The SWEEP algorithm 
contains two loops that perform an iterative computation (or sweep) of the change in 
the view due to an update.  

The Nested SWEEP algorithm is an extension of the SWEEP algorithm that allows 
the view maintenance for multiple updates to be carried out in a cumulative fashion. 
Nested SWEEP achieves strong consistency by recursively incorporating all 
concurrent updates encountered during the evaluation of an update. In this fashion, a 
composite view change is computed for multiple updates that occur concurrently.   

The performance of VCOs can be compared based on the communications and 
processing costs required to maintain a given level of consistency. Communications 
costs can be measured with respect to the number and size of messages required per 
update. Processing costs must be measured with respect to the processing burden that 
the algorithm places on both the client and the data sources.   

Table 1 compares the communications and query processing cost of the four view 
maintenance algorithms discussed above. The cost of the algorithms is dependent on 
the number of data sources, n. The costs of the C-Strobe and Nested SWEEP 
algorithms are highly dependent on a workload characterization factor, a where 
0 ≤ a ≤ 1, which reflects the rate of updates received. If updates arrive 
infrequently a=0 and if updates arrive continuously a =1. The client processing cost 
of a delete update in the Strobe and C-Strobe algorithms is highly dependent on the 
number of pending updates, p. The costs in Table 1 depict the case in which the VCO 
is co-located with the client. 



Table 1. View Coordination Object Comparison 

Algorithm Consistency 
Level 

Update Type Comm Cost Client Cost Server Cost 

delete 1 1+p 0 Strobe Strong 
insert 2n-1 (n-1)+1 1 
delete 1 1+p 0 C-Strobe Complete 
insert 2(n-1)+ 

2a(n-1)!+1 
(n-1)+ 
a(n-1)!+1 

1+a(n-2)! 

SWEEP Complete delete/insert 2n-1 (n-1)+1 1 
Nested 
SWEEP 

Strong delete/insert 2(1-a)(n-
1)+1 

(1-a)(n-1)+1 (1-a) 

2.2   Order-Fulfillment Scenario Revisited 

To better understand the costs and demands of the algorithms we consider a supply-
chain view coordination scenario with databases at client, manufacturer, and parts 
supplier locations.   

A customer orders database is maintained at client locations for orders that get 
handled by an automobile manufacturer. Each time an order is placed for an 
automobile, a tuple is inserted into the Orders relation. When an order is filled, it is 
deleted from the Orders relation and an appropriate tuple is inserted into a 
FilledOrders relation. There is only one end-item (automobile) allowed per 
order. If a customer wishes to order two automobiles, then two separate orders are 
generated. The database schema for the Orders relation is as follows: 

Orders(OrderID(PK),CustomerID,ModelNumber)  

A product assembly database is maintained at manufacturer locations. This 
database maintains a ProductAssembly  relation that captures the dependency of 
each assembled product on supplier parts. Each end item (automobile) that is ordered 
must be assembled from a set of sub-items. Each time the manufacturer offers a new 
automobile model, new tuples are inserted into the ProductAssembly  relation. 
When a manufacturer discontinues a model, the tuples associated with the automobile 
model are deleted from the ProductAssembly  relation. The database schema for 
the ProductAssembly  relation is as follows: 

ProductAssembly(ModelNumber(PK),PartNumber(PK), 
QuantityRequired(PK)) 

A parts inventory database is maintained at parts supplier locations. This database 
maintains an inventory of the number of automobile parts (sub-items) that are in stock 
in the warehouse. As the quantity of parts at the warehouse changes, the 
corresponding tuples are updated in the PartsInventory relation. Tuples are 
inserted into the PartsInventory relation as the warehouse begins storing new 
parts and tuples are deleted as the warehouse discontinues the storage of particular 
parts. The database schema for the PartsInventory relation is as follows: 



PartsInventory(PartNumber(PK),QuantityAvailable)  

A decision-support database is maintained at management locations to support 
inventory management decisions. This database maintains a materialized view (MV) 
of the inventory of parts available to fill automobile orders. The database schema for 
the materialized view is as follows: 

MV=Orders|x|ProductAssembly|x|PartsInventory  
=(OrderID, CustomerID, ModelNumber, PartNumber, 
QuantityRequired, QuantityAvailable)  

The materialized view is maintained as orders are placed and filled, manufacturer 
models and model-part dependencies change, and as supplier inventories change. 
Supplier and consumer inventory managers utilize this view to perform on-line 
analytical processing tasks in support of their inventory management decisions. 

2.3   Run-time Policy Switching: Cost-Benefit Analysis 

As illustrated in Table 1, VCO cost is highly sensitive to the workload 
characterization (i.e., the volume and types of updates received). To illustrate the 
effect of workload on VCO cost, consider the order fulfillment scenario discussed 
earlier. Assume that there are four data resources and one client view. Further assume 
that over a period of time the system experiences the following workload. 

? Period 1 -high vol., high insert, 100 inserts and 0 deletes over X seconds 
? Period 2 - low vol., balanced, 50 inserts and 50 deletes over 3X seconds 
? Period 3 - medium vol., high delete, 0 inserts and 100 deletes over 2X seconds 

The cost of each algorithm over these periods can be calculated using the formulas 
in Table 1. The value of the parameter p is assumed to be 0 for low traffic, 10 for 
medium traffic, and 100 for high traffic. The value of the parameter a is assumed to 
be 0 for low traffic, 1/3 for medium traffic, and 1 for high traffic. The cost of the four 
algorithms over Periods 1-3 is illustrated in Table 2: 

Table 2. View Coordination Costs in the Supply-Chain Example 

Algorithm Consistency 
Level 

Comm Cost Client Cost Server Cost 

Strobe Strong 1200 1750 150 
C-Strobe Complete 2400 2350 350 
SWEEP Complete 2100 1200 300 
Nested SWEEP Strong 1250 775 158 

With current technology a single algorithm is implemented during system 
configuration and can not be changed without shutting down and reconfiguring the 
system. The selection of an algorithm can have a profound effect on the processing 
and communications requirements to support the view. Tradeoffs must be made at 
design-time with respect to consistency versus client, server, and communications 
costs. If, however, the algorithm can be dynamically changed at run-time, these 



tradeoffs can be made continuously as preferences and constraints change. As 
illustrated in Table 3, the ability to dynamically switch algorithms can result in 
significant cost savings and improved performance in a constrained environment. 

The first row in Table 3 shows that communications cost can be minimized by 
initially implementing the Nested SWEEP algorithm and then dynamically switching 
to the Strobe algorithm between periods 1 and 2. This results in a reduction of 450 
messages over a static implementation of the Strobe algorithm.  

The second row in Table 2 shows that client processing cost can be minimized by 
implementing the Nested SWEEP algorithm during periods 1 and 3, and the Strobe 
algorithm during period 2. This results in a reduction of over 1000 queries over a 
static implementation of the Strobe algorithm. This would free up valuable resources 
for the processing-intensive analysis users and result in a significant performance 
improvement for those users. 

Table 3. Results of Dynamic Switching of View Coordination Algorithms in the Example 

Preferences/ 
Constraints 

Comm 
Cost 

Client 
Cost 

Server 
Cost 

Period 1 Period 2 Period 3 

Minimize comm 
cost 

750 1525 75 Nested 
Sweep 

Strobe Strobe 

Minimize client 
cost 

950 625 108 Nested 
Sweep 

Strobe Nested 
Sweep 

Minimize server 
cost 

750 1525 75 Nested 
Sweep 

Strobe Strobe 

Minimize comm 
cost and complete 
consistency 

1200 1750 150 Sweep C-Strobe C-Strobe 

Minimize client 
cost and complete 
consistency 

1350 825 175 Sweep C-Strobe Sweep 

Minimize server 
cost and complete 
consistency 

1200 1750 150 Sweep C-Strobe C-Strobe 

3   The NAVCo Approach 

The NAVCo approach to adapting view coordination policies in response to changes 
in needs of the clients or change in constraints imposed by the resources is based on 
negotiation reasoning between the client and resource objects. The approach 
introduces negotiation reasoning models and adaptive policy reconfiguration 
mechanisms to the existing view coordination application architecture. The 
architecture, shown in Figure 2 as a UML class diagram, introduces a negotiation 
layer to perform dynamic negotiation-based selection of coordination policies. 
Additional software mechanisms are introduced to bring about the dynamic switching 
of the coordination objects.  



The key elements of the architecture are: a) Models and reasoning support for 
model-based coordination negotiation via Role Negotiation Agents (RNAs) and a 
Negotiation Facilitator Agent (NFA) that communicate via the shared coordination 
negotiation data space (CNspace). b) Models and support for switching based on 
negotiated switching decisions. The change reasoning and change coordination views 
are integrated via a shared data space whereby the negotiation facilitation agent 
communicates with team level coordination agents via the CNspace [6]. The Change 
Coordination Agent (CCA) aids in coordinating the switching. 

Fig. 2. Architecture To Support Adaptive View Coordination 

3.1   Negotiation Reasoning 

The model for negotiation reasoning used in our approach is based on the WinWin 
[2, 3] model used in requirements negotiation. In such a model, the participating 
agents collaboratively and asynchronously explore the WinWin decision space that is 
represented by four main conceptual artifacts. i) WinCondition - capturing the 
preferences and constraints of a participant. ii) Issue - capturing a conflict between 
WinConditions or their associated risks and uncertainties. iii) Option - capturing a 
decision choice for resolving an issue. iv) Agreement - capturing the agreed upon set 
of conditions which satisfy stakeholder WinConditions and/or capturing the agreed 
options for resolving issues. The object model for the WinCondition object developed 
for negotiating VCOs is shown in Figure 3. The object explicates attributes relevant to 
expressing preferences and constraints for the view coordination problem. 

NAVCo incorporates three types of negotiation reasoning schemes that extend the 
WinWin model to consider a reactive model of negotiation. The first scheme, 
illustrated in Table 4, is used during the initial establishment of the task and 
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subsequent negotiation of the initial policy. This scheme is triggered when a new 
WinCondition of a client is submitted. The WinCondition contains the task 
parameters and any client preferences and constraints. The negotiation facilitator 
agent then generates issues and the associated options and then sends the options to 
the client and resources role negotiation agents for evaluation. An agreement is 
reached and propagated to the change coordinator agent for implementation if all the 
role negotiation agents accept the option. Otherwise the client or resources can trigger 
further negotiation through the submission of revised WinConditions. 

Fig. 3. The WinCondition Object Model 

Table 4. Task Driven Negotiation Protocol 

1. Client RNA submits a WinCondition to NFA. The WinCondition identifies the 
task preferences and constraints of the Client 
2. The NFA analyzes the posted WinCondition and identifies Issue(s) 
3. The NFA generates potential Options that Resolve the Issue(s) 
4. The Resource and Client RNAs evaluate the Option(s) 
5. If  an option is accepted by all RNAs 
     Then {Agreement = Accepted Option 
                Agreement propagated to CCA for implementation} 
    Else {Client and/or Resource RNAs post revised WinConditions  
              Go To Step 2 } 
    End If 
6. If timeout_event received 
    Then initiate priority driven protocol 
    End If 

The second scheme (illustrated in Table 5) is conflict-driven and is used for run-
time dynamic renegotiation of policies. This scheme can be triggered by any client or 
resource through the submission of a revised WinCondition representing changing 
component preferences and/or constraints. The negotiation facilitator agent then 
analyzes the revised WinCondition against the current set of WinConditions and the 

Win Condition
WinConditionID : String
ComponentID : String
Role : one of {Provides, Requires}
View : QueryObject
InsertVolume : Integer
DeleteVolume : Integer
UpdateMode : one of {Incremental, Batch}
BatchPeriod : Integer
ConsistencyLevel : one of {Convergence,Weak,Strong,Complete}
ComponentCostTolerance : one of {Low,Medium,High}
LatencyTolerance : one of {Low,Medium,High}



current agreement to identify issues and associated options. If this results in an option 
other than the current agreement, a negotiation among the components ensues. 

The third scheme is priority-driven and is triggered by the occurrence of a 
timeout_event during the execution of either the task-driven or conflict-driven 
protocols. NAVCo supports two priority-driven schemes, competitive and 
cooperative. In both schemes, a list of possible preferences is identified 
(e.g., x1= complete consistency, x2= low communications, etc.). Each component 
maintains a weighted list of the local preferences (e.g., ai,j is the weight assigned by 
component i to preference j). Each component is also assigned a global weight (e.g., 
w1=1.0, w2=0.95, etc.). Table 6 details the steps in the competitive scheme and Table 
7 details the steps in the cooperative scheme.  

Table 5. Conflict Driven Negotiation Protocol 

1.  Resource or Client RNA submits a revised WinCondition to the NFA. The 
revised WinCondition reflects a local change in preferences and/or constraints 
2.  The NFA analyzes the revised WinCondition against the set of current 
WinConditions to generate Issue(s) resulting from (pairwise) conflicting 
interaction 
3.  The NFA generates potential Options that resolve the Issue(s) 
4.  If there is no change in Option (i.e., Option = current Agreement)  
     Then {NFA marks the Issue as resolved} 
      Else {Resource and Client RNAs evaluate the Option(s) 
.                If an Option is accepted by all RNAs 
                 Then {Agreement = Accepted Option 
                            Agreement propagated to CCA for implementation} 
                 Else {Client and/or Resource RNAs post revised WinConditions  
                            Go To Step 2 } 
                 End If 
       End If 
5. If timeout_event received 
    Then initiate priority driven protocol 
    End If 

Table 6. Competitive Priority Driven Negotiation Protocol 

1. Each RNA generates a weighted list of local preferences 
   (e.g., a1,1x1, a1,2x2… a1,jxj for component number 1) 
2. As part of WinCondition, each RNA submits top weighted preference to the 
NFA (e.g., a1,1x1, may be submitted by component 1) 
3. NFA applies global component weighting factors to submitted preferences 
   (e.g., w1a1,1x1 would be the weighting for component 1’s preference) 
4. The NFA selects the component preference with the highest overall weighting  
   (i.e., the preference associated with max(wiai,j) is selected) 
5. The NFA identifies the policy that most satisfies the selected preference 
6. The selected policy is propagated to CCA for implementation 



Given the above reasoning methods three major questions arise. 1) How do issues 
get generated? 2) How do options get generated? 3) How do options get evaluated?  

The NAVCo approach exploits the context and the view coordination problem 
domain to address the questions as follows. a) Given one or more WinConditions, 
issue generation involves formulating a query to identify VCO specification objects 
that satisfy the WinConditions. Here the issue is formalized as a query object. 
b) Given the formulation of the issue, option generation involves evaluation of the 
query to retrieve plausible VCO specification objects and their refinements. c) Given 
the options, option evaluation involves checking for consistency of an option against 
a database of committed WinConditions. 

Table 7. Cooperative Priority Driven Negotiation Protocol 

1. Each RNA generates a weighted list of local preferences 
   (e.g., a1,1x1, a1,2x2… a1,jxj for component number 1) 
2. As part of WinCondition, each RNA submits entire list of weighted preferences 
to the NFA 
3. NFA applies global component weighting factors to submitted preferences 
4. The NFA sums the weights associated with each preference 
  (e.g., (w1a1,1 + w2a2,1+… + wnan,1)x1 would be the cooperative sum for preference 
1) 
5. The NFA selects the preference with the highest overall cooperative sum  
5. The NFA identifies the policy that most satisfies the selected preference 
6. The selected policy is propagated to CCA for implementation 

3.2   Models to Support Negotiated Selection of VCO  

In order to support the reasoning approach outlined above, NAVCo requires the 
following. a) Declarative models of preferences and constraints at the clients and 
resources as a database of facts. b) Rules for issue generation, option generation, and 
option evaluation. We briefly describe below the data models and some examples of 
the rules that have been formulated and prototyped in our initial experiments. 

The class diagram shown in Figure 4 captures the data model underlying the 
information maintained by the role negotiation agents of the clients and resources. 
The model in essence articulates the WinCondition as consisting of two parts. a) The 
task part is of type “provides” for a resource or of type “requires” for a client. The 
task part explicates the role to be played, prioritization of tasks, task preferences, and 
update volume and distribution submitted in support of the task. b) The QoS 
constraint part articulates the constraints imposed on the task. The QoS schema 
specifies the component workload to support the task and the component QoS 
constraints based on the status of component resources captured as QoS metrics. The 
data model also specifies global integrity constraints. 

The data model specifying the content of the information in the negotiation 
facilitation agent is given in Figure 5. The data model captures VCO specifications 
and associated costs. The data model also contains models of the WinConditions, 
Issues, and Options that get posted or generated by the NFA. Some of the important 



data elements are a) identification, characteristics, and costs of available coordination 
policies, b) task-specific meta-data, and c) overall team-level workload 
characterization, preferences, and constraints. 

The rules for issue and option generation and option evaluation are modeled as 
database trigger rules that analyze WinCondition updates to identify issues and 
options and to trigger option evaluations. The trigger rule in Table 8 creates an 
Issue, whose semantics is that of a query assertion to select a VCO policy, in the 
Issues table when there is an update to the WinCondition table. The rule 
accesses relevant constraints imposed by a task specific WinCondition that must be 
met by a VCO. A trigger rule for option generation, as shown in Table 9, adds entries 
to the Options table and is triggered by issue entries in the Issues table. 

Fig. 4. RNA Data Model of Preferences and Constraints 

MemoryStatus
MemoryUtilization : Percent
MemoryThreshold1 : Percent
MemoryThreshold2 : Percent
MemoryStatus : one of {Underloaded,Normal,Overloaded}

<<Entity>>
NetworkStatus

AverageLatency : Number
NetworkThreshold1 : Number
NetworkThreshold2 : Number
NetworkStatus : one of {Underloaded,Normal,Overloaded}

<<Entity>>

CPUStatus
CPUUtilization : Percent
CPUThreshold1 : Percent
CPUThreshold2 : Percent
CPUStatus : one of {Underloaded,Normal,Overloaded}

<<Entity>>

Capacity
NormalQueryVolume : Number
HeavyQueryVolume : Number
MaxQueryVolume : Number

<<Entity>>

WinCondition
WinConditionID : String
TaskID : String
QoSID : String
Status : one of {Active,Pending}

<<Entity>>

Constrains

Task
TaskID : String
Team : String
Role : one of {Provides,Requires}
View : Query Object
Priority : one of {Low,Medium,High}
UpdateMode : one of {Incremental,Batch}
BatchPeriod : Integer
ConsistencyLevel : one of {Convergence,Weak,Strong,Complete}
InsertVolume : Number
DeleteVolume : Number

<<Entity>>

1

1

Metrics
CPUStatus : Struct
MemoryStatus : Struct
NetworkStatus : Struct

<<Entity>>

1

1

1

1

1
1

QoS
QoSID : String
Team : String
QueryVolume : Number
MessageVolume : Number
ComponentCostTolerance : one of {Low,Medium,High}
LatencyTolerance : one of {Low,Medium,High}

<<Entity>>

1
1

1

1
Constrains

Determine

1

1

1

1

1

1
1

1

1
1

1

1



Fig. 5. NFA Data Model of Preferences and Constraints 

Table 8. An Example of an Issue Generation Rule modeled as a Trigger Rule 

TRIGGER <Issue generation> on INSERT into WinConditions 
(INSERT into Issues (… ) 
     WHERE Issue.Assertion =  
    (SELECT Policy  
      FROM PolicyCost |x| Policy 
WHERE UpdateVolume = WinCondition.UpdateVolume 
AND UpdateDistribution =WinCondition.UpdateDistribution 
AND ConsistencyLevel = WinCondition.ConsistencyLevel 
AND UpdateMode=WinCondition.UpdateMode 
AND RelativeClientCost < =WinCondition.ComponentCostTolerance)) 
 

1..*

1..*

Workload

UpdateVolume : one of  {Low,Medium,High}
UpdateDistribution : one of  {Balanced,High_Insert,High_Delete}

<<Entity >>

WinConditions

WinConditionID : String
ComponentID : String
InsertVolume : Number
DeleteVolume : Number
UpdateMode : one of  {Incremental,Batch}
BatchPeriod : Integer
Consistency Lev el : one of  {Conv ergence,Weak,Strong,Complete}
ComponentCostTolerance : one of  {Low,Medium,High}
Latency Tolerance : one of  {Low,Medium,High}

<<Entity >>

Imply

Participants

ComponentID : String
ComponentTy pe : one of  {Client,Serv er}
Role : one of  {Prov ides,Requires}
View : Query  Object
Priority  : one of  {Low,Medium,High}

<<Entity >>

1 11 1

Have

Issues

IssueID : String
WinConditionID : String
AssertionID : String
OptionsList : String

<<Entity >>

1..*

1

1..*

1

Involve

Options

OptionID : String
IssueID : String
Policy  : String
ComponentID : String
ClientCostEstimate : Number
Serv erCostEstimate : Number
Relativ eLatency  : one of  {Low,Medium,High}
Status : one of  {Accepted,Rejected,Negotiating}

<<Entity >>

Evaluate

1..*

1..*

Address

Policy

Policy  : String
Consistency Lev el : one of  {Conv ergence,Weak,Strong,Complete}
UpdateMode : one of  {Batch,Incremental}

<<Entity >>

0 0..10 0..1

Contain

PolicyCost

Policy  : String
UpdateVolume : one of  {Low,Medium,High}
UpdateDistribution : one of  {Balanced,High_Insert,High_Delete}
Relativ eNetworkCost : one of  {Low,Medium,High}
Relativ eClientCost : one of  {Low,Medium,High}
Relativ eServ erCost : one of  {Low,Medium,High}

<<Entity >>

*

1

Has

1

*



Table 9. An Example of an Option Generation Rule modeled as a Trigger Rule 

TRIGGER <VCO-Option-with-Evaluation>  
on INSERT into Issues 
(INSERT into Options (… ) 
WHERE Policy=Evaluate(Issues) 
AND ClientCostEstimate= 
[estimated client update volume based on policy and workload] 
AND ServerCostEstimate= 
[estimated server query volume based on policy and workload] 
AND RelativeLatency= 
(SELECT RelativeNetworkCost  
FROM PolicyCost WHERE Policy=Issues.Option)) 
 

3.3   Mechanisms for Dynamic Switching of VCO 

Figure 6 depicts an object collaboration diagram for the dynamic switching of view 
coordination objects. The event sequence is further elaborated below. 
1. Once an option has been successfully negotiated the NFA writes a dynamic 

switching plan (DSP) into the CNspace. The DSP identifies the VCO that has been 
negotiated and includes a plan for dynamically switching between VCOs. 

2. The CNspace sends a notification event to the CCA upon receipt of the DSP from 
the NFA.  

3. The CNspace sends notification events to each RMA upon receipt of the DSP from 
the NFA. 

4. Upon receipt of the notification event, the CCA reads the DSP from the CNspace 
and begins executing the plan. 

5. Upon receipt of the notification event, each RMA reads the DSP from the CNspace 
and begins executing the plan. RMAs associated with resources begin queuing 
updates at this point. 

6. The CCA sends a message to the current VCO to destroy itself. The VCO will 
continue to execute its algorithm until its queue of unprocessed queries is empty. 
At this point the VCO will send a return variable to the CCA indicating that it is 
about to destroy itself. 

7. After the VCO is destroyed, the CCA using meta-data contained in its knowledge 
base will create a new VCO of the type indicated in the DSP. The meta-data 
contains task specific information to include the identity and location of team 
participants.  

8. Upon instantiation, the VCO will bind itself to the RMI Registry. 
9. The CCA writes a status event to the CNspace. The status event contains the name 

of the instantiated VCO.  
10.The CNspace sends notification events to each RMA.  
11.Upon receipt of the notification event, each RMA reads the status event from the 

CNspace. 
12.Each RMA establishes a dynamic binding to the VCO through the use of the RMI 

Registry. Resource RMAs begin sending updates to the VCO. 



4   Prototype 

The adaptive view coordination architecture has been modeled using Rationale Rose 
98 Enterprise Edition. Use cases, class diagrams, object collaboration diagrams, and 
sequence diagrams have been developed. Initial prototypes have been developed for 
both the negotiation and application views (layers). Prototypes for role mediator, role 
negotiation, change coordinator, and negotiation facilitator agents have been 
developed. Each prototype agent consists of a Java application and a Microsoft 
Access database.   

All agent-to-agent coordination is accomplished through the use of the CNspace, 
which is implemented using JavaSpaces technology. WinConditions, options, 
dynamic switching plans and other objects are written as entries into the CNspace. 
The CNspace notify and read methods are utilized to route the entries to the 
appropriate agents. The prototype agents currently utilize input and output text files to 
simulate interactions with clients and resources. Initial results show that the NAVCo 
reactive reasoning methods can exploit the JavaSpaces based design environment to 
make negotiated decisions on the policy objects. 

Fig. 6. Object Collaboration Diagram for Dynamic VCO Switching 

5   Related Work 

There has been a significant amount of work conducted in the area of view 
maintenance resulting in a spectrum of solutions ranging from a fully virtual approach 
where no data is materialized at one extreme to a fully replicated approach where full 
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base relations are copied at the other extreme. These two extreme solutions are 
inefficient in terms of communications cost at one extreme and storage cost at the 
other extreme. Incremental view maintenance policies, such as ECA [26], Strobe [27], 
and SWEEP [1], are a hybrid of these two extremes. Incremental view maintenance 
policies maintain a materialized client view consisting of the relevant subset of data 
from the base relations at the data sources. Client decision-support applications, such 
as on-line analytical processing and data mining, then directly access the data 
contained within the materialized view at the client. The ECA family of algorithms is 
designed for a centralized database system, while the Strobe and SWEEP families are 
designed for distributed systems. Our research focuses on developing a self-adaptive 
architecture for distributed decision-support database systems. The NAVCo 
architecture described in this paper supports run-time policy changes between the 
Strobe and C-Strobe algorithms. The architecture is robust enough and can be scaled 
to support additional algorithms, such as SWEEP and Nested SWEEP. 

The NAVCo work builds on the negotiation research performed by the community 
in requirements negotiation as well as automated negotiation. Negotiation is a 
complex and difficult area of active research pursued by researchers in different fields 
of study. Research progress has been made in different approaches to negotiation: 
a) Human factors approach where the major focus is understanding methods and 
techniques employed by humans to negotiate so as to manage the human factors of 
pride, ego, and culture [7, 19, 20]. The work on understanding people factors in 
requirements negotiation falls in this category. b) Economics, Game Theory and 
bargaining approach where research progress has been made on theoretical models of 
process driven negotiation [18], outcome driven negotiation, and self-stabilizing 
agreements to achieve some equilibrium [14]. Research on negotiation focuses on the 
group decision context where the power to decide is distributed across more than one 
stakeholder/agent as opposed to group decision making where a single decision maker 
relies on a set of analysts [15]. Two key aspects of the negotiated decision studied in 
most of the research are conflict and interdependence of decisions. Conflict has been 
used constructively in cooperative domains to explore negotiation options [3]. 
c) Artificial agents approach where the focus has been on developing computational 
agents that negotiate to resolve conflict [5], to distribute tasks [22, 24], to share 
resources [28], and to change goals so as to optimize multi-attribute utility functions 
[23]. In general, the models for agent cooperation and negotiation consider 
negotiation between multiple agents driven by global utility functions or independent 
local utility functions. The WinWin [2, 3] model used in NAVCo consider both types 
of drivers typical of negotiating teams having local preferences as well as global 
constraints. 

The NAVCo approach is similar in spirit to the work on architecture-based run-
time evolution [16]. Our approach and reasoning tools differ from [16] in terms of the 
nature of automation. The work in [16] focuses on providing a support environment 
where the necessary analysis for dynamic change and consequent operationalization 
can be performed. Automated switching based on automated negotiation reasoning 
motivates the NAVCo approach and prototype discussed in the paper. 

The requirements for self-adaptive software included in Section 1.1 are derived 
from the DARPA “Broad Agency Announcement on Self-Adaptive Software” (BAA-
98-12, December 1997). Due in part to the DARPA BAA the area of self-adaptive 



software has been an active area of research over the last several years 
[9, 10, 11, 13, 17, 21]. Most of the current research relies on the use of control theory 
to some extent [11]. A reflective agent architecture has been developed to support the 
run-time change of filters for the aerial surveillance domain [21]. The approach taken 
in [21] utilizes both reflection and control system theory. The use of control theory as 
a feedback loop for change reasoning was proposed in [10]. The control theory 
approach taken by others appears to be most applicable for embedded systems and 
domains with hard real time requirements. Since our domain of distributed decision-
support database systems does not display these characteristics, we have taken a 
different approach based on negotiation reasoning followed by change coordination. 

6   Summary and Future Work 

This paper develops a Negotiation-based Adaptive View Coordination (NAVCo) 
approach for a class of distributed information management systems. The NAVCo 
approach allows view coordination to be dynamically adapted at run-time to meet 
changes in QoS preferences and constraints. The paper presents the key ideas and 
models developed and prototyped in our initial experiments with the approach. The 
key ideas of the NAVCo approach are as follows. a) A negotiation-based reasoning 
method for adapting view maintenance policies to meet dynamic changes in context 
(e.g., constraints). b) A dynamic software architecture of the collaborating 
information resources supporting the client task of maintaining a specific view. 
c) Coordination mechanisms in the architecture that realize negotiated changes in the 
policies for view maintenance.  

This paper focuses primary on the negotiation-based reasoning models used in 
NAVCO and only briefly describes the NAVCo change coordination mechanisms. 
The change coordination mechanisms described in Section 3.3 rely on forcing the 
view coordination objects to a quiescent state prior to the dynamic switching. Our 
current work is focused on developing more sophisticated change coordination 
mechanisms that can gracefully transition on-going workload between view 
coordination objects without forcing the objects to a quiescent state. The main 
challenge is to ensure that the transitions support certain safety and correctness 
properties during and after the dynamic switching.  
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