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Abstract 

We describe an algorithm for choosing term 
weights to maximize average precision. The 
algorithm performs successive exhaustive 
searches through single directions in weight 
space. It makes use of a novel technique for 
considering all possible values of average pre­
cision that arise in searching for a maximum in 
a given direction. We apply the algorithm and 
compare this algorithm to a maximum entropy 
approach. 

1 Introduction 

This paper presents an algorithm for searching term 
weight space by directly hill-climbing on average pre­
cision. Given a query and a topic—that is, given a set 
of terms, and a set of documents, some of which are 
marked “relevant”—the algorithm chooses weights that 
maximize the average precision of the document set when 
sorted by the sum of the weighted terms. We show that 
this algorithm, when used in the larger context of finding 
“optimal” queries, performs similar to a maximum en­
tropy approach, which does not climb directly on average 
precision. 

This work is part of a larger research program on the 
study of optimal queries. Optimal queries, for our pur­
poses, are queries that best distinguish relevant from non-
relevant documents for a corpus drawn from some larger 
(theoretical) population of documents. Although both 
performance on the training data and generalization abil­
ity are components of optimal queries, in this paper we 
focus only on the former. 

2 Motivation 

Our initial approach to the study of optimal queries em­
ployed a conditional maximum entropy model. This 
model exhibited some problematic behavior, which mo­
tivated the development of the weight search algorithm 
described here. 

The maximum entropy model is used as follows. It is 
given a set of relevant and non-relevant documents and a 
vector of terms (the query). For any document, the model 
predicts the probability of relevance for that document 
based on the Okapi term frequency (tf ) scores (Robertson 
and Walker, 1994) for the query terms within it. Queries 
are developed by starting with the best possible one-term 
query and adding individual terms from a candidate set 
chosen according to a mutual information criterion. As 
each term is added, the model coefficients are set to max­
imize the probability of the empirical data (the document 
set plus relevance judgments), as described in Section 4. 

Treating the model coefficients as term weights yields 
a weighted query. This query produces a retrieval status 
value (RSV) for each document that is a monotonically 
increasing function of the probability of relevance, in ac­
cord with the probability ranking principle (Robertson, 
1977). We can then calculate the average precision of the 
document set as ordered by these RSVs. 

As each additional query term represents another de­
gree of freedom, one would expect model performance to 
improve at each step. However, we noted that the addition 
of a new term would occasionally result in a decrease in 
average precision—despite the fact that the model could 
have chosen a zero weight for the newly added term. 
Figure 1 shows an example of this phenomenon for one 
TREC topic. 

This is the result of what might be called “metric di­
vergence”. While we use average precision to evaluate 
the queries, the maximum entropy model maximizes the 
likelihood of the training data. These two metrics occa­
sionally disagree in their evaluation of particular weight 
vectors. In particular, maximum entropy modeling may 
favor increasing the estimation of documents lower in the 
ranking at the expense of accuracy in the prediction of 
highly ranked documents. This can increase training data 
likelihood yet have a detrimental effect on average preci­
sion. 

The metric divergence problem led us to consider an al­
ternative approach for setting term weights which would 
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hill-climb on average precision directly. In particular, we 
were interested in evaluating the results produced by the 
maximum entropy approach—how much was the maxi­
mization of likelihood affecting the ultimate performance 
as measured by average precision? The algorithm de­
scribed in the following section was developed to this 
end. 

3 The Weight Search Algorithm 

The general behavior of the weight search algorithm is 
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similar to the maximum entropy modeling described in 
Section 2—given a document corpus and a term vector, 
it seeks to maximize average precision by choosing a 
weight vector that orders the documents optimally. Un­
like the maximum entropy approach, the weight search 
algorithm hill-climbs directly on average precision. 

The core of the algorithm is an exhaustive search of a 
single direction in weight space. Although each direction 
is continuous and unbounded, we show that the search 
can be performed with a finite amount of computation. 
This technique arises from a natural geometric interpreta­
tion of changes in document ordering and how they affect 
average precision. 

At the top level, the algorithm operates by cycling 
through different directions in weight space, performing 
an exhaustive search for a maximum in each direction, 
until convergence is reached. Although a global maxi­
mum is found in each direction, the algorithm relies on a 
greedy assumption of unimodality and, as with the max­
imum entropy model, is not guaranteed to find a global 
maximum in the multi-dimensional space. 

3.1 Framework 

This section formalizes the notion of weight space and 
what it means to search for maximum average precision 
within it. 

Queries in information retrieval can be treated as vec­
tors of terms t1, t2, · · · , tN . Each term is, as the name 
suggests, an individual word or phrase that might oc­
cur in the document corpus. Every term t i has a weight 
φi determining its “importance” relative to the other 
terms of the query. These weights form a weight vec­
tor � = ∈φ1 φ2 · · · φN →. Further, given a document 
corpus �, for each document dj � � we have a “value 
vector” �j = ∈�j1 �j2 · · · �jN →, where each “value” 
�ji � ∃ gives some measure of term ti within document 

number of terms 

Figure 1: Average precision by query size as generated 
by the maximum entropy model for TREC topic 307. 

context is then the familiar problem of finding maxima in 
an N -dimensional landscape. 

3.2 Powell’s algorithm 

One general approach to this problem of searching a 
multi-dimensional space is to decompose the problem 
into a series of iterated searches along single directions 
within the space. Perhaps the most basic technique, cred­
ited to Powell, is simply a round-robin-style iteration 
along a set of unchanging direction vectors, until conver­
gence is reached (Press et al., 1992, pp. 412-420). This 
is the approach used in this study. 

Formally, the procedure is as follows. You are given 
a set of direction vectors �1, �2, · · · , �N and a starting 
point υ0. First move υ0 to the maximum along �1 and 
call this υ1, i.e. υ1 = υ0 + µ1�1 for some scalar µ1. 
Next move υ1 to the maximum along �2 and call this 
υ2, and so on, until the final point υN . Finally, replace 
υ0 with υN and repeat the entire process, starting again 
with �1. Do this until some convergence criterion is met. 

This procedure has no guaranteed rate of convergence, 
although more sophisticated versions of Powell’s algo­
rithm do. In practice this has not been a problem. 

3.3 Exhaustively searching a single direction 

Powell’s algorithm can make use of any one-dimensional 
search technique. Rather than applying a completely gen­
eral hill-climbing search, however, in the case where doc­
ument scores are calculated by a linear equation on the 
terms, i.e. 

dj—typically the frequency of occurrence or a function 
thereof. In the case of the standard tf-idf formula, � ji 

is the term frequency and φi the inverse document fre-
υj = 

N � 

i=1 

φi�ji = � · �j 

quency. 
If the document corpus and set of terms is held fixed, 

the average precision calculation can be considered a 
function f : ∃N � [0, 1] mapping � to a single aver­
age precision value. Finding the weight vectors in this 

as they are in the tf-idf formula, we can exhaustively 
search in a single direction of the weight space in an effi­
cient manner. This potentially yields better solutions and 
potentially converges more quickly than a general hill-
climbing heuristic. 

20 20
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Figure 2: Sample plot of υ versus µ for a given direction. 

The insight behind the algorithm is as follows. Given 
a direction � in weight space and a starting point υ, the 
score of each document is a linear function of the scale µ 
along � from υ: 

υj = � · �j 

= (υ + µ�) · �j 

= υ · �j + µ (� · �j) . 

i.e. document di’s score, plotted against µ, is a line with 
slope � · �i and y-intercept υ · �j . 

Consider the graph of lines for all documents, such as 
the example in Figure 2. Each vertical slice of the graph, 
at some point � on the x axis, represents the order of the 
documents when µ = �; specifically, the order of the 
documents is given by the order of the intersections of 
the lines with the vertical line at x = �. 

Now consider the set of intersections of the document 
lines. Given two documents dr and ds, their intersection, 

x , �yif it exists, lies at point �rs = (� rs) wherers

υ · (�s − �r)
�x = , and rs 

� · (�r − �s) 

x�y = υ · �r + �rs (� · �r)rs 

(Note that this is undefined if � · �r = � · �s, i.e., if the 
document lines are parallel.) 

Let � be the set of all such document intersection 
points for a given direction, document set and term vec­
tor. Note that more than two lines may intersect at the 
same point, and that two intersections may share the same 
x component while having different y components. 

Now consider the set �x, defined as the projection of 
� onto the x axis, i.e. �x = {� | � � � � s.t. �x = �}. 
The points in �x represent precisely those values of µ 
where two or more documents are tied in score. There­
fore, the document ordering changes at and only at these 

points of intersection; in other words, the points in � x 

partition the range of µ into at most M(M −1)/2 + 1 re­
gions, where M is the total number of documents. Within 
a given region, document ordering is invariant and hence 
average precision is constant. As we can calculate the 
boundaries of, and the document ordering and average 
precision within, each region, we now have a way of find­
ing the maximum across the entire space by evaluating 
a finite number of regions. Each of the O(M 2) regions 
requires an O(M log M) sort, yielding a total computa­
tional bound of O(M 3 log M). 

In fact, we can further reduce the computation by ex­
ploiting the fact that the change in document ordering be­
tween any two regions is known and is typically small. 
The weight search algorithm functions in this manner. It 
sorts the documents completely to determine the order­
ing in the left-most region. Then, it traverses the regions 
from left to right and updates the document ordering in 
each, which does not require a sort. Average precision 
can be incrementally updated based on the document or­
dering changes. This reduces the computational bound to 
O(M2 log M), the requirement for the initial sort of the 
O(M2) intersection points. 

4 Experiment Setup 

In order to compare the results of the weight search al­
gorithm to those of the maximum entropy model, we em­
ployed the same experiment setup. We ran on 15 topics, 
which were manually selected from the TREC 6, 7, and 
8 collections (Voorhees and Harman, 2000), with the ob­
jective of creating a representative subset. The document 
sets were divided into randomly selected training, valida­
tion and test “splits”, comprising 25%, 25%, and 50%, 
respectively, of the complete set. 

For each query, a set of candidate terms was selected 
based on mutual information between (binary) term oc­
currence and document relevance. From this set, terms 
were chosen individually to be included in the query, 
and coefficients for all terms were calculated using L­
BFGS, a quasi-Newton unconstrained optimization algo­
rithm (Zhu et al., 1994). 

For experimenting with the weight search algorithm, 
we investigated queries of length 1 through 20 for each 
topic, so each topic involved 20 experiments. The first 
term weight was fixed at 1.0. The single-term queries 
did not require a weight search, as the weight of a single 
term does not affect the average precision score. For the 
remaining 19 experiments for each topic, the direction 
vectors � were chosen such that the algorithm searched 
a single term weight at a time. For example, a query with 
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Figure 3: Average precision versus query size for the 
weight search algorithm. Each line represents a topic. 

i terms used the i − 1 directions 

�i,1 = ∈0 1 0 0 · · · 0→, 
�i,2 = ∈0 0 1 0 · · · 0→, 

. . . 
�i,i−1 = ∈0 0 0 0 · · · 1→. 

The two-term query for a topic started the search from the 
point υ2,0 = ∈1 0→, and each successive experiment for 
that topic was initialized with the starting point υ0 equal 
to the final point in the previous iteration, concatenated 
with a 0. The “value vectors” �j used in all experiments 
were Okapi tf scores. 

5 Results 

The average precision scores obtained by the maximum 
entropy and weight search algorithm experiments are 
listed in Table 1. The “Best AP” and “No. Terms” 
columns describe the query size at which average preci­
sion was best and the score at that point. These columns 
show that the maximum entropy approach performs just 
as well as the average precision hill-climber, and in some 
cases actually performs slightly better. This suggests that 
the metric divergence as seen in Figure 1 did not prohibit 
the maximum entropy approach from maximizing aver­
age precision in the course of maximizing likelihood. 

The “5 term AP” column compares the performance 
of the algorithms on smaller queries. The weight search 
algorithm shows a slight advantage over the maximum 
entropy model on 10 of the 15 topics and equal perfor­
mance on the others, but definitive conclusions are diffi­
cult at this stage. 

Figure 3 shows the average precision achieved by the 
weight search algorithm, for all 20 query sizes and for 
all 15 topics. Unlike the maximum entropy results, 
the algorithm is guaranteed to yield monotonically non-
decreasing scores. 

Topic 

301 
302 
307 
330 
332 
347 
352 
375 
383 
384 
388 
391 
407 
425 
439 

5 term AP Best AP No. Terms 
WS 
0.68 
0.88 
0.57 
0.65 
0.74 
0.78 
0.55 
0.92 
0.89 
0.77 
0.82 
0.64 
0.83 
0.75 
0.53 

ME 
0.67 
0.86 
0.56 
0.61 
0.72 
0.78 
0.55 
0.92 
0.89 
0.73 
0.80 
0.63 
0.83 
0.73 
0.51 

WS 
0.90 
1.00 
0.98 
1.00 
0.99 
1.00 
0.94 
1.00 
1.00 
1.00 
1.00 
0.99 
1.00 
1.00 
1.00 

ME 
0.90 
1.00 
0.89 
1.00 
1.00 
1.00 
0.93 
1.00 
1.00 
1.00 
1.00 
0.98 
1.00 
1.00 
1.00 

WS 
>20 

10 
>20 

10 
>20 

17 
>20 

9 
9 
8 
7 

>20 
9 

12 
17 

ME 
>20 

10 
>20 

10 
18 
14 

>20 
9 
9 
8 
7 

>20 
9 

12 
16 

Table 1: Average precision achieved for weight search 
(WS) and maximum entropy (ME) algorithms. 

6 Conclusions 

We developed an algorithm for exhaustively searching a 
continuous and unbounded direction in term weight space 
in O(M 2 log M ) time. Initial results suggest that the 
maximum entropy approach performs as well as this al­
gorithm, which hill-climbs directly on average precision, 
allaying our concerns that the metric divergence exhib­
ited by the maximum entropy approach is a problem for 
studying optimal queries. 
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