Coordination of View Maintenance Policy Adaptation
Decisions: A Negotiation-Based Reasoning Approach

Prasanta Bose! and Mark G. Matthews?

! Information and Software Engineering Department, George Mason University,
Fairfax, VA 22030
bose@ sse. gnu. edu
2 The MITRE Corporation, 1820 Dolley Madison Blvd.,
McLean, VA 22012
mratthew@ritre.org

Abstract. In mission critical applications of distributed information systems,
autonomous information resources are coordinated to meet the information
demands of client specific decision-support views. A maor challenge is
handling dynamic changes in QoS congtraints of the clients and/or changes in
QoS properties of the resources. This paper presents a negotiation-based
adaptive view coordination approach to address such run-time changes. The
three key ideas are as follows. a) A negotiation-based reasoning model for
adapting view maintenance policies to meet changes in QoS needs and context
constraints. b) A dynamic software architecture of the collaborating information
resources supporting the client task of maintaining a specific view.
¢) Coordination mechanisms in the architecture that realize negotiated changes
in the policies for view maintenance. The paper describes an initia prototype of
the support system for the supply-chain task domain.

1 Introduction

In mission critical applications of distributed information systems, autonomous
information resources are coordinated to meet the information demands of client
specific decision-support views. . A major challenge is handling dynamic changes in
quality of service (QoS) properties and constraints of the clients, information
resources, and shared infrastructure resources. Current view coordination approaches
are static in nature and cannot be dynamically changed to meet changing demands.
Consider the following scenario from the supply-chain domain.

A decision-support view for inventory management is maintained from multiple
autonomous information resources within the supply-chain. Customer order
information from customer sites, product assembly information from manufacturer
sites, and parts inventories from parts supplier sites are configured to support an
“ Order-Fulfillment” view used by inventory managers of the suppliers and
consumers. As orders, product assembly requirements, and parts inventories
constantly change, changes in the view must be coordinated to achieve consistency
and to support management decisions.



There are multiple view change coordination policies available to support the
above inventory management task. When selecting a policy to implement, one must
consider tradeoffs between consistency, communications costs, and processing costs.
Currently, the view coordination policy is set at design-time and is static. Suppose a
high-cost complete consistency view maintenance policy was selected for
implementation at design-time. Further suppose that several inventory managers are
simultaneously executing intensive on-line analytical processing queries against the
O der-Ful fill ment view. The queries are competing with the view coordination
policy for system resources. Under these conditions, both the queries and the view
maintenance task are likely to suffer from poor performance. Short of shutting down,
reconfiguring, and restarting the system, current view coordination approaches have
no way of prioritizing preferences and dynamically responding to changing
preferences and constraints.

1.1 Sdf-Adaptive Software: Requirements and NAVCo Approach

Self-adaptive software systems that can dynamically adapt internal mechanisms and
components in response to changing needs and context are required for addressing the
above problems. There are four maor requirements that a self-adaptive software
system must meet. i) Detecting a change in context or a change in needs. It should be
able to monitor its behavior and detect deviations from commitments or the presence
of new opportunities. It should be able to accept new needs from external sources and
evaluate for deviations with respect to current commitments. ii) Knowing the space of
adaptations. It must have knowledge of the space of self-changes it can choose from
to reduce deviations. iii) Reasoning for adaptation decision. It should be able to
reason and make commitments on the self-changes and commitments on revised
goals. iv) Integrating the change. It should be able to package the change if required
and do assembly/configuration coordination to insert the change into the existing
system with minimal disruption to existing behaviors.

The NAVCo approach described in this paper considers a family of adaptive
systems that involve information view management and makes specific design
choices to meet the requirements. In particular, the approach considers the following.
a) Changes in committed preferences and context assumptions to trigger the
adaptation process. b) An adaptation space defined by a set of view coordination
policy objects. ¢) Reasoning for change as a negotiation-based process involving
client and information resource agents. d) Use of assembly plans for change
integration. Our current change integration approach relies on forcing the active view
coordination objects to a quiescent state and then, based on the results of the
negotiation-based reasoning, dynamically switching to an aternate set of objects
within the space of adaptation.

The following sections of the paper focus primarily on the negotiation-based
coordination to decide on the adaptation. Section 2 presents background information.
Section 3 presents the NAV Co approach and architecture. An initial prototype of the
support system for the supply-chain task domain is described in Section 4. Related
work is discussed in Section 5. A summary is presented and future work discussed in
Section 6.



2 Multi-Resource View Coordination Architecture

Multi-resource view maintenance falls within the domain of distributed decision-
support database systems. A simplified model of this domain isillustrated in Figure 1.
As illustrated in Figure 1, a view (V) is maintained from a set of autonomous data
sources (S;, S,...,S,). The view is a join of relations (ry,rs,...,r,) within the data
sources. The update/query processor and view coordination object execute a
distributed agorithm for incrementally maintaining the view. As data within a source
changes, the associated update/query processor sends notification of the update to the
view coordination object in Figure 1 which in turn queries the other sources to
compute the incremental effect of the source update. After the incremental effect of
the update has been computed, it is propagated to the client view. Client applications,
such as on-line analytical processing and data mining applications, execute queries
againgt the view. The data sources also support transactional environments, which
result in updates to source relations that participate in the view.
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Fig. 1. Distributed Decision-Support Database System Domain

2.1 View Coordination Objects. Background

View coordination object (VCOs) are algorithmic objects that correspond to different
policies for view maintenance. These view maintenance agorithms focus on
maintaining a materialized view at the client in the presence of concurrent updates to
the data resources. Four VCOs are briefly discussed and compared in this section. A
complete description of these algorithms can be found in [1, 27] and is beyond the
scope of this paper.

View coordination objects can be differentiated based on the level of consistency
provided. Four levels of consistency (convergence, weak, strong, and complete) have
been defined [1]. Here we consider VCOs that provide either a strong or a complete



level of consistency. Strong consistency requires the order of the view states to match
the order of source updates. Strong consistency alows global states to be skipped
(i.e., every source update need not result in a distinct view update). Complete
consistency is more restrictive requiring every source state to be reflected as a distinct
view state. With complete consistency there is a complete order-preserving mapping
between view states and source states.

The Strobe algorithm is an incremental a gorithm that achieves strong consistency.
The Strobe algorithm processes updates as they arrive, sending queries to the sources
when necessary. However, the updates are not performed immediately on the
materialized view; instead, alist of actions to be performed on the view is generated.
The materialized view is updated only when it is certain that applying al of the
actions in the action list as a single transaction at the client will bring the view to a
consistent state. This occurs when there are no outstanding queries and all received
updates have been processed.

The Complete-Strobe (C-Strobe) algorithm achieves complete consistency by
updating the materialized view after each source update. The C-Strobe algorithm
issues compensating queries for each update that arrives at the VCO between the time
that a query is sent from the VCO and its corresponding answer is received from a
source. The number of compensating queries can be quite large if there are continuous
source updates.

The SWEEP algorithm achieves complete consistency of the view by ordering
updates as they arrive at the VCO and ensuring that the state of the view at the client
preserves the delivery of updates. The key concept behind SWEEP is on-line error
correction in which compensation for concurrent updates is performed locally by
using the information that is already available at the VCO. The SWEEP agorithm
contains two loops that perform an iterative computation (or sweep) of the change in
the view due to an update.

The Nested SWEEP algorithm is an extension of the SWEEP algorithm that alows
the view maintenance for multiple updates to be carried out in a cumulative fashion.
Nested SWEEP achieves strong consistency by recursively incorporating &l
concurrent updates encountered during the evaluation of an update. In this fashion, a
composite view change is computed for multiple updates that occur concurrently.

The performance of VCOs can be compared based on the communications and
processing costs required to maintain a given level of consistency. Communications
costs can be measured with respect to the number and size of messages required per
update. Processing costs must be measured with respect to the processing burden that
the algorithm places on both the client and the data sources.

Table 1 compares the communications and query processing cost of the four view
maintenance algorithms discussed above. The cost of the algorithms is dependent on
the number of data sources, n. The costs of the C-Strobe and Nested SWEEP
algorithms are highly dependent on a workload characterization factor, a where
0 £ a £ 1, which reflects the rate of updates received. If updates arrive
infrequently a=0 and if updates arrive continuously a =1. The client processing cost
of a delete update in the Strobe and C-Strobe algorithms is highly dependent on the
number of pending updates, p. The costs in Table 1 depict the case in which the VCO
is co-located with the client.



Table 1. View Coordination Object Comparison

Algorithm  |Consistency |Update Type |Comm Cost [Client Cost |Server Cost
Level
Strobe Strong delete 1 1+p 0
insert 2n-1 (n-1)+1 1
C-Strobe Complete  |delete 1 1+p 0
insert 2(n-1)+ (n-1)+ 1+a(n-2)!
2a(n-1)!I+1  |a(n-1)!+1
SWEEP Complete  |deletefinsert |2n-1 (n-1)+1 1
Nested Strong deletefinsert (2(1-a)(n- (2-3)(n-1)+1 [(1-a)
SWEEP 1)+1

2.2 Order-Fulfillment Scenario Revisited

To better understand the costs and demands of the algorithms we consider a supply-
chain view coordination scenario with databases at client, manufacturer, and parts
supplier locations.

A customer orders database is maintained at client locations for orders that get
handled by an automobile manufacturer. Each time an order is placed for an
automobile, atuple isinserted into the Or der s relation. When an order isfilled, it is
deleted from the Orders relation and an appropriate tuple is inserted into a
Fi |l edOrders relation. There is only one end-item (automobile) allowed per
order. If a customer wishes to order two automobiles, then two separate orders are
generated. The database schema for the Or der s relation is asfollows:

O ders(Order | D(PK), Cust oner | D, Model Nunber)

A product assembly database is maintained at manufacturer locations. This
database maintains a Pr oduct Assenbl y relation that captures the dependency of
each assembled product on supplier parts. Each end item (automobile) that is ordered
must be assembled from a set of sub-items. Each time the manufacturer offers a new
automobile model, new tuples are inserted into the Pr oduct Assenbl y relation.
When a manufacturer discontinues a model, the tuples associated with the automobile
model are deleted from the Pr oduct Assenbl y relation. The database schema for
the Product Assenbl y relation is asfollows:

Product Assenbl y( Model Nunber ( PK) , Par t Nunber ( PK) ,
Quant i t yRequi red( PK))

A parts inventory database is maintained at parts supplier locations. This database
maintains an inventory of the number of automobile parts (sub-items) that are in stock
in the warehouse. As the quantity of parts at the warehouse changes, the
corresponding tuples are updated in the Part sl nventory relation. Tuples are
inserted into the Par t sl nvent ory relation as the warehouse begins storing new
parts and tuples are deleted as the warehouse discontinues the storage of particular
parts. The database schemafor the Par t sl nvent ory relationisasfollows:



Part sl nvent or y( Part Nunber ( PK) , Quanti t yAvai | abl e)

A decision-support database is maintained at management locations to support
inventory management decisions. This database maintains a materialized view (MV)
of the inventory of parts available to fill automobile orders. The database schema for
the materialized view is asfollows:

MW=Cr der s| x| Product Assenbl y| x| Part sl nvent ory
=(OrderI D, CustonerlD, Mdel Nunber, PartNunber,
Quanti tyRequired, QuantityAvail abl e)

The materialized view is maintained as orders are placed and filled, manufacturer
models and model-part dependencies change, and as supplier inventories change.
Supplier and consumer inventory managers utilize this view to perform on-line
analytical processing tasksin support of their inventory management decisions.

2.3 Run-time Policy Switching: Cost-Benefit Analysis

As illustrated in Table 1, VCO cost is highly sensitive to the workload
characterization (i.e., the volume and types of updates received). To illustrate the
effect of workload on VCO cost, consider the order fulfillment scenario discussed
earlier. Assume that there are four data resources and one client view. Further assume
that over aperiod of time the system experiences the following workload.

? Period 1 -high voal., high insert, 100 inserts and O deletes over X seconds
? Period 2 - low val., balanced, 50 inserts and 50 deletes over 3X seconds
? Period 3 - medium vol., high delete, 0 inserts and 100 deletes over 2X seconds

The cost of each algorithm over these periods can be calculated using the formulas
in Table 1. The value of the parameter p is assumed to be O for low traffic, 10 for
medium traffic, and 100 for high traffic. The value of the parameter a is assumed to
be O for low traffic, 1/3 for medium traffic, and 1 for high traffic. The cost of the four
algorithms over Periods 1-3isillustrated in Table 2:

Table 2. View Coordination Costs in the Supply-Chain Example

Algorithm Consistency Comm Cost Client Cost Server Cost
Level

Strobe Strong 1200 1750 150

C-Strobe Complete 2400 2350 350

SWEEP Complete 2100 1200 300

Nested SWEEP [Strong 1250 775 158

With current technology a single agorithm is implemented during system
configuration and can not be changed without shutting down and reconfiguring the
system. The selection of an agorithm can have a profound effect on the processing
and communications requirements to support the view. Tradeoffs must be made at
design-time with respect to consistency versus client, server, and communications
costs. If, however, the algorithm can be dynamically changed at run-time, these



tradeoffs can be made continuoudy as preferences and constraints change. As
illugtrated in Table 3, the ability to dynamicaly switch algorithms can result in
significant cost savings and improved performance in a constrained environment.

The first row in Table 3 shows that communications cost can be minimized by
initially implementing the Nested SWEEP algorithm and then dynamically switching
to the Strobe algorithm between periods 1 and 2. This results in a reduction of 450
messages over a static implementation of the Strobe algorithm.

The second row in Table 2 shows that client processing cost can be minimized by
implementing the Nested SWEEP agorithm during periods 1 and 3, and the Strobe
algorithm during period 2. This results in a reduction of over 1000 queries over a
static implementation of the Strobe algorithm. This would free up valuable resources
for the processing-intensive analysis users and result in a significant performance
improvement for those users.

Table 3. Results of Dynamic Switching of View Coordination Algorithmsin the Example

Preferences Comm | Client | Server | Period1 | Period2 | Period 3
Constraints Cost Cost Cost

Minimize comm 750 1525 | 75 Nested Strobe Strobe
cost Sweep

Minimize client 950 625 108 Nested Strobe Nested
cost Sweep Sweep
Minimize server 750 1525 | 75 Nested Strobe Strobe
cost Sweep

Minimize comm 1200 1750 | 150 Sweep C-Strobe | C-Strobe
cost and complete
consistency
Minimize client 1350 825 175 Sweep C-Strobe | Sweep
cost and complete
consistency
Minimize server 1200 1750 | 150 Sweep C-Strobe | C-Strobe
cost and complete
consistency

3 TheNAVCo Approach

The NAV Co approach to adapting view coordination policies in response to changes
in needs of the clients or change in constraints imposed by the resources is based on
negotiation reasoning between the client and resource objects. The approach
introduces negotiation reasoning models and adaptive policy reconfiguration
mechanisms to the existing view coordination application architecture. The
architecture, shown in Figure 2 as a UML class diagram, introduces a negotiation
layer to perform dynamic negotiation-based selection of coordination policies.
Additional software mechanisms are introduced to bring about the dynamic switching
of the coordination objects.



The key elements of the architecture are: @) Models and reasoning support for
model-based coordination negotiation via Role Negotiation Agents (RNAs) and a
Negotiation Facilitator Agent (NFA) that communicate via the shared coordination
negotiation data space (CNspace). b) Models and support for switching based on
negotiated switching decisions. The change reasoning and change coordination views
are integrated via a shared data space whereby the negotiation facilitation agent
communicates with team level coordination agents via the CNspace [6]. The Change
Coordination Agent (CCA) aids in coordinating the switching.

<<AlgorithmObject>>
VCO

<<RoleMediator>> <<ChangeCoordinator>> <<RoleMediator>>
RMA CCA RMA
1.* 1%
1 1
<<Resource>> <<ResRoleMgr>> <<SharedSpace>> <<ViewRoleMgr>> <<View>>
Database |— RRM CNspace VRM — Client

[ | [

<<RoleNegotiator>> <<NegotiationFacilitator>>| |<<RoleNegotiator>>
RNA NFA RNA

Fig. 2. Architecture To Support Adaptive View Coordination

3.1 Negotiation Reasoning

The model for negotiation reasoning used in our approach is based on the WinWin
[2,3] model used in regquirements negotiation. In such a model, the participating
agents collaboratively and asynchronously explore the WinWin decision space that is
represented by four main conceptua artifacts. i) WinCondition - capturing the
preferences and constraints of a participant. ii) Issue - capturing a conflict between
WinConditions or their associated risks and uncertainties. iii) Option - capturing a
decision choice for resolving an issue. iv) Agreement - capturing the agreed upon set
of conditions which satisfy stakeholder WinConditions and/or capturing the agreed
options for resolving issues. The object model for the WinCondition object devel oped
for negotiating VCOs is shown in Figure 3. The object explicates attributes relevant to
expressing preferences and congtraints for the view coordination problem.

NAV Co incorporates three types of negotiation reasoning schemes that extend the
WinWin model to consider a reactive model of negotiation. The first scheme,
illustrated in Table 4, is used during the initial establishment of the task and



subsequent negotiation of the initial policy. This scheme is triggered when a new
WinCondition of a client is submitted. The WinCondition contains the task
parameters and any client preferences and constraints. The negotiation facilitator
agent then generates issues and the associated options and then sends the options to
the client and resources role negotiation agents for evaluation. An agreement is
reached and propagated to the change coordinator agent for implementation if al the
role negotiation agents accept the option. Otherwise the client or resources can trigger
further negotiation through the submission of revised WinConditions.

Win Condition

WinConditionID : String

ComponentlD : String

Role : one of {Provides, Requires}

View : QueryObject

InsertVolume : Integer

DeleteVolume : Integer

UpdateMode : one of {Incremental, Batch}

BatchPeriod : Integer

ConsistencyLevel : one of {Convergence,Weak,Strong,Complete}
ComponentCostTolerance : one of {Low,Medium,High}
LatencyTolerance : one of {Low,Medium,High}

Fig. 3. The WinCondition Object Model

Table 4. Task Driven Negotiation Protocol

1. Client RNA submits a WinCondition to NFA. The WinCondition identifies the
task preferences and constraints of the Client
2. The NFA analyzes the posted WinCondition and identifies | ssue(s)
3. The NFA generates potential Options that Resolve the Issue(s)
4. The Resource and Client RNAs evaluate the Option(s)
5. If anoption is accepted by all RNAs

Then { Agreement = Accepted Option

Agreement propagated to CCA for implementation}
Else { Client and/or Resource RNAs post revised WinConditions
GoToStep2}

End If
6. If timeout_event received

Then initiate priority driven protocol

End If

The second scheme (illustrated in Table 5) is conflict-driven and is used for run-
time dynamic renegotiation of palicies. This scheme can be triggered by any client or
resource through the submission of a revised WinCondition representing changing
component preferences and/or constraints. The negotiation facilitator agent then
analyzes the revised WinCondition against the current set of WinConditions and the



current agreement to identify issues and associated options. If this results in an option
other than the current agreement, a negotiation among the components ensues.

The third scheme is priority-driven and is triggered by the occurrence of a
timeout_event during the execution of either the task-driven or conflict-driven
protocols. NAVCo supports two priority-driven schemes, competitive and
cooperative. In both schemes, a list of possible preferences is identified
(e.g., x;= complete consistency, X,=low communications, etc.). Each component
maintains a weighted list of the local preferences (e.g., a; ,; isthe weight assigned by
component i to preference j ). Each component is also assigned a global weight (e.g.,
w;=1.0, w,=0.95, etc.). Table 6 details the steps in the competitive scheme and Table
7 details the steps in the cooperative scheme.

Table 5. Conflict Driven Negotiation Protocol

1. Resource or Client RNA submits a revised WinCondition to the NFA. The
revised WinCondition reflects alocal change in preferences and/or constraints
2. The NFA anayzes the revised WinCondition against the set of current
WinConditions to generate Issue(s) resulting from (pairwise) conflicting
interaction
3. The NFA generates potential Options that resolve the Issue(s)
4. If thereisno change in Option (i.e., Option = current Agreement)
Then { NFA marks the Issue as resolved}
Else { Resource and Client RNAs eval uate the Option(s)
If an Option is accepted by all RNAs
Then { Agreement = Accepted Option
Agreement propagated to CCA for implementation}
Else {Client and/or Resource RNAs post revised WinConditions
GoToStep 2}
End If
End If
5. If timeout_event received
Then initiate priority driven protocol
End If

Table 6. Competitive Priority Driven Negotiation Protocol

1. Each RNA generates aweighted list of local preferences
(€.9., ay,1X1, 812X,...ay,X; for component number 1)
2. As part of WinCondition, each RNA submits top weighted preference to the
NFA (e.g., a,1X;1, may be submitted by component 1)
3. NFA applies global component weighting factors to submitted preferences
(e.0., wyag 1X; would be the weighting for component 1's preference)
4. The NFA selects the component preference with the highest overall weighting
(i.e., the preference associated with max(w;a ;) is selected)
5. The NFA identifies the policy that most satisfies the selected preference
6. The selected policy is propagated to CCA for implementation




Given the above reasoning methods three major questions arise. 1) How do issues
get generated? 2) How do options get generated? 3) How do options get evaluated?

The NAVCo approach exploits the context and the view coordination problem
domain to address the questions as follows. & Given one or more WinConditions,
issue generation involves formulating a query to identify VCO specification objects
that satisfy the WinConditions. Here the issue is formalized as a query object.
b) Given the formulation of the issue, option generation involves evaluation of the
query to retrieve plausible VCO specification objects and their refinements. ¢) Given
the options, option evaluation involves checking for consistency of an option against
a database of committed WinConditions.

Table 7. Cooperative Priority Driven Negotiation Protocol

1. Each RNA generates aweighted list of local preferences
(€.9., ay,1X1, 81,2X,...ay,X; for component number 1)
2. As part of WinCondition, each RNA submits entire list of weighted preferences
to the NFA
3. NFA applies global component weighting factors to submitted preferences
4. The NFA sums the weights associated with each preference
(e.g., (W1 + Woap 1 t+...+ Wnay 1)x1 would be the cooperative sum for preference
1)
5. The NFA selects the preference with the highest overall cooperative sum
5. The NFA identifies the policy that most satisfies the selected preference
6. The selected policy is propagated to CCA for implementation

3.2 Modelsto Support Negotiated Selection of VCO

In order to support the reasoning approach outlined above, NAVCo requires the
following. &) Declarative models of preferences and constraints at the clients and
resources as a database of facts. b) Rules for issue generation, option generation, and
option evaluation. We briefly describe below the data models and some examples of
the rules that have been formulated and prototyped in our initial experiments.

The class diagram shown in Figure 4 captures the data model underlying the
information maintained by the role negotiation agents of the clients and resources.
The model in essence articulates the WinCondition as consisting of two parts. @) The
task part is of type “provides’ for a resource or of type “requires’ for a client. The
task part explicates the role to be played, prioritization of tasks, task preferences, and
update volume and distribution submitted in support of the task. b) The QoS
constraint part articulates the constraints imposed on the task. The QoS schema
specifies the component workload to support the task and the component QoS
congtraints based on the status of component resources captured as QoS metrics. The
data model also specifies global integrity constraints.

The data model specifying the content of the information in the negotiation
facilitation agent is given in Figure 5. The data model captures VCO specifications
and associated costs. The data model also contains models of the WinConditions,
Issues, and Options that get posted or generated by the NFA. Some of the important



data elements are @) identification, characteristics, and costs of available coordination
policies, b) task-specific meta-data, and c) overal team-level workload
characterization, preferences, and constraints.

The rules for issue and option generation and option evaluation are modeled as
database trigger rules that analyze WinCondition updates to identify issues and
options and to trigger option evauations. The trigger rule in Table 8 creates an
| ssue, whose semantics is that of a query assertion to select a VCO palicy, in the
| ssues table when there is an update to the W nCondi ti on table. The rule
accesses relevant constraints imposed by a task specific WinCondition that must be
met by a VCO. A trigger rule for option generation, as shown in Table 9, adds entries
tothe Opt i ons table and istriggered by issue entriesin the | ssues table.

<<Entiy>> <<Entity>>
Capacity = LS

NormalQueryVolume : Number TaskiD.: St.nng

HeavyQueryVolume : Number N 8 SRl

Role : one of {Provides,Requires}

View : Query Object

Priority : one of {Low,Medium,High}

Constrains UpdateMode : one of {Incremental,Batch}

BatchPeriod : Integer

ConsistencyLevel : one of {Convergence,Weak,Strong,Complete}
InsertVolume : Number

MaxQueryVolume : Number

D%Deletevmume : Number
<<Entity>> 1
WinCondition 1 Constrains
WinConditionID : String 1
TaskD : String —<Entity>>
QoSID : String NS Y
Status: one of {Active,Pending}| 1 = Q05
1|QoSID : Stiing
Team : String

QueryVolume : Number
MessageVolume : Number
ComponentCostTolerance : one of {Low,Medium,High}

Determine LatencyTolerance : one of {Low,Medium,High}
<<Entity>> /

Metrics
ﬁPUStat;[s :tStrlug S <<Entity>>
emorysStatus : Struct 1 | CPUStatus

NetworkStatus : Struct

1 [CPUUtilization : Percent
CPUThreshold1 : Percent

1 CPUThreshold2 : Percent
CPUStatus: one of {Underloaded,Normal,Overloaded}|
1
<<Entity>> <<Entity>>
MemoryStatus NetworkStatus

MemoryUtilization : Percent AverageLatency : Number
MemoryThresholdl : Percent NetworkT hreshold1 : Number
MemoryThreshold2 : Percent NetworkT hreshold2 : Number
MemoryStatus: one of {Underloaded,Normal,Overloaded}| |NetworkStatus: one of {Underloaded,Normal,Overloaded}

Fig. 4. RNA Data Model of Preferences and Congtraints



<<Entity >>

Options
<<Entity >> OptionID : String
Policy Contain IssuelD : String
= - Policy : Stri
[Rellly 8 il Cgl:yonenrtllnlg' Strin:
ConsistencyLevel : one of {Convergence,Weak,Strong,Complete}| 0 0.1| ° P - 9
ClientCostEstimate : Number
UpdateMode : one of {Batch,Incremental} . X
ServerCostEstimate : Number

1 RelativelLatency : one of {Low,Medium,High}
Status : one of {Accepted,Rejected,Negotiating}

Has|
*
<<Entity>>
Policy Cost
Policy : String
UpdateVolume : one of {Low,Medium,High}
UpdateDistribution : one of {Balanced,High_Insert,High_Delete} <<Entity >> Evaluate
RelativeNetworkCost : one of {Low,Medium,High} Issues
Relativ eClientCost : one of {Low,Medium,High} IssuelD : String
RelativeServerCost : one of {Low,Medium,High} WinConditionID : String
AssertionID : String
OptionsList : String
Involve 1%
1
<<Entity >>
WinConditions
WinConditionID : String <<Entity>>
ComponentID : String Participants
InsertVolume : Number Have ComponentID : String
DeleteVolume : Number ComponentType : one of {Client,Server}
UpdateMode : one of {Incremental,Batch} 1 1 |Role : one of {Provides,Requires}
BatchPeriod : Integer View : Query Object
ConsistencyLevel : one of {Convergence,Weak,Strong,Complete} Priority : one of {Low,Medium,High}
ComponentCostTolerance : one of {Low,Medium,High} \mol
Latency Tolerance : one of {Low,Medium,High} i

<<Entity>>
Workload
UpdateVolume : one of {Low,Medium,High}
UpdateDistribution : one of {Balanced,High_Insert,High_Delete}

Fig. 5. NFA DataModel of Preferences and Constraints

Table 8. An Example of an Issue Generation Rule modeled as a Trigger Rule

TRIGGER <Issue generation> on INSERT into WinConditions
(INSERT into Issues(...)

WHERE |ssue.Assertion =

(SELECT Padlicy

FROM PalicyCost x| Policy

WHERE UpdateV olume = WinCondition.UpdateV olume
AND UpdateDistribution =WinCondition.UpdateDistribution
AND Consistencyl evel = WinCondition.ConsistencylL evel
AND UpdateM ode=WinCondition.UpdateM ode
AND RelativeClientCost < =WinCondition.ComponentCostTolerance))




Table 9. An Example of an Option Generation Rule modeled as a Trigger Rule

TRIGGER <V CO-Option-with-Eval uation>

on INSERT into Issues

(INSERT into Options(...)

WHERE Policy=Eval uate(l ssues)

AND ClientCostEstimate=

[estimated client update volume based on policy and workload]
AND ServerCostEstimate=

[estimated server query volume based on policy and workload]
AND RelativeLatency=

(SELECT RelativeNetworkCost

FROM PolicyCost WHERE Poalicy=Issues.Option))

3.3 Mechanismsfor Dynamic Switching of VCO

Figure 6 depicts an aobject collaboration diagram for the dynamic switching of view
coordination objects. The event sequence is further elaborated bel ow.

1

8.
9.

Once an option has been successfully negotiated the NFA writes a dynamic
switching plan (DSP) into the CNspace. The DSP identifies the VCO that has been
negotiated and includes a plan for dynamically switching between VCOs.

. The CNspace sends a notification event to the CCA upon receipt of the DSP from

the NFA.

. The CNspace sends notification events to each RMA upon receipt of the DSP from

the NFA.

. Upon receipt of the notification event, the CCA reads the DSP from the CNspace

and begins executing the plan.

. Upon receipt of the notification event, each RMA reads the DSP from the CNspace

and begins executing the plan. RMAs associated with resources begin queuing
updates at this point.

. The CCA sends a message to the current VCO to destroy itself. The VCO will

continue to execute its algorithm until its queue of unprocessed queries is empty.
At this point the VCO will send a return variable to the CCA indicating that it is
about to destroy itself.

. After the VCO is destroyed, the CCA using meta-data contained in its knowledge

base will create a new VCO of the type indicated in the DSP. The meta-data
contains task specific information to include the identity and location of team
participants.

Upon instantiation, the VCO will bind itself to the RMI Registry.

The CCA writes a status event to the CNspace. The status event contains the name
of the instantiated VCO.

10.The CNspace sends notification events to each RMA.
11.Upon receipt of the notification event, each RMA reads the status event from the

CNspace.

12.Each RMA establishes a dynamic binding to the VCO through the use of the RMI

Registry. Resource RMASs begin sending updates to the VCO.



4 Prototype

The adaptive view coordination architecture has been modeled using Rationale Rose
98 Enterprise Edition. Use cases, class diagrams, object collaboration diagrams, and
sequence diagrams have been developed. Initia prototypes have been developed for
both the negatiation and application views (layers). Prototypes for role mediator, role
negotiation, change coordinator, and negotiation facilitator agents have been
developed. Each prototype agent consists of a Java application and a Microsoft
Access database.

All agent-to-agent coordination is accomplished through the use of the CNspace,
which is implemented using JavaSpaces technology. WinConditions, options,
dynamic switching plans and other objects are written as entries into the CNspace.
The CNspace notify and read methods are utilized to route the entries to the
appropriate agents. The prototype agents currently utilize input and output text files to
simulate interactions with clients and resources. Initial results show that the NAVCo
reactive reasoning methods can exploit the JavaSpaces based design environment to
make negotiated decisions on the policy objects.

12: lookup(name) ;
= RMIRegistry
3: notify(DSP)
10: notify(statusw
5: read(DSP) < hi /%
11: read(status) 8: bind(name) ‘
1: write(DSP)
NFA1: | >~  |CNspacel: VCO2 :
NFA CNspace VCO :
2: notify(DSP) 7: create()

4: read(DSP)
9: write(status)

6: destroy()
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Fig. 6. Object Collaboration Diagram for Dynamic VCO Switching

5 Reated Work

There has been a significant amount of work conducted in the area of view
maintenance resulting in a spectrum of solutions ranging from a fully virtual approach
where no data is materialized at one extreme to a fully replicated approach where full



base relations are copied at the other extreme. These two extreme solutions are
inefficient in terms of communications cost at one extreme and storage cost at the
other extreme. Incremental view maintenance policies, such as ECA [26], Strobe [27],
and SWEEP [1], are a hybrid of these two extremes. Incremental view maintenance
policies maintain a materialized client view consisting of the relevant subset of data
from the base relations at the data sources. Client decision-support applications, such
as on-line analytical processing and data mining, then directly access the data
contained within the materialized view at the client. The ECA family of agorithmsis
designed for a centralized database system, while the Strobe and SWEEP families are
designed for distributed systems. Our research focuses on developing a self-adaptive
architecture for distributed decision-support database systems. The NAVCo
architecture described in this paper supports run-time policy changes between the
Strobe and C-Strobe algorithms. The architecture is robust enough and can be scaled
to support additional algorithms, such as SWEEP and Nested SWEEP.

The NAVCo work builds on the negotiation research performed by the community
in requirements negotiation as well as automated negotiation. Negotiation is a
complex and difficult area of active research pursued by researchersin different fields
of study. Research progress has been made in different approaches to negotiation:
@) Human factors approach where the major focus is understanding methods and
techniques employed by humans to negotiate so as to manage the human factors of
pride, ego, and culture [7, 19, 20]. The work on understanding people factors in
requirements negotiation falls in this category. b) Economics, Game Theory and
bargaining approach where research progress has been made on theoretical models of
process driven negotiation [18], outcome driven negotiation, and self-stabilizing
agreements to achieve some equilibrium [14]. Research on negotiation focuses on the
group decision context where the power to decide is distributed across more than one
stakehol der/agent as opposed to group decision making where a single decision maker
relies on a set of analysts [15]. Two key aspects of the negotiated decision studied in
most of the research are conflict and interdependence of decisions. Conflict has been
used congtructively in cooperative domains to explore negotiation options [3].
c) Artificial agents approach where the focus has been on developing computational
agents that negotiate to resolve conflict [5], to distribute tasks [22, 24], to share
resources [28], and to change goals so as to optimize multi-attribute utility functions
[23]. In general, the models for agent cooperation and negotiation consider
negotiation between multiple agents driven by global utility functions or independent
local utility functions. The WinWin [2, 3] model used in NAVCo consider both types
of drivers typica of negotiating teams having local preferences as well as global
constraints.

The NAVCo approach is similar in spirit to the work on architecture-based run-
time evolution [16]. Our approach and reasoning tools differ from [16] in terms of the
nature of automation. The work in [16] focuses on providing a support environment
where the necessary analysis for dynamic change and consequent operationalization
can be performed. Automated switching based on automated negotiation reasoning
motivates the NAV Co approach and prototype discussed in the paper.

The requirements for self-adaptive software included in Section 1.1 are derived
from the DARPA “ Broad Agency Announcement on Self-Adaptive Software” (BAA-
98-12, December 1997). Due in part to the DARPA BAA the area of self-adaptive



software has been an active area of research over the last severa years
[9, 10, 11, 13, 17, 21]. Most of the current research relies on the use of control theory
to some extent [11]. A reflective agent architecture has been devel oped to support the
run-time change of filters for the aerial surveillance domain [21]. The approach taken
in [21] utilizes both reflection and control system theory. The use of control theory as
a feedback loop for change reasoning was proposed in [10]. The control theory
approach taken by others appears to be most applicable for embedded systems and
domains with hard real time requirements. Since our domain of distributed decision-
support database systems does not display these characteristics, we have taken a
different approach based on negotiation reasoning followed by change coordination.

6 Summary and Future Work

This paper develops a Negotiation-based Adaptive View Coordination (NAVCo)
approach for a class of distributed information management systems. The NAVCo
approach allows view coordination to be dynamically adapted at run-time to meet
changes in QoS preferences and constraints. The paper presents the key ideas and
models developed and prototyped in our initial experiments with the approach. The
key ideas of the NAVCo approach are as follows. a) A negotiation-based reasoning
method for adapting view maintenance policies to meet dynamic changes in context
(eg., condraints). b) A dynamic software architecture of the collaborating
information resources supporting the client task of maintaining a specific view.
¢) Coordination mechanisms in the architecture that realize negotiated changes in the
policies for view maintenance.

This paper focuses primary on the negotiation-based reasoning models used in
NAVCO and only briefly describes the NAVCo change coordination mechanisms.
The change coordination mechanisms described in Section 3.3 rely on forcing the
view coordination objects to a quiescent state prior to the dynamic switching. Our
current work is focused on developing more sophisticated change coordination
mechanisms that can gracefully transition on-going workload between view
coordination objects without forcing the objects to a quiescent state. The main
challenge is to ensure that the transitions support certain safety and correctness
properties during and after the dynamic switching.
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