
Submitted to VLDB 2001 USA

Data Integration Needs an Industrial Revolution

Arnon Rosenthal, Scott Renner, Len Seligman, Frank Manola
The MITRE Corporation {arnie, sar, seligman, fmanola }@mitre.org

1. INTRODUCTION

The data resources in a large enterprise typically exist as many separate islands of data. Each is
maintained by a distinct community for its purposes, and is largely unusable by others. It is
common to see whole data archipelagos comprised of thousands of separate resources [Ston00].
We would, of course, prefer to see one single integrated data resource usable by all. This is the
“grand vision” of data integration: discovery of and access to all data, with multiple sources
properly combined, delivered in a form that each consumer can interpret. Decentralized
organizations such as the US Air Force might accept for now a slightly less ambitious dream – the
ability to establish a connection between islands, a way to obtain any desired information from any
other source.

We know of several attempts at large-scale data integration, but few success stories – and none
where the individual data islands enjoy great autonomy or must make large changes to conform.
(Data warehouse projects do not count here, as they typically cover a small fraction of the
enterprise’s data.)

While failure is often blamed on a lack of commitment or resources, we suspect that doubling the
budget would only lead to a failure twice as costly. Instead, these failures are really the result of an
impractical technical vision, one that does not match any realistic acquisition process or human
incentives. The failed vision assumes that diversity can be eliminated through standardization, and
ignores the continual series of projects that create point-to-point connections or (relatively) local
warehouses that meet high priority needs. Worse, it assumes that people will follow mandates (e.g.,
to provide good metadata and maintain it as the system evolves), even when compliance does not
benefit them and cannot be checked. All are false assumptions for large enterprises with
autonomous partners and constant change.

We offer an alternate vision, one in which data integration is transformed into an industrial process
through changes inspired by the Industrial Revolution in manufacturing, a process which produces
data connections between islands, or between an existing island and a new integrating view. These
connections are the software and operating procedures that enable meaningful information
exchange among participating systems. In our vision these connections are built faster and
cheaper, with much better utilization of scarce labor, in such a way that building each connection
also produces knowledge capital for building the next one.

We believe that our vision is feasible – if supported by the necessary tool suites and practices. Our
goal in this paper is to present the vision and to focus on novel or understudied aspects of the
proposed system and research agenda. Section 2 will consider the important aspects of an industrial
revolution in data integration. Section 3 will describe the sort of industrial process that this
revolution leads to. Section 4 proposes a research agenda directed toward this new vision. Section 5
discusses challenge problems that might provide realism and synergy among research projects.

2

2. DATA INTEGRATION AND THE INDUSTRIAL REVOLUTION

The term “industrial revolution” was coined to describe the important social and technological
change in England that occurred around the turn of the 19th century. Since then the term has been
more broadly applied, to include other innovations that have useful software analogies, such as
product lines and automated assembly. Two aspects of this change are especially relevant to our
vision:

• Specialization of labor and interchangeable parts. In 1797, muskets were manufactured with
each gun a separate project, carried out by one craftsman skilled in all the necessary tasks.
After Eli Whitney’s innovation, they were created by a series of tasks performed by several
specialized, less-skilled workers. The outputs of the separate tasks were then assembled into
the finished product. Any part could be used in any instance of the same product line.

• Incentives and obligations: Less remarked but just as important is the development of
incentives, organizational practices (e.g., quality control), and commercial codes that allowed
enterprises to take advantage of the new production techniques, and to collaborate with each
other. These apply both to the internal organization of the enterprise, and to its external
relations with others.

We use these aspects of the industrial revolution as an analogy to the changes we want to see in
data integration. Like any analogy, some parts do not fit. Perhaps it is unnecessary to say that our
vision does not include turning data integrators into exploited factory workers with mindless,
repetitive jobs. And, unlike manufacturers, we are not interested in producing thousands of
identical copies of the same connection. But we believe that the industrial techniques that do apply
to data connections can provide the same explosive growth in productivity as the original
revolution

Today, data connections are almost always produced by one (or a few) programmers each having
all of the necessary skills and knowledge. But people who understand application programming,
distributed systems programming, database management systems, and the subject domain are rare
and thus expensive. Specialization of labor offers a huge advantage. We aim to empower experts
in one of these to work as specialists, without needing all skills simultaneously to make progress.

Today, data connections are almost always produced as a unique monolithic artifact. When we
divide the labor into tasks performed by specialists, we also aim to make the “parts” they produce
into specifications which can be reused in other (different) connections. Our specialists will
produce “interchangeable parts” that can be used anywhere in the data connection “product line”,
even though we never produce more than one copy of any connection.

In the manufacturing revolution, incentives and obligations applied to factory line workers,
foremen, factory owners, cartels and conglomerates, etc. In our data integration revolution, we can
categorize the participants as:

• Program managers (PMs) of individual systems and their staff
• Program executive offices (PEOs), which manage collections of systems 1

• Domain coalitions, of autonomous participants

1 This vocabulary originates in the US Department of Defense. Other enterprises will use different terms.

3

• Cross-system developers (the connection builders)

Our revolution eventually will need funding from the first two categories of management, but it can
also begin bottom up, if vendors provide tools that make it easier to “describe and generate” than to
“code it all”. It seems worth pointing out that Whitney required ten years of funding before his
process succeeded. Today’s military and commercial managers are less patient. It will be necessary
to carry out the change in small steps, each of which has positive payoff. Fortunately, this makes
good technical sense as well.

Our approach depends on making “capital goods” out of the metadata specifications produced by
specialists. But capital goods give no long term benefit if their custodians have no incentives to
maintain them. This truism has been observed with international aid projects, but applies even
more strongly to metadata used in documenting software systems (e.g., conceptual data models,
task models). We must have an approach in which the necessary metadata is either automatically
generated from the executable software, or (better) is actually a part of that software. We will not
succeed if metadata is mere “documentation” to the people who must create and maintain it.

Coalitions (of domain users, or of several related programs) will often be needed. They can develop
shared vocabularies, and also conceptual schemas or message standards. The incentive here is a
perceived need to cooperate – just as organizations meet on standards committees and consortia.

Finally, it is necessary to manage the obligations of data providers and consumers with an eye
towards their individual incentives. What commitments are made when a data producer advertises
a resource? Data producers must be able to make binding commitments to consumers, because
many consumers will develop their own redundant copy of a resource if they cannot be certain of
its future availability. But producers must also be able to advertise without making a permanent
commitment; if not, many producers will conceal resources they would otherwise be willing to
share. In either case, data integration opportunities are lost without flexibility in these sharing
“contracts”. We expect that something like a “uniform commercial code” for data sharing
contracts will supply the needed flexibility without requiring every pair of participants to negotiate
every detail from scratch.

3. AN INDUSTRIAL PROCESS FOR DATA INTEGRATION

Our industrial process for data integration produces connections between data islands, or between
one island and a new integrating view. In many ways it will be familiar to today’s developers –
every functional task is one they perform now, so there is little need for retraining. The changes are
driven by the principles of the industrial revolution: specialization of labor, interchangeable parts,
incentives and obligations.

In describing the process we assume that producers have published descriptions of what they offer,
and the consumer describes what they want. That is, they must document their knowledge in a
machine-processable form. For simplicity, we assume they use the same metadata formalism, but
(very likely) different vocabularies for domain constructs.2 Then, to build the connection,
developers must:

• Identify the differences that must be overcome by the connection

2 Both assumptions may be relaxed. Explaining the process then becomes much more complicated.

4

• Find existing metadata “parts” specifying how to overcome some differences
• Create additional parts as needed for any differences that remain
• Assemble the parts into the desired connection

There are also broader management tasks, which span individual connection-building projects. A
connection project might create a few vocabulary entries, but creation or import of entire
vocabularies (or ontologies) requires more coordinated effort, perhaps organized by a domain
coalition.

3.1 Identifying the differences between data islands

The hard part is to produce the right taxonomy of differences, the right specialization of labor. We
need to partition the differences so that each difference can be tackled by a specialist and so that the
solution parts can be composed into a complete connection. This task needs to be done once, by
data integration researchers. The easy part is to compare the participants in one particular
connection and enumerate the differences in each of these categories. This task is done once per
connection, by whatever entity (human or automated) performs logical mediation when developing
the data connection.

Many of the differences involve large sets of objects (e.g., entire databases) in a producer or
consumer’s interface. These include (but are not limited to):

• Request protocols (e.g., CORBA, ODBC, message passing)
• Representation of composite objects (e.g., XML text)
• Quality of service issues (e.g., speed and availability of response, cost)
• Delivery mode (e.g., push or pull, object or recent changes)

For each data element, there is a large set of aspects to be described and mediated. These include:

• Element representation (gif or jpeg, meters or feet)
• Schema (entity descriptions)
• Element data quality (currency, accuracy when captured, precision …)
• Obligations (cost, availability, future availability)
• Element physical information (for automated physical design, e.g., size, volatility)

The next two items guide data merging. They may be only partially automated, and may require
instance-specific guidance. Still, they can be modular, with information reused, and done by end
user personnel (with some development by power users).

• Entity identification. Knowledge and services to help identify whether data entities refer to the
same real world entity (e.g., George Bush, George W Bush, the President, W. Clinton).

• Element value resolution: Knowledge and services to help resolve data value conflicts (for the
author’s weight, should one use 190 pounds from 1999, 7 pounds as stated in birth records, 200
pounds from unspecified date, or –9999, all of which might appear in accessible databases.)

Finally, for collections, one must describe the scope and the completeness of coverage. The scope
can be expressed as a query on some well known conceptual schema, using an approach known as
“source as view” or “information manifold” [Levy96]. For example, one source might say "I have a

5

list of all nations in the UN, and current head of government”, plus “A list of some nations and
their oil export levels, 1970-present.”

3.2 Find any existing, reusable “parts”

The “reusable parts” in our process are metadata descriptions with sufficient detail to form
executable specifications of how to resolve one particular difference between participants. The
next step is to search for existing useful specifications – which will have been produced in the past
as part of building other connections – in available sources of information, which we loosely refer
to as the “meta-database”. This may be centralized for an organization, or distributed. Search may
involve database query or web search engines. Initially, the search process will involve humans; as
information is captured in forms which have known schema or XML tag sets, considerable
automation will become possible.

If we find all the necessary parts – if we already have enough metadata to resolve all the
differences between participants – then we can skip the next step and use the discovered parts to
build the connection. In this way, metadata drives connection creation.

3.3 Create the missing parts

For each remaining difference, we need to have the appropriate specialist produce the “part”
solution that resolves the difference. It is very important to capture these solutions explicitly, as a
reusable specification, and not permit them to be hidden in procedural code. In this way,
connection creation drives metadata capture.

Creating these parts can be done at several different levels within the enterprise. Each individual
program office will have a group responsible for this step, as will each funded connection. These
groups can provide individual vocabulary entries, matches across vocabularies, transformers, and
so forth. Where there is management over collections of systems, there may be budgets to fund
standards efforts and tool acquisitions relevant to all of them. Other efforts require attention across
enterprises, where there is no common management, e.g., in formal or informal standards consortia.
Finally, user enterprises can fund only very limited tools, so these often need to come from
vendors.

3.4 Assemble the parts into the desired connection

This part of the process is difficult. Where one can define a federated view, DBMSs can handle
execution. But an N-way view over all sources is unmaintainable when N is large, so other
approaches (notably “source as view”) are needed. These are not yet well supported in products.

Physical optimization is both extremely important and extremely difficult. Today, each connection
builder uses programmers to get acceptable performance. This makes it costly to create and to
change connections, and does not encourage more global optimization across multiple requests.
(The alternative, also common and also inflexible, is to have a team agree on information to be
multicast, with each consumer responsible for selecting what they want.)

6

4. RESEARCH AGENDA FOR SUPPORTING THE INDUSTRIAL PROCESS

4.1 Scope of this section

We focus on research issues involved in creating an integration environment that supports the
“Industrial Process” approach for integrating data in enterprises or cross-enterprise consortia. We
emphasize the issues of building a first integration environment, rather than (recursively)
considering the issues of how to integrate across integration environments. Furthermore, we do not
want to repeat existing surveys of the research needed to accomplish data interoperability (e.g.
[Ram99]). Instead, we focus on identifying how our “industrial approach” changes the research
agenda.

Our effort to scope this research agenda has been against the background of the “semantic web”
initiatives from the W3C. The semantic web vision has been valuable to us: It starts off with many
of the assumptions (decentralization, extensibility, diversity) that we are trying to add to the
traditional process. But we exclude many general web issues that the W3C is addressing, e.g.,
supporting typed relationships among arbitrary web objects.

We see huge expenditures on creating and maintaining hand-built connections, so we are willing to
consider technologies that reduce these costs and time delays, even if they do not (immediately)
scale to the universe. For example, we can imagine selecting an integration product and capturing
(or translating) knowledge to fit that product. Open-ness is good, but need not be included in each
research project.

We address organizations that have an enormous legacy, of data, software, and business practices.
On the one hand, this is helpful. They already spend millions on hand-crafting connections, and
recognize that the process reduces their responsiveness. They are accustomed to integration
projects that address a limited set of systems. They do not demand that effort and skill go to zero,
immediately (though they are rightly cautious about strategies that require retraining).

In other ways, enterprise systems are more demanding than most web applications. Behavior must
be correct – not only do we return web pages, but we feed data to automated applications that make
decisions which affect the real world. Many millions are spent creating and maintaining interfaces
(views) to satisfy different job functions – we want to reduce the cost of doing so. Finally, support
for Update is essential – enterprise computing is not Read Only.

4.2 General Considerations

Some issues recur in many of the items below, so we state them once now.

For every technique, research issues include how to improve (and measure, at least anecdotally)
usability by the intended kinds of users, ability to give automated help, run-time efficiency, and
(not further discussed here) ability to be shared with other integration environments.

Many tools have been developed to address a single aspect of data integration (e.g., [Li00],
[Mill00]). Such research is necessary but not sufficient. There are related research problems that
can often have a greater impact on the ability to build systems. We present them from lower to
higher priority.

First, in an area where there are many heuristics (e.g., name matching, object matching), one wants
to know their relative effectiveness, and ways of determining whether they will be effective on a

7

given problem. Second, it is important to find ways to combine the techniques into a system, which
may be far more effective than any particular technique. Third, the most important technique –
reuse – may have received the least attention (perhaps because it requires experimentation and
evaluation, rather than cleverness). There may be dozens of techniques for acquiring knowledge
(e.g., semantic matches) the first time – the leverage point is to create a structure and incentives so
that such knowledge can be reused. That is a primary goal of our “industrial” approach.

Finally, information needs to pass among tools, e.g., from knowledge capture to logical mediation,
and hence to physical mediation. There are major issues in defining such interfaces, to find
appropriate tradeoff points between simplicity and power. For example, if the results produced by
prior application of other tools are not satisfactory, how can later stages make known their quality
requirements, or request further alternatives.

4.3 Knowledge Capture

To have an industrial process, we need strong support for defining, capturing, and managing the
knowledge, so it can be exploited for multiple purposes. Knowledge must be captured from
existing stores, from heuristics, and (crucially) from humans. Much information describing single
systems is already available on-line. Heuristics can generate further information, but their results
often require human approval before being used to drive data integration.

To begin, one must define what knowledge must be captured. We need to define schema
constructs that describe the classes of knowledge that the integration system expects to exploit.
First, we need a good specification of the differences, the dimensions along which one needs
agreement or resolution of heterogeneity. (We presented an initial list of differences in section 3.1,
but we have no illusions that this list is complete or correct.)

Next, one wants a way for humans and tools to express a degree of belief when they provide
difficult kinds of metadata (e.g., identifying semantic matches between concepts). Downstream
tools then will determine which of these they are willing to use. This information is costly to
acquire, and important to share across tools, but seems rarely discussed in standards groups. Good
freeware might be able to establish conventions. (These conventions might be commonly known
because a major vendor or data provider uses them and might become de facto standards.) In
section 5, we propose that data integration researchers “eat our own dogfood”, subjecting ourselves
to experimentation in this area.

In section 2 we noted the need to manage the obligations of data providers and consumers, in order
to align local incentives with interoperability requirements. There has been little research on the
requirements for data delivery contracts. How are these different from ordinary commercial
contracts? We need a range of constructs, beginning with “this resource may vanish whenever I
choose”, through removal with notification, to obligations for continuing availability. Boilerplate
contracts – standard templates with blanks to be filled in – might be a good 80% solution. As a next
step, how would one provide a “write your own contract” wizard? How much power do we need in
the logic (or other formalism) behind it? Finally, what enforcement services would we want the
environment to provide, and what (if anything) might one add to current DBMSs or configuration
management environments?

4.4 Tool creation

There is already active research in many tool areas. Dozens of heuristics have been published for
inferring semantic match and entity instance match, or for using quality and other metadata to

8

select among values from alternative sources. For semantic match, researchers have recently
moved to the next stage, combining the heuristics. Below, we will discuss additional promising
areas.

Much of the work in the ontology research community concerns building a single ontology.
However, large enterprises need to manage multiple interrelated ontologies. When one wishes to
describe an implemented system, one will need to refer to multiple ontologies (e.g., for Shipping,
Warehousing, Geography, Accounting, etc).

Work with ontologies (and mappings between them) needs to be made more convenient. We do not
want to work one element at a time – we need constructs for defining chunks of knowledge. We
expect chunks to overlap heavily –one can very rarely define disjoint problem domains.

Another challenge is to help users deal with the thousands of knowledge capture tasks, by
managing the workflow of tasks to domain experts. If an integration engineer has a Warehousing
expert on call today, she wants to see questions related to Warehousing entities. If the goal is to
produce a demo prototype, one might accept heuristic decisions for most issues. [Ros91] contains
some initial requirements and speculations about implementation for such a tool. Further, a large
integration project has many participants – what sort of collaboration services are most valuable for
data integration?

The metadatabase is itself a major “tool”. It might include a central repository describing
operational applications, but also may need metadata captured by individual tools, and text
information and ontologies from the web. Managing it raises all the usual challenges of
heterogeneous autonomous databases. It seems particularly important to automate administration,
to minimize participants’ burden and avoid creating a disincentive to supply metadata. In addition,
to the extent that metadata drives creation of the executable code, research is needed in managing
invalidation, and permitting updates without forcing the system to quiesce.

4.5 Creation of Logical Data Mappings (via mediation)

This section examines how one does logical mediation, i.e., constructs a logical view from all the
available knowledge. The task includes both discovering relevant knowledge (across many sites)
and the “mediation” algorithms that exploit it.

Discovery algorithms have long been an active research area, employing both structured
information and text search engines. As logical mediators are built, their interactions with the
discovery phase will certainly require attention. But our discussion will focus on logical mediation.

The two major approaches to logical mediation are to create a federated view, or to treat each
source as a view over a conceptual schema (the “source as view” or “information manifold”
approach [Levy96]). Query processing for federated databases has a long history and requires
relatively few radical changes (except due to limits on sources’ processing capabilities and cost
modeling.).

For “source as view”, query processing research has emphasized algorithms to find maximal
contained rewrites for various classes of queries. An important extension would be to find ways to
describe the difference between the desired result and the actual. Which portions of the desired
result had no relevant sources, and (assuming we track sources’ completeness) how complete is
each part of the returned result? The research problem is to take a formal expression for the
difference and to produce something users can understand.

9

A more radical issue is that we cannot imagine defining a single conceptual schema for an
enormous enterprise, such as the US Department of Defense (not to mention its interfaces to
external organizations). A more realistic mediation problem would have multiple conceptual
schemas, with partial overlap and correspondences incompletely specified among them. In such an
environment, how does one do logical mediation to derive the consumer’s data? How does one
suggest to humans what additional information might be captured (e.g., a connection between the
consumer’s ontology and that of a likely source)?

There are other “source as view” research issues more related to data administration. First, the
scalability advantages presented for “source as view” are clear when the goal is just to return all
relevant data. But if the scope of the administration problem includes matching similar entities and
resolving value conflicts, do the advantages remain? Are there classes of federated views that are
easier to maintain as sources come and go? (Note that source as view does still help one to examine
coverage and residues).

4.6 Views Created by Logical Mediation Should Be “First Class”

Perhaps the most fundamental aspect of cross-organizational systems is that producers and
consumers see the world differently, in terms of different objects. Our process yields declarative
mappings between systems (essentially, views). We anticipate that consumers will soon find it
inadequate that the only supported operations are Get and Query. Research is needed to provide
two additional kinds of services – updates and metadata.

First, consumers who receive data will often want to change it, either by direct modification, or by
submitting an annotation (e.g., a comment about quality, or a change request) that the system keeps
as related information. The theory of view update will apply to these views; this is a major
advantage compared with the 3GL programs frequently written for complex information flows.
However, to resolve ambiguities, one often must capture additional knowledge. How will that be
managed, if no human was responsible for synthesizing the view?

Second, without metadata, it is difficult for users to know how to interpret the data she has
received. Users need metadata, e.g., timestamps, access control lists, lineage, units, accuracy, point
of contact, etc., especially for derived values. (Security metadata is needed if the recipient is to
know to whom else the data can be released). Rules to generate metadata could be added to the
view definition, but they are so numerous that they must be generated automatically – especially
for views generated automatically from previously-captured knowledge.

Lineage tracing becomes more urgent than in conventional systems, for two reasons. First,
consumers need to know the original data sources and relevant processing history for important
result values, to help them determine how much to trust the result. Second, there are important
communities (academic research, intelligence analysis) where system providers have an incentive
to make their data available (and to publish the needed high-quality metadata) if they believe they
will get credit for providing the information. But existing definitions for tracing lineage don’t work
well enough to assign adequate credit.

4.7 Physical Optimization

Once one has logical mappings among systems, they must be translated into efficient
implementations. There are several optimization research challenges:

10

First, mappings may be described using a wide variety of mechanisms including SQL views,
XSLT, XQuery queries, and libraries of transformation functions. Given these different pieces
(some of which may execute only in particular environments), how does one compile the mappings
into an efficient execution strategy?

Second, the executable artifacts must be generated for a wide variety of components, including
object-relational DBMSs, middleware products, mediators, gateways, XSL processors, replication
tools, etc. How do we characterize the capabilities of these components in a way that is useful to
optimizers? Issues include:

• What are the dimensions along which components must be characterized?
• How can the characterizations be generated and updated automatically?
• How do we characterize real products that span multiple aspects (pins)—e.g., Data Joiner,

Oracle 9i, commercial Extract-Transform-Load tools, etc.

Currently, optimization in this environment is largely a manual process performed by highly-
skilled, distributed systems programmers. Since full automation is not attainable in the near future,
we need an incremental approach to optimization, in which the optimizer gradually fills in what
had to be done by people before. Challenges include:

• How do you automatically generate pieces of the solution which are usable to the human expert
who must complete the job?

• Where does control of the optimization process lie? Is the optimizer in charge, solving as much
as it can and then specifying in human-understandable terms what remains to be done?
Alternatively, must the process be controlled by a human expert who assigns well defined tasks
to the optimizer?

• Can the optimizer take hints? What form do those take?

Another important issue is evolution of the executables: when a logical mapping or a component
changes, one or more executables may need to change. How should this be done? How do we
characterize the pattern of changes should we expect (e.g., how many are local to 1 attribute, how
many are at the collection level, etc.)? How should we manage the necessary recompilations (e.g.,
priority, ways to do many at once, which to be eager and which lazy, etc.)? Do we need to change
the whole executable, or should there be a module for each element that we could possibly change?

These are just a few of the optimization challenges motivated by the metaphor of an industrial
revolution in data integration. In addition, these challenges must be met in a world with scanty or
unreliable performance models, and major variations in available resources (bandwidth, fault
tolerance).

5. SUMMARY AND CHALLENGE PROBLEMS

Many large organizations that need to share data among systems use software engineers and
database administrators to build custom data bridges. The results are difficult to maintain and of
little use the next time an integration requirement arises. Organizations that own individual systems
are often reluctant to participate in interoperability initiatives because they perceive large costs and
little benefit. Even when metadata is provided for these initiatives, it rapidly becomes obsolete.
Standard schemas are hard to develop (one folklore estimate says 3 hours for each attribute) and
even harder to connect to existing systems. Meanwhile, despite the many insights generated by

11

years of data integration research, the research results are fragmented – we have many individual
techniques but few results about how to combine them. Commercial data integration tools also
seem each to deal with a narrow range of issues.

To break the logjam in data integration, we have proposed a new approach that exploits industrial
metaphors – separation of skills, reusable parts, and incentives. In addition, we have described a
research agenda designed to move us toward a more industrial process.

A good way to speed progress might be to have a challenge problem, for which data integration
researchers are encouraged to submit freeware (code, ontologies, and data). The challenge problem
should have value in its own right, and the challenge of combining resources will encourage our
community to confront the real difficulties of data integration. While point techniques continue to
be worthy of exploration, the emphasis now needs to be on integration environments, on how data
integration techniques work together in context.

The challenge problem’s goal should be appealing enough to attract researchers (probably without
central coordination, although perhaps DARPA would be interested). We discuss two appealing
external communities, and then discuss a more internal challenge. In all approaches, integration
researchers would be encouraged to integrate their results – an “eat your own dogfood” test that
will encourage focus on the critical problems of integration.

One appealing external problem might be biomedical informatics (notably for gene and protein
researchers); another might be databases used for administering educational institutions. In both
cases, there are large amounts of data, much of it publicly available, and created with decentralized
responsibility. Both need small scale integration (“convert this information so it can be used with
my interface”) and large scale aggregations (for statistical or cross-species comparisons). Data
volumes are high, so performance issues will arise.

The educational arena could serve both universities (e.g., preparing information for accreditors)
and at other levels, e.g., for curriculum comparison and perhaps outcome comparisons. Also, while
domain experts will be needed to explore shades of meaning, database researchers are familiar with
the main concepts. The biomedical area is well funded, involves interesting new datatypes, has rich
services as well as data, and (to us) has a greater excitement factor. In addition, there is a cleaner
separation between data integration expert and domain expert.

Self-reference provides an alternative challenge – how can we create a data integration system by
integrating resources contributed by many independent researchers who might have different
external targets for integration. Here we must describe and integrate the semantics and
representations. Database researchers have the knowledge to cope with immature tools (though we
also need to experiment with more typical users). Finally, we will not be able to blame domain
experts for preferring short-term hacks to the facilities provided – we will be the domain experts.

REFERENCES

[Bati86] C. Batini, M. Lenzerini, S. Navathe, “A Comparative Analysis of Methodologies for
Database Schema Integration,” Computing Surveys, 18(4), 1986

[Cui] Y. Cui, J. Widom, “Lineage Tracing for General Data Warehouse Transformations”,
Stanford University Technical Report, 2001.

12

[Doan00] A. Doan , P. Domingos , A. Levy, “Learning Source Descriptions for data integration,”
Proceedings of the International Workshop on The Web and Databases (WebDB), 2000

[Levy96] A. Levy, A. Rajaraman, J. Ordille, “Querying Heterogeneous Information Sources Using
Source Descriptions,” VLDB, 1996

[Li00] W. Li, C. Clifton, S. Liu, “Database Integration Using Neural Networks: Implementation
and Experiences,” Knowledge and Information Systems, 2(1), 2000

[Mil01] R. Miller et. al., “The Clio Project: Managing Heterogeneity,” ACM SIGMOD Record,
March 2001

[Mill00] R. J. Miller, L. M. Haas, M. Hernández, “Schema Mapping as Query Discovery,” VLDB
2000

[Mitr00] P. Mitra, G. Wiederhold, M. Kersten, “A Graph-Oriented Model for Articulation of
Ontology Interdependencies,” Proceedings EDBT 2000

[Ouks99] A. Ouksel and A. Sheth, “Semantic Interoperability in Global Information Systems: A
brief introduction to the research area and the special section,” SIGMOD Record, 28(1), March
1999

[Rahm01] E. Rahm, P. Bernstein, “On Matching Schemas Automatically,” Microsoft Research
Technical Report MSR-TR-2001-17, Feb. 2001

[Ram99] S. Ram, V. Ramesh, “Schema Integration” Past, Current and Future”, in A. Elmagarmid,
M. Rusinkiewicz, A. Sheth, (ed.) Management of Heterogeneous and Autonomous Database
Systems, Morgan Kaufmann, 1999

[Ros91] A. Rosenthal, M. Siegel, "Toward Flexible, Extensible Tools for Metadata Integration",
Workshop on Information Technology Systems, Cambridge MA, Dec. 1991

[Ros00] A. Rosenthal, F. Manola, S. Renner, “Getting Data to Applications: Why We Fail, and
How We Can Do Better”, AFCEA Federal Database Conference, Sept. 2000 (see
http://www.mitre.org/resources/centers/it/staffpages/arnie/).

[Shet92] A. Sheth, Kashyap, “So Far (Schematically) yet So Near (Semantically),” DS-5, 1992

[Ston00] M. Stonebraker, “Integrating Islands of Information”, EAI Journal, Sept
1999.http://www.eaijournal.com/DataIntegration/IntegrateIsland.asp

[Vass97] V. Vassalos and Y. Papakonstantinou, “Describing and Using Query Capabilities of
Heterogeneous Sources,” VLDB, 1997

Acknowledgement: Chris Clifton provided useful perspective on several important issues.

