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ABSTRACT 
The use of synthetic imagery for testing biometric systems is 
relatively new and in need of further exploration. In this paper, we 
describe methods and procedures for using synthetic images 
generated from shape and texture data to refine and extend the 
current state of the art of face recognition performance testing. 
Two example experiments are presented based on the canonical 
Facial Recognition Vendor Test 2000—pose experiments and 
temporal experiments. We demonstrate how the use of 
synthetically generated face models (and resulting images) can 
enhance and extend existing test protocols and analysis. These 
methods and results will be of use to developers and practitioners 
alike. 

Categories and Subject Descriptors 
D.2.5 Testing and Debugging (data generators); D.2.8 Metrics 
(performance metrics) 

General Terms 
Measurement, Performance, Reliability, Experimentation, 
Verification. 

Keywords 
Biometric systems, biometrics testing, face recognition, 
performance evaluation, synthetic imagery, 3D face modeling. 

1. INTRODUCTION 
This paper describes the use of synthetic imagery for face-
recognition testing. Synthetic imagery is useful for rapidly 
generating large data sets. Synthetic imagery can also support 
custom data sets designed to isolate and parametrically control 
specific test features. The proposed methodology augments the 

results of the well-known Facial Recognition Vendor Test 2000 
(FRVT 2000) [2] by improving the resolution, measurement, and 
understanding of face-recognition technology tests. Synthetically 
generated inputs for face-recognition are defined in terms of 3D 
head and face geometry, image (face) texture, and rendering 
(lighting) and viewing parameters. 

 

2. BACKGROUND 
As developed by Raffaele Cappelli and others, there is precedence 
for the use of synthetically generated and controlled fingerprint 
images for fingerprint recognition testing [3]. The Cappelli 
SFINGE (Synthetic FINgerprint GEnerator) system generates 
fingerprint images for less cost and effort than is required for 
collecting consistent test images from live subjects. (SFINGE 
authors state that one thousand realistic prints can be generated in 
one hour using a single Pentium IV CPU [6]). Other biometric 
techniques have not exploited or fully explored the use of 
synthetic data sources to support development and test. Synthetic 
data techniques can generate images that mimic, filter, or perturb 
live data in known ways to augment live and heuristic test 
methods. In addition to there being no privacy concerns with 
synthetic data, synthetic data has the potential to augment Best 
Practices test procedures [1], enhance understanding, and support 
certain types of results not achievable with real images. Moreover, 
synthetically generated data can provide better isolation, control, 
granularity (hence better measurement) of certain known 
performance factors. Critical performance transition regions can 
be identified and examined in more detail than by using 
conventional methods alone. 

The Facial Recognition Vendor Test 2000 program (FRVT 
2000) was established based on Dr. Jonathon Phillip’s FacE 
REcognition Test (FERET) methodology. FRVT 2000 Evaluation 
Report, a program performed under joint sponsorship from DoD 
Counterdrug, DARPA, and NAVSEA, documented eight face 
recognition experiments. Each experiment addresses different face 
recognition performance factors. FRVT 2002 experiments 
extended the original 1994 FERET images to a collection of 1396 
images. Of the eight experiments, the pose and temporal 
experiments were cited as requiring additional research.  

Pose experiments address the affect of camera angle on 
recognition performance. The FRVT 2000 Evaluation Report [2] 
concluded, “performance is stable when the angle between a 
frontal gallery and a probe is less than 25 degrees and that 
performance dramatically falls off when the angle is greater than 
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45 degrees.” As symmetry is assumed the test data contained only 
5 reference samples were used to describe the variation of pose 
angles (15, 25, 40, 45, and 60 degrees). As a consequence there is 
no information on what happens in the critical pose angles 
between 25 and 45 degrees. 

Temporal experiments address the affect of temporal gaps on 
recognition performance. The temporal gap is the time span from 
when the reference biometric was collected and subsequent 
recognition attempts. FRVT 2000 images of any given individual 
spans no more than 2 years, and temporal gaps typically involve 
other image differences (in addition to the “aging” of the subject) 
that resulting from the collection of images at different times and 
places. 

The authors demonstrate how FRVT 2000 findings for pose 
and temporal experiments can be supported with synthetic images 
by isolating experimental features and creating finely controlled, 
parametrically generated test probes. Pose angles are compared in 
one-degree increments. Temporal gaps are interpreted as 
simulated aging and are compared in five-year increments. 

As established by Duane Blackburn and others (in [2], [3], 
[8]) there are five ideals that should be present for the proper 
evaluation of biometric systems. Each of the five ideas, 
summarized below, is addressed in this experiment: 

Independent groups—the organization administering and 
executing the evaluation should have no interests, financial or 
otherwise, in performance outcomes. The MITRE Corporation is a 
not-for-profit national resource that provides systems engineering, 
research and development, and information technology support to 
the government. In this role, evaluation is a fundamental activity 
to advise stakeholders in technical capabilities for future systems.  

Independent test data—the data used for testing and 
evaluation should be collected independently and not known to 
the participants. There was a constructive general exchange of 
information with Viisage, however, there was no disclosure of the 
data set used in the experiments. (Note these experiments 
purposefully did not involve multiple vendors. The experiments 
were made possible with the knowledge, cooperation, and support 
of Viisage. The results presented here are to demonstrate complete 
testing methodology—they should not be interpreted to reflect on 
vender performance.) 

Three Bears Principle—evaluations should not be too hard, 
nor should they be too easy. Difficulty should be somewhere in 
the middle, or “just right.” To this end, the experiments are based 
on existing, known, and “fair” operational ranges for the 
technology. 

Repeatable—evaluations should be conducted and 
documented with enough detail so that others can reproduce 
statistically similar results. The evaluation methods and test 
environment is presented in this paper. Additionally, the test data 
is available by request from the authors. 

Know your requirements—evaluations are useful only if they 
relate to known application requirements. The experiments we 
conducted, pose and temporal, were selected because they are 
relevant to a large class of face-recognition identification 
applications. Moreover, these two experiments were identified in 
[2] as the most promising areas for additional research and 
development. 

Common Criteria testing stipulates that real images must be 
used for ultimately determining performance, the collection of 
face images will continue to present practical problems, including 
privacy, repeatability, and biases caused by difficult to control 

lighting or population selection details. Regardless of Common 
Criteria test requirements, the isolation and parametric control of 
facial images provides additional understanding to face 
recognition technology. The eventual goal is to apply that 
understanding to be able to make corrections and adjustments in 
images to boost recognition performance across differences in 
pose, time, and lighting. The basis for such techniques were 
presented and presented by Blanz and Vetter in [4] in 1999, and 
the promise of such techniques was also mentioned in FRVT 
2002. 

3. EXPERIMENT ENVIRONMENT 
Generation of synthetic face image galleries was accomplished 
using the process depicted below (Figure 1). Face models were 
created using the FaceGen 2.2 modeler. The models were then 
imported into 3D Studio max using a developed script to provide 
consistent orientation, rendering, and file nomenclature. The 
generated image sets were the inputs for face recognition, here the 
Viisage FaceTools product (version 2.3). Lastly, enrollment and 
comparison results were reviewed, analyzed, and reported. A 
description of the primary steps and tools are further discussed in 
this section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Parametrically driven synthetic face generation 
environment. 

 
3.1 FaceGen 
FaceGen is a modeler for generating and manipulating human 
faces. It provides control of shape, texture, expression, phones, 
and accessories (hair, glasses). The FaceGen modeler is from 
Singular Inversions Inc., Toronto Canada. The MITRE 
experiment used version 2.2 of the software, which provides 
improved face texturing features from the previous version. 
FaceGen runs on most Windows platforms and is also available as 
a software development kit, allowing for programmatic control 
and morphing of face models. 

3.2 3D Studio max 
3D Studio max is a full-featured modeling, animation, and 
rendering environment from Discreet, Montreal Canada, owned 
by Autodesk Inc.. The MITRE experiment used version 5.1 of the 
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product. A script was developed using the built-in scripting 
language, MaxScript, to automate the import, rendering, and file 
nomenclature of the synthetic data sets. 

3.3 Viisage FaceTools 
Viisage FaceTools is a face recognition product developed and 
sold by Viisage Inc., Littleton MA. The FaceTools product line 
uses an Eigenface implementation, a technique originally 
introduced by Turk and Pentland in [9]. Viisage provides a suite 
of face recognition products and system integration services and 
has also participated in both FRVT 2000 and FRVT 2002 test 
programs. 

4. POSE EXPERIMENT 
As established by FRVT, pose experiments study the effects of 
face orientation (or viewing angle) on face recognition. The 
MITRE synthetic pose experiment used one hundred randomly 
generated faces produced with the FaceGen modeler. Each face 
was subsequently rendered in one-degree horizontal pose 
increments from –60 to +60 degrees, generating a total of 121 
pose variations for each face. A subset of pose experiment face 
images (5-degree angle increments) is shown below (Figure 2). 
The actual images are separate 640x480 jpeg files. The choice of 
image size corresponds to camera recommendations in the 
FaceTools SDK documentation. 

 

 

Figure 2. Example faces for pose experiment. 

 

The fifty “best” faces, as determined by enrollment 
performance, were used for subsequent pose comparisons (please 
refer to the enrollment section for information on the enrollment 
process). Each of the 120 rotated poses was compared against the 
base frontal image for each face. Recognition performance by 
pose angle shows (Figure 3) the average match score for each 
pose angle. The horizontal axis of the plot is the pose angle and 
the vertical axis is distance scores, thus small scores represent the 
closest matches (e.g. 0.0 is an exact match or self match). Note 
that performance degrades in a sharp curve as pose angle 
increases. Based on the vendor’s recommended threshold of 0.75, 
recognition performance falls off completely in the neighborhood 
of five to eight degrees (for this synthetic data). Note that the 
distant eye effectively disappears from the image between 35 and 
40 degrees. Poses between 35 and 60 degrees have the highest 
scores on the recognition curve, indicating the least precision. 

The results from this pose experiment differs significantly 
from the previously mentioned FRVT 2000 summary result that 
“performance is stable when the angle between a frontal gallery 
and a probe is less than 25 degrees and that performance 
dramatically falls off when the angle is greater than 45 degrees.” 
The performance curve also reveals some asymmetry between the 
left and right pose angles. We speculate the asymmetry is due to 
the other great challenge in face recognition—lighting. Future 
work is necessary to address the nuances of lighting in face 
recognition with real, purely synthetic, and processed (hybrid) 
images. Analogous to the parametric control of pose, 
parametrically controlled lighting experiments should be useful 
utilities for determining sensitivity thresholds for face recognition. 
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Figure 3. Recognition performance by pose angle. 

 

5. TEMPORAL EXPERIMENT 
Due to the logistic difficulties for collecting large, controlled 
(natural) data sets over extended time periods, temporal face 
recognition tests to date have been somewhat limited. FRVT 2000 
temporal data spanned only two years yet provided enough 
information for the authors to identify temporal experiments as an 
area needing additional research. The MITRE synthetic aging 
experiment used simulated aging as defined within the FaceGen 
modeler. Fifty random faces were used and each face was "aged" 
from age 20 to 60 in five year increments, generating a total of 
nine temporal images for each face. A representative set of 
synthetically aged face images is shown (Figure 4). The actual 
images are separate 640x480 jpeg files. 



 
Figure 4. Example faces for temporal experiment. 

 
Cross comparisons were performed for all 450 images (nine 
temporal instances of fifty faces), allowing us to view 
performance using any age face as the base reference. For each 
simulated age, the average comparison scores against the other 
ages were averaged across the fifty faces. While the statistical 
significance of this result in light of real data results reported in 
FRVT 2002 is uncertain due the dependency and differences in 
the respective galleries, the initial qualitative results appear 
consistent with FRVT conclusions. 

As expected, recognition continues to degrade over time 
(differences to the reference image increases), and this result is 
shown (Figure 5). One of the more interesting results of FRVT 
2002 was that older (males) were more recognizable than younger 
ones (and in particular younger females). While we did not 
partition temporal data by gender, note that where the base 
reference age is 40 (Figure 6), there is slightly better performance 
for subsequent aging. That is, the average distance from the 
reference image to the subsequent five year increments is less than 
the respective distances observed when the reference age is 20 
(Figure 5). 
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Figure 5. Recognition performance by simulated age 

(reference age 20). 

 
Figure 6. Recognition performance by simulated age 

(reference age 40). 

 
 

6. ENROLLMENT EXPERIMENT 
The 12,100 pose experiment faces were enrolled into 

FaceTools using a modified version of the automatic enrollment 
sample application provided by Viisage. The modified version 
provided more complete logging of the enrollment process, and 
recorded the following information for each image: image 
identifier, enrollment success (with return code from eye find 
routine), coordinates of right and left eye locations, eye spacing, 
time stamp. 

Enrollment performance for face recognition is the rate of 
successful enrollment as reported by the software's segmentation 
and eye finding processes.1 The enrollment rate for the temporal 
data with gray backgrounds was observed to be 90.2%, which was 
less than expected. Enrollments were then subsequently compared 
using white, gray, and black backgrounds, and we observed the 
best automated enrollment performance occurred with the black 
background. The comparison of enrollment performance with the 
different backgrounds is shown below (Table 1). The percentages 
represent the successful enrollment rate (that is, the combination 
of both correct and incorrect enrollments). As the black 
background result differs with NIST best practices for mugshot 
capture [7], and the vendor’s recommendation, it is a detail that 
merits further exploration. 

 
Table 1. Successful enrollments by image background 

White Grey Black 

89.3% 90.2% 97.7% 
 
 

Besides background color and contrast, other possible factors 
adversely affecting synthetic enrollments are eye quality, eye 

                                                                 
1 The related, more commonly used metric associated with 

acquisition and enrollment of biometrics is failure to acquire. 
For live tests, the failure to acquire rate is the rate that, for any 
reason, an image is unobtainable. For our methodology, 
however, we are also interested in determining the more subtle 
counterpart metric, false enrollments (images that were acquired 
and enrolled but with incorrect eye finds).   



contrast, and baldness of subjects. The relatively abrupt image 
transitions from background across to the (hairless) head, and 
from face to the eyes is visibly different with synthetic images, 
hence the software techniques used to detect these boundaries are 
likely to perform differently. The decision to not include hair 
models in the rendered images was based on the fact that the 
eigenface implementation used by Viisage masks out these 
regions prior to template generation.  

For the pose database, we expected to see enrollment 
performance degrade as function of increased pose angle—the 
same basic trend as anticipated for actual recognition 
performance. However, this expected result was not observed. 
Rather, we observed enrollment performance, when viewed as a 
function of pose angle (Figure 7), to contain local inflection 
points that are not easily explained. We also plotted the eye 
locations of the images that did enroll and found there to be a 
surprisingly high incidence of false enrollments. While these 
results may not be indicative of performance on real images, it is 
worth noting that the enrollment error rates, particularly the false 
enrollment rate, represent an important aspect of overall 
performance and is not individually reported in most biometric 
testing.2 The observed enrollment performance caused us to 
question the validity of subsequent recognition performance 
results. We therefore confirmed the results of the recognition 
performance experiments using supervised enrollment of the 
images (as opposed to automated enrollment). Supervised 
enrollment requires inspection of the images and manual 
designation of eye coordinates. 
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Figure 7. Successful enrollments by pose age angle.  

 

                                                                 
2 FERET test data provided eye coordinates as inputs for most the 

experiments. FRVT 2000 and FRVT 2002 were fully automatic. 
Real applications generally are not provided the benefit of face 
registration information, and consequently performance is an 
unknown combination of face detection and subsequent 
recognition processing. Face detection, registration, and 
segmentation is sufficiently challenging that it may benefit from 
isolated testing for some applications. Sometimes this 
information is reported as a failure to acquire rate. The 
counterpart false enrollment rate, however, is seldom reported 
and not sufficiently addressed in current biometric testing. 

7. INDIVIDUALITY OF GALLERY 
An important corollary question that arises with synthetic images 
is, how unique are the generated faces? The FaceGen modeler 
uses a statistical appearance model to formalize their concept of 
gender, age, race, and "random" faces. The issue of validating that 
a large gallery of synthetic faces is in fact a meaningful 
representation of a natural population is a difficult challenge. We 
examined the gallery uniqueness question for our gallery of 100 
faces from the pose experiment by performing exhaustive cross 
comparisons between all the images. The scores were mapped into 
color regions and plotted in a graphical matrix shown below 
(Figure 8). 

Figure 8. Individuality of the synthetic gallery.  

 
Black dots are assigned to all scores under the threshold of 

0.7. Lighter tones represent the more distant matches, and the 
middle tones depict middle ranges. The visual effect is that all 
images match themselves (along the diagonal), and there is only a 
relative small of similar faces. From the raw data, we tabulated the 
cross over match rate to be 2.9%, and it is evident the confusion 
that does occur is symmetric. Overall the synthetic gallery exhibits 
reasonably good separation. 
 

8. CONCLUSIONS AND FUTURE WORK 
The techniques presented here demonstrate that different test 
factors can be isolated to assess their parametric influence on face 
recognition processes. Moreover, eye finding and other sub-
processing tasks critical to overall face recognition performance 
can be instrumented along with the primary test factors. Examples 
of other important sub-processing tasks are light balancing, light 
normalization, and pose estimation (from image data). 

In addition to pose and temporal experiments addressed here, 
accounting for differences in lighting across environments 
(particularly indoor versus outdoor) is an area identified as 
requiring new or more robust processing techniques. As presented 

 



in Blanz and Vetter's morphable models [4], adjustments to face 
models (and resulting two dimensional images) are possible 
providing there are known exemplars within the data. The 
application to face recognition is to use these parametric 
representations of lighting and pose (view) angle as the basis for 
image reconstruction. The goal of the reconstructed image is to 
remove (or adjust for) any lighting and pose differences that may 
exist between reference and target images. 

While qualitative aspects of sensitivity testing can be 
achieved with these techniques, the problem of validating that 
large galleries (10,000 or more) of synthetic faces are 
representative of a natural population remains a challenge to be 
addressed. 
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