
Real-Time Java
Commercial Product Assessment

October 2000

Alan Piszcz
Kent Vidrine

Approved for public release; distribution unlimited.

The views, opinions, and/or findings contained in this report are those of The MITRE
Corporation and should not be construed as an official Government position, policy, or
decision, unless designated by other documentation.

© 2000 The MITRE Corporation

MITRE
Washington C3 Center
McLean, Virginia



Real-Time Java
Commercial Product Assessment

October 2000

Alan Piszcz, Kent Vidrine
The MITRE Corporation

McLean, VA 22102

e-mail: { apiszcz |  kent }@mitre.org

ABSTRACT

Traditional real-time operating system vendors have
recently started to consider Java as a potential platform
in real-time operating system products and embedded
solutions. Specification status and implementation
towards an industry standard application-programming
interface are split between two consortiums striving to
introduce different paradigms of Java integration with
real-time (RT) services. This paper provides a
background and understanding of the direction of real-
time Java in the commercial market place and includes
status information about the specifications. Additionally a
preliminary review of a few of the products with respect
to timing jitter, and priority issues are examined.

1. INTRODUCTION

The Sun Java environment continues to grow in
popularity throughout industry, academia and defense
contractor organizations. Universities are transitioning
language and programming coursework from PASCAL
and C++ to Java. The Java environment’s continued
success, maturing and growing APIs point toward the
platform of choice for software development. Originally
developed to foster platform independent software, it is
now being considered for unique hardware specific
applications in the real-time application area. The Java
platform must be modified and extended to support the
requirements of traditional real-time developers. These
requirements include fine grain control of system
resources, memory, scheduling, I/O, event handling,
interrupt services, and thread control. Balancing these
requirements with the Java platform non-real-time
features, dynamic class loading, extensive API support
for non real-time features and garbage collection are
some of the goals for real-time Java.

“The Java® platform − i.e., language, class library, virtual

machine − promises  “Write Once Run Anywhere,” which,

if even reasonably approximated, would substantially
mitigate that problem. In addition, the Java language is

widely believed to offer productivity advantages over
C/C++ (being cleaner, simpler, safer, more dynamic and
extensible, etc.)

However, Java was not intended for real-time
programming, and the platform has fatal problems of
omission and commission for most of that domain −
including, but not limited to: unpredictable task execution
times (e.g., complicated flow control, lack of analysis
tools, JIT translation, method caching and other
optimizations); unpredictable memory requirements (e.g.,
conservative garbage collection, failure to defragment,
complex library services); unpredictable task interactions
(e.g., poorly defined priority structure, uncontrolled
priority inversion, non-incremental garbage collection);
weak vocabulary (e.g., messages, semaphores,
interrupts, I/O, signals, timeouts). Furthermore, Java
distributed system mechanisms and platforms − RMI,

Jini, JavaSpaces − suffer from additional disabilities for

most of the real-time domain.” [Jensen 1999]

Implementations of the above features will be used to
verify the RTJ platform and its ability to satisfy real-time
goals. Two approaches currently exist for real-time
implementations using Java. The first approach relies on
an existing real-time operating system for services and
allows a Java Virtual Machine (JVM) to run as a task on
a real-time operating system (RTOS). The second
approach is based on the development of a RTOS JVM
that will operate without an underlying RTOS. Device
manufacturers are just beginning to consider single
device solutions that include the JVM, RTOS and
execution engine. Real-time issues were raised early
[Nilsen1995] with respect to constraints and design
inherent in the JVM. Two consortiums have been created
in 1998 and 1999 to begin development and practical
implementation guidance for the real-time Java platform.

The National Institute of Standards and Technology
(NIST) workshop developed a set of principles for real-
time core requirements.  Greg Bollella and James
Gosling [Bollella 2000] provide a side bar discussion
describing the Real-time Specification for Java (RTSJ)



2

and the NIST requirements.  The nine columns depicted
in Table 1 maps the RTSJ into the NIST core
requirements. The NIST core requirements are:

1 The specification must include a framework for the
lookup and discovery of available profiles.

2. Any garbage collection that is pro-vided shall have a
bounded preemption latency.

3. The specification must define the relationships
among real-time Java threads at the same level of
detail as is currently available in existing standards
documents.

4. The specification must include APIs to allow
communication and synchronization between Java
and non-Java tasks.

5. The specification must include handling of both
internal and external asynchronous events.

6. The specification must include some form of
asynchronous thread termination.

7. The core must provide mechanisms for enforcing
mutual exclusion without blocking.

8. The specification must provide a mechanism to
allow code to query whether it is running under a
real-time Java thread or a non-real-time Java
thread.

9. The specification must define the relationships that
exist between real-time Java and non-real-time Java
threads.

Table 1 How RTSJ features satisfy the NIST core

requirements

In Table 1 the ‘S’ indicates that the RTSJ has satisfied
the NIST core requirement. “As Table 1 shows, the RTSJ
satisfies all but the first requirement, which is not relevant
because the RTSJ does not include the notion of profiles.
Access to physical memory is not part of the NIST
requirements, but industry input led us to include this
feature.” [Bollella 2000]

2. REAL-TIME JAVA SPECIFICATIONS

There are two competing specifications that provide real-
time services for the Java platform.

The Real-time Specification for Java [Bollella 2000] was
produced by the Real-time for Java Experts Group under
the auspices of the Java Community Process. It has the
support of several large corporations, including
International Business Machines (IBM) and Sun
Microsystems. The specification has been published in
book form and is publicly available in electronic form from
[RTJ.ORG]. IBM is one of the first organizations with an
offering in this space [IBM 2000]. More reference
implementations are anticipated in 2001 and 2002.

The Real-time Core Extensions produced by the Real-
Time Java Working Group [RTJWG], is currently in draft
form. This specification effort has the support of Hewlett-
Packard, Microsoft, and other corporations. There is no
known reference implementation of this specification
available.

Many commercial vendors do not consider the
specifications complete until a compliance approval
process is in place, this may include a reference
implementation and requires a test suite. Given the
incomplete status of the two aforementioned
specifications, several commercial product vendors and
universities have created their own implementations that
do not conform to either specification. Several products
were  evaluated and are discussed in this paper.

3. OVERVIEW OF COMMERCIAL PRODUCTS

The current situation of the market place is in flux due to
maturity of the specification, specification compliance
testing ability and market demand or lack of it for real-
time Java. Another key driver is the proliferation of soft
real-time consumer products, these include digital
cameras, set top boxes, and digital music systems. The
current technology feature space is difficult to separate
cleanly. However an attempt is made for products listed
in Table 2 by grouping them into three classes.

RTOS JVM:
RTJ JVM executing on the hardware directly.

JVM on NON-JAVA RTOS:
Typically the JVM operates as a task on a RTOS or in
some cases an operating system which has been
modified to provide deterministic performance. An
example is LINUX and its extensions by companies like
TimeSys and MONTAVISTA.

DIRECT EXECUTION JVM RTOS DEVICES: Devices
that claim a built in (silicon) RTOS kernel (Java or other)
and JVM functionality.



3

The commercial vendors are positioning and integrating
traditional strengths of existing product lines such RTOS
features with Java strengths in network centric
applications and graphical user interface tools.

Organization Product
RTOS JVM

ESMERTEC Jbed, Jbed RTOS, JBED IDE
NewMonics PERCH, PERC, ROMizer,

QuickPERC
JVM on NON-JAVA RTOS

Accelerated Technology NUCLEUS Jvi
IBM Embedded VM w/Realtime Ext.
INSIGNIA Jeode
Hewlett Packard Chai
LYNX Lynx-OS
Mantha Software KadaVM , KADA
Mentor Graphics
Embedded

VRTX

Micro Digital Inc SmxJVM
Microware Systems PersonalJava for OS9
MONTAVISTA Hard Hat LINUX with Kaffe JVM
QNX Neutrino
Sun CHORUS OS, J2ME
Tao Group Intent Java Technology Edition
Timesys Kaffe
Wind River Systems Personal Jworks, VXWorks

DIRECT EXECUTION JVM RTOS DEVICES
AJile AJ-PC-104, aJ-100/101/102
IMSYS cjip
Patriot Scientific
Corporation

PSC1000

Table 2 Commercial Vendors/Products

Figure 1 [ajile2000] provides an overview of JVM RTOS
options with respect to memory models, and interpreted
versus direct execution. Other vendors such as IMSYS
and Patriot Scientific Corporation listed in the Table 2 are
developing products with similar capability as the fourth
column in Figure 1.

Figure 1 Execution alternatives for embedded Java

Several commercial products were evaluated. These
were selected based on potential specification
implementation, availability and cost to obtain an
evaluation target and associated development
environment. The three platforms are NewMonics PERC,
ESMERTEC Jbed and AJILES AJ-PC104.

NewMonics – Perc

NewMonics, Inc. produces a toolkit called PERC®.
PERC contains a clean-room implementation of the JVM
and several development/deployment tools. According to
the NewMonics web site (http://www.newmonics.com/),
the PERC Virtual Machine (PVM) is a JVM
implementation that provides features that are necessary
for real-time performance. The main claims made by
NewMonics about the PVM are that it provides better
garbage collection and priority inversion avoidance than
the standard JVMs that Sun Microsystems provides.
Other claimed benefits include its small memory footprint
and faster context switching time. This provides for
behavior that is more predictable than the behavior of the
same applications that execute in the context of a Sun
JVM.

NewMonics states: “An application does not need to be
modified to operate with PERC. Any standard Java
application may run on either a PERC VM or a standard
JVM. One can ostensibly obtain better performance
using PVM than a standard JVM.  To build an application
that uses PERC, one simply writes standard Java code in
the development environment of choice, compiles it with
any Java compiler, and then executes the application
using PVM. No additional/proprietary API is necessary
(or provided).”

Esmertec – Jbed

Esmertec AG produces the Jbed product line
(http://www.esmertec.com/). There are several Jbed
versions. The various versions include an Integrated
Development Environment (IDE), the Jbed RTOS, a
proprietary Java API, and special-purpose boards based
on ARM7, PowerPC, and 68xxx processors. The
programmer must work with the Jbed IDE because it is
not practical to write and compile with one tool and then
switch to the Jbed IDE to create the binary file that the
Jbed board needs to run the program. For this
evaluation, Jbed Lite version 1.2.1 was used.

The API that Jbed uses to create real-time tasks does
not resemble either of the real-time specifications. Jbed
provides a re-implementation of the standard



4

java.lang.Math class that has a smaller memory footprint
but does not offer all of the methods that the standard
Math class provides. Existing applications that use the
java.lang.Math class must be rewritten to use the Jbed
com.jbed.FMath class.

The Jbed IDE provides tools for the programmer to write
Java code, debug, stress test the system, build target
executable files, manage projects, and monitor the Jbed
system. With this IDE, the programmer can create either
an open system or a closed system. An open System is
one in which the executable file must be downloaded to
the target board at board boot-time. A closed System is
one in which the machine instructions must be
permanently burned into the board’s ROM.

Jbed uses the com.jbed.* API to create real-time tasks.
There is very limited detail about this API in the
documentation set and only a few source code
examples. However, the abstractions that the API
provides are simple and straightforward. Physical
devices are either actuators or sensors. These devices
are accessed via standard Jbed classes. The object that
does real-time work is known as a Task, which is a
subclass of the familiar Java Thread class. Jbed provides
the following types of real-time tasks:

• OneshotTimer is a task that only executes once

• PeriodicTimer is a task that executes at regular
intervals

• HarmonicEvent is a task that executes when another
task is started

• JoinEvent is a task that executes when another task
has stopped (completed)

• InterruptEvent is a task that executes when there is a
hardware event at a given interrupt vector

• UserEvent is a task that is executed programmatically
by the application

The Jbed scheduler conducts admission tests to
determine whether to allow a new Task to start. Rather
than using execution time analysis, Jbed determines
whether to admit a task based on three values that must
be provided when a new real-time task is created:

• Deadline - the amount of time within which a given
task must execute

• Duration - the amount of time provided for a task to
actually perform its job

• Allowance - the amount of time allotted to a task to
perform exception handling when the duration is
exceeded

Also of interest: Jbed does not allow a Thread (a.k.a. a
normal Java thread that is not a real-time entity) and a
Task (a.k.a. a real-time entity) to synchronize on the
same object. Jbed uses priority inheritance to prevent
priority inversion. Tasks are scheduled using the Earliest
Deadline First method, while Threads are scheduled
using round-robin and priority scheduling. Jbed does not
provide for programmer-managed heap memory objects.
Finally, Jbed supports the JDK 1.1.8 API.

aJile - aJ-PC104

aJile Systems produces the aJ-PC104 system
(http://www.ajile.com/). This product consists of a set of
tools for project management, target binary file creation,
and execution environment management. The target
environment is a proprietary board which includes the
Rockwell-Collins JEM2 chip with a PC/104 interface.
aJile also provides a limited, and poorly documented API
for the creation of real-time tasks.

The JEM2 chip does direct bytecode execution so no
RTOS is necessary. At the time the evaluation was
conducted, there was no garbage collection provided by
the system. This was the major hindrance to evaluation
of this product because virtually every non-trivial Java
application in existence depends heavily on garbage
collection. Furthermore, the board has eight megabytes
of RAM which is a constraint for JVM based applications.
The lack of garbage collection in an environment that has
so little memory makes this an especially acute problem.
In order for applications to run on this board, they must
be carefully coded to reuse object instances and
minimize object creation. The aj-PC104 product does
provide the programmer with the ability to create and
manage heap memory entities, but only for variables that
are system data types – not for object instances. The aJ-
PC104 board supports two simultaneous JVMs. This is
so that one VM can support real-time threads and the
other can support normal threads.

To build an application for aJ-PC104, the programmer
uses any development environment to write and compile
the Java code. Then the programmer must use aJile’s
JEMBuilder tool to create the binary file that the board
uses. The execution environment is managed using
aJile’s Charade tool.



5

4. EVALUATION METHODS

To evaluate these products, several benchmarks
originally used on another effort [Obenland 2000] were
selected and ported from C++ to Java. When attempting
to run these benchmarks, several problems were
uncovered that had nothing whatsoever to do with
product performance.

The first type of evaluation that we selected was a
measure of timer jitter. We conducted the jitter tests by
varying the CPU load and the number of simultaneous
threads. This illustrates the ability of each platform to
perform periodic tasks. To create the CPU load, we
implemented the functions contained in the Whetstone
benchmark suite. Each thread periodically sampled the
system clock. Deviation from expected sample times
represented the actual jitter present in the system.
Figures 2 and 3 in section 5 represent the test results.

The second evaluation method was a measure of the
product’s implementation of priorities and ability to avoid
priority inversion. To measure this, we created two tests.

The first priority test, referenced in this paper as the
“Uniqueness” test, used standard Java library calls to
determine the number of priorities available to the
system. The program then started one thread at each
priority level. Each thread then proceeded to execute
some arithmetic operations designed to keep the
processor busy. On completion, the threads displayed
the current system time. In theory, in a system with ten
priority levels, the thread at priority ten will complete
before the thread at priority nine, which will complete
before the thread at priority eight, etc. In practice, this is
not always the case.

The second priority test, referenced later as the “Priority
Inversion” test created three threads. One thread was
assigned the highest priority level, another thread
received the normal priority level, and the final thread
received the lowest priority level. The threads were all
started nearly simultaneously. The high and low-priority
threads synchronized on the same object while the
medium-priority thread went straight to work. The low-
priority thread was guaranteed to obtain the lock before
the high-priority thread. A system that avoids priority
inversion would ensure that the low-priority thread
completes as quickly as possible so that the high-priority
thread can then continue. If priority inversion takes place,
then the expected completion order of the threads is:
medium, low, high. If priority inversion is avoided, then
the completion order is: low, high, medium. Clearly it is
desirable to avoid priority inversion.

Other tests that were attempted:

Hartstone – resulted in null pointer exceptions in Jbed,
ran cleanly in PERC, could not run in aJ-PC104 because
of lack of garbage collection

VolanoMark – PERC VM crashed with Dr Watson error,
JDK 1.3 ran much longer but eventually crashed with a
Java exception, could not run on aJile (garbage
collection) or Jbed (license)

5. EVALUATION RESULTS

Ideally, when evaluating products, one runs exactly the
same tests on each product under exactly the same
conditions and then compares the results. Java makes
the promise,  “Write Once, Run Anywhere.” This creates
the hope that various environments that run Java will
deliver on that promise and thereby facilitate the
execution of fair and equal evaluation. Our testing
revealed that this promise is not yet reality in the real-
time application domain.

Differences in APIs, the lack of a command-line interface
in Jbed and aJ-PC104, incomplete versions of the
standard Java API, and the lack of garbage collection in
the aJ-PC104 environment made it very difficult to
evaluate consistently. API differences often required
code modifications. This resulted in different application
code for the same functional test between products.
Those differences represent a threat to the validity of the
tests. To be as fair as possible, we limited the scope of
code differences between tests, but we could not
eliminate them.

The initial assessment of what is a fair comparison rules
out tests for raw speed. This is because the products
under evaluation execute on diverse platforms where
computing speed is not necessarily of highest
importance. What is important is determinism - the ability
to set and meet deadlines.

5.1 Jitter Test

The first jitter test used the standard Sun Microsystems
Java Development Kit (JDK) Version 1.3.

To perform the jitter time measurements a precision timer
is required. JDK 1.3 offers this as described below.
However all JVMs evaluated required JDK 1.1.x which
did not have the native timer feature. Typically this
feature is provided through a custom API for timing. A
series of time measurements using the Thread.sleep()
call followed by a System.currentTimeMillis() call. The
JDK 1.3 has a new class called Timer that can be used
to create periodic tasks.



6

The JDK scheduler implementation appears to support a
granularity of 10 milliseconds. However, on average, the
scheduler did awaken the threads at the right time. For
example, an attempt to sleep for 49 milliseconds for 7
iterations resulted in the following series of clock queries:
50, 50, 50, 50, 50, 40, 50. The average of these numbers
is 48.6.

5.1.1 Esmertec - Jbed

The Jbed scheduler granularity is 1 millisecond. We
reached this conclusion based on the fact that all
attempts to create periodic tasks that execute more often
than once per millisecond resulted in actual execution
periods near 1 millisecond.

Jbed reserves at least fifteen percent of the total CPU
time to handle scheduling and garbage collection. We
reached this conclusion based on the fact that any
attempt to create a series of tasks such that the total of
all durations and allowances exceeded eighty five
percent of the deadline resulted in admission failures.

Jitter did not significantly increase with high CPU loads.
However, jitter did significantly increase when the
number of tasks increased. Jitter also increased
proportional to increases in the deadline value.

Figures 2 and 3 illustrate some of these findings. Note
that the timer jitter present in the system increased
significantly as the number of threads increased.

While testing, ArrayIndexOutOfBoundsExceptions and
NullPointerExceptions were thrown by code that ran
without exceptions on other vendors’ VMs.

5.1.2 aJile - aJ-PC104

Evaluation of this product for susceptibility to timer jitter
clearly illustrated its primary limitations. The test was
designed to show whether the internal clock performs
well, and it does. However, other limitations became
quite obvious during this test.

To conduct this test, we attempted to use source code
that was furnished by an engineer at aJile Systems (see
Appendix X). The code sample that was provided to us
used aJile’s PeriodicThread and PianoRoll classes. After
extensive testing, we determined that all attempts to use
those classes yielded execution-time behavior that was
unpredictable. This behavior often included: repeated
and unsuccessful attempts to start the application, no
output whatsoever, and unexpected program termination.

On the rare occasions when the aJile classes did
execute, the PeriodicThread class executed with
consistent, but poor results. Typically, a PeriodicThread
would sometimes wake up and execute right on time, but
would often execute as much as 2 full seconds late.

We made other attempts to test the timer using a simple
Thread.sleep() call with multiple threads. All tests using
this method resulted in expected behavior. Threads with
periods ranging from 1 to 1000 milliseconds always
executed on time. The summary of the jitter tests
performed on the aJile board:

• Timer granularity was 1 millisecond
• Every periodic thread executed exactly on time
• OutOfMemoryExceptions occurred with 8 threads, so

the scheduler could not really be stressed

This series of tests illustrated two things quite clearly.
First, the aJile board’s limited RAM, combined with the
lack of garbage collection, severely restricts the kinds of
tasks that can be accomplished. Even with object reuse
and limited string creation, out-of-memory errors occur
quite often. Second, use of the classes that are provided
by aJile often results in unpredictable behavior.

5.1.3 NewMonics - PERC

This product showed high susceptibility to jitter when the
CPU was busy. The timer appears to work with 1
millisecond granularity when there is no CPU load, but
balloons to approximately 25 millisecond granularity
when the CPU is busy. Since there is no API for a timer,
the experiment was conducted using the standard
Thread.sleep() call.

Priority Test
Table 3 displays the results of the priority tests that were
conducted on the four products.

The Jbed board honors the priority levels and preserves
uniqueness of completion.

The aJ-PC104 board’s scheduler honors thread priorities
but does not avoid priority inversion.

PERC’s scheduler honors thread priorities and uses
priority ceiling emulation to avoid priority inversion.



7

Figure 2 Jbed Jitter versus thread count

Figure 3 Jbed lateness versus thread count

Table 3 represents the various and products priority
issues.

Priority

Levels

in the

System

Uniqueness

Test (Thread

completion

order)

Priority

Inversion

Test

NT/JDK 1.3 1-10 10, 8, 9, 6, 7,

5, 4, 3, 1, 2

Inversion

occurred

Jbed 1-10 10, 9, 8, 7, 6,

5, 4, 3, 2, 1

Inversion

avoided

AJ-PC104 1-10 10, 9, 8, 7, 6,

5, 4, 3, 2, 1

Inversion

occurred

PERC 1-10 10, 9, 8, 7, 6,

5, 4, 3, 2, 1

Inversion

avoided

Table 3 Priority maintenance

Based on the results in the table above, two of the three
products evaluated operated correctly for both priority

uniqueness and inversion tests. These are Jbed and
PERC.

6. RECOMMENDATIONS

The current situation for RTJ implementations meeting
either specification is unclear in the near term without
compliance test suites. In order to get industry
involvement more than a specification is needed.

•  Open source research implementations of the
specification feature set are needed. The authors
recommend at least two implementation be initiated.
One University effort and one commercial effort.

•  LINUX is a strong contender for many of the
commercial vendors that wish to provide RTOS
capabilities and JAVA. A closer examination is
needed to understand where the platform consisting
of LINUX with real-time services and a JVM fit into
future platforms for the DoD.

•  New market spaces are being created at an
increasing pace around devices with soft real-time
features that need network access. The feature set of
Java integrated into new microprocessors that will
directly execute Java byte code need investigation.
These systems need to be assessed against the
DoD mission space for applicability. Do these
systems offer enough performance to replace the
legacy RTOS and JVM systems being sold today for
specific DoD implementations?

•  Track and monitor vendor implementation and
conformance to a specification. For example: aJile
announced that developing a reference
implementation and compliance test suites [aJile
2000]. This includes IBM VisualAge Micro Edition
Real Time Extensions for the J9 Virtual Machine
[IBM2000].

•  Industry/consortium developed test suite is need for
certification and compliance testing.

7. SUMMARY

The long term outlook for Java deployment is strong. As
Java is applied to real-time systems its API needs to be
developed in a consistent and open process. This paper
provides some initial insight into the specification issues,
real-time implementations and a start into evaluation of
products. Some of the issues raised in this assessment
are questioning the ability of the vendors to reach the
NIST requirements for a RTJ platform.
The trade space is currently 1) JVM/LINUX, 2)
JVM/RTOS, 3) RTOS with a JVM task and 4) emerging
direct execution processors with silicon based JVM and

Jbed Timer Jitter

0

20
40

60

80

100
120

140

0 5 10 15 20 25 30 35

Thread Count

Ji
tt

er
 (

m
ic

ro
se

co
n

d
s)

Average Completion Time with 1000 usec 
Deadline

1000.8

1001.0

1001.2

1001.4

1001.6

0 5 10 15 20 25 30 35

Thread Count

T
im

e 
E

la
p

se
d



8

RTOS. Issues include changing mind share of legacy
RTOS vendors and integrators, seriously measuring
performance, development productivity and maintenance
costs of this trade space.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Janos Sztipanovits of
the DARPA Information Technology Office for support of
this effort.

REFERENCES

[aJile 2000]
Le Ngoc D., Hardin, D, “Low-power, Direct Java
Execution for Real-Time Networked Embedded
Applications”, aJile.

[Bollella 2000]
Bollella, G., Gosling, J., Brosgol, B., Dibble, P.,
Furr, S., Turnbull, M., “The Real-Time Specification
for Java”, Addison-Wesley, 2000.

[IBM 2000]
International Business Machines, J9 JVM and
J2ME with real-time extensions
http://www.ibm.com/embedded/

[Jensen 1999]
Jensen, D, “Real-Time Java Status Report”, The
Mitre Corporation, January 1999

[Obenland 2000]
Obenland, K, “The Use of POSIX in Real-time
Systems, Assessing its Effectiveness and
Performance”, Proceedings of Embedded Systems
Conference, The Mitre Corporation, September
2000

[Nilsen1995]
Nilsen, Kelvin, “Issues in the Design and
Implementation of Real-Time Java”, NewMonics,
Nov 1995, http://www.newmonics.com/pdf/RTJI.pdf

[RTJ.ORG]
The Real-time for Java Experts Group,
http://www.rtj.org

[RTJWG 2000]
Real-time Java Working Group, “Real-Time Core
Extensions”, J Consortium Specification No. T1-00-
01, http://www.j-consortium.org/rtwg/s1.pdf.


