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ATMOSPHERIC DENSITY MODEL ERRORS AND VARIATIONS
IN THE BALLISTIC COEFFICIENT

James G. Miller*

Atmospheric density model errors are absorbed as variations in the ballistic
coefficient or B term by the differential correction process.  Unmodeled
forces (e.g., geopotential terms) can also lead to variations in B.  For
satellites with small energy dissipation rates, observability problems also
contribute to variations in B.  Monte Carlo simulation is used to determine
the accuracy of the variation in the ballistic coefficient in absorbing
atmospheric density model errors.  The standard deviation of the relative
change in B from the least squares differential correction covariance matrix
is shown to provide an estimate of the accuracy of the variation of B in
absorbing atmospheric density model errors.  The accuracy of the variation
of B depends on the accuracy of the sensor measurements, the differential
correction fit span, and the number of independent observations in the fit
span.  The length of the fit span is most critical for satellites with B term
observability problems.

INTRODUCTION

Snow and Liu1 discovered that the empirical ballistic coefficients of several
satellites exhibited noticeable variations in a synchronized fashion over the same periods
of time.  They attributed these variations to atmospheric neutral density model errors, and
possibly to other model errors, including unmodeled geopotential terms.  Marcos, et. al.,2

used the variation in the ballistic coefficient of a satellite to back out atmospheric density
model errors.  The density model errors were typically about 15%.  Time-dependent
global corrections to the atmospheric density model were then applied to the orbit
determination of other satellites.  The corrected atmospheric density model significantly
improved the orbit determination of these satellites.

Monte Carlo simulation is a technique that can be used to investigate the
statistical variations in ballistic coefficient due to atmospheric density model errors.  The
advantages of simulation techniques are that one has control over the error sources and
their statistical properties, and a “truth” reference orbit is available for comparison with
the simulated orbits.  The disadvantage of simulation is that the real world may be over
simplified so that the results of the simulation are not applicable.  Monte Carlo simulation
is used in this paper to determine the accuracy of the variation in the ballistic coefficient
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or B term in absorbing atmospheric density model errors.  Variations in B due to
unmodeled forces are eliminated by accepting a truncated gravitational potential as the
truth model.  Sensor measurement errors and atmospheric density model errors are the
only source of error in the simulation.  With these assumptions, the standard deviation of
the relative change in B from the least squares differential correction covariance matrix is
shown to provide an estimate of the accuracy of variation of B in absorbing atmospheric
density model errors.  The accuracy of the variation of B depends on the accuracy of the
sensor measurements, the differential correction fit span, and the number of independent
observations in the fit span.  The length of the fit span is most critical for satellites with B
term observability problems.

MODEL DESCRIPTION

The equations of motion for a satellite in the earth’s gravitation field and
atmosphere are given by

(1) d2r/dt2 = aG + aD = ————U - 2
1 Brvrel vrel,

where r is the earth centered inertial (ECI) position vector of the satellite, aG is the
gravitational acceleration, aD is the drag acceleration, U is the gravitational potential, B
(m2/kg) is the ballistic coefficient or B term, r (kg/m3) is the atmospheric density, and vrel

is the velocity of the satellite relative to the atmosphere.  For an atmosphere corotating
with the earth

(2) vrel = v - wwww ¥  r,

where v is the ECI velocity vector of the satellite and wwww is the earth’s rotation vector.  We

take the truncated gravitation potential given by the two-body potential plus the J2 term
as the true gravitational model.  Thus

(3) U = (m/r)[1 + J2(R/r)2(1 - 3 sin2f)/2],

where m is the earth’s gravitational constant, f = z/r is the geocentric latitude, and R is the

earth’s equatorial radius.  Similar to simplifications made by Brouwer and Hori3, we
assume a stationary atmosphere, so that vrel = v.

We consider satellites in near-circular orbits and make the simplifying assumption
that the atmospheric model density, r, is constant over the small altitude variations of the

satellite.  We also assume that that there is a known true density, rtrue, which is constant

over the small altitude variations of the satellite.  For each Monte Carlo trial for a given
satellite, we take the model density, r, to be a sample from the normal distribution with

mean equal to rtrue and standard deviation equal to 0.15 rtrue (15% error).  Thus, r is also



constant over the differential correction fit span.  We assume that the true ballistic
coefficient, Btrue, is known.  We then define an ideal ballistic coefficient,

(4) Bideal = Btrue (rtrue/r).

Since Bideal r = Btrue rtrue, the orbit obtained by integrating Eq. (1) with B = Bideal and the

simulated r is identical to the truth orbit obtained by integrating Eq (1) with Btrue and rtrue

(assuming the initial state vectors are the same).  Thus, Bideal is the ballistic coefficient
that perfectly absorbs the atmospheric density error in r.  If the sensor measurements are

perfect, then the differential correction process should obtain Bideal as the solved for
ballistic coefficient.  Assuming that the sensors have some measurement errors, the
solved for ballistic coefficient, B, should be close to Bideal.  The ratio (B – Bideal)/Bideal is
the measure of the relative accuracy of B in absorbing the errors in the model density, r.

We will show that the standard deviation, sDB/B, obtained from the covariance matrix in

the differential correction process, is an estimate of the relative error (B – Bideal)/Bideal.

DIFFERENTIAL CORRECTIONS

Differential corrections to the 7 state system consisting of the state vector (r, v)
and the ballistic coefficient B are obtained by solving the equation

(5) Ax = b

by weighted least squares.  The differential correction vector, x, is the column vector with
components (Dr, Dv, DB/B).  We solve for the relative correction of B rather than the

absolute correction.  The right-hand side of Eq. (5) is the column vector, b, of the
differences between m observed sensor measurements and the calculated measurements
from the predicted state obtained by integrating Eq. (1).  The left hand side of Eq. (5) is
the m ¥  7 matrix A, obtained as the product of the partial derivatives of the
measurements with respect to the state variables times the state transition matrix.  The
state transition matrix transforms differential corrections at the time of the measurements
to the epoch time of the updated state, which we take to be the time of the last
observation in the fit span.  The state transition matrix satisfies a first order differential
equation, which is numerically integrated simultaneously with Eq. (1), rewritten as a first
order differential equation.  Thus, we are using Cowell’s method4 of special
perturbations.  A fourth-order Runge-Kutta integrator is used for the integration.

We multiply both sides of Eq. (5) by the m ¥  m diagonal matrix D, whose
diagonal entries are the reciprocals of the standard deviations of the sensor measurement
errors.  The optimal solution of the weighted least squares problem (DA)x = Db satisfies
the normal equations

(6) (ATWA)x = ATWb,



where W = DTD and the superscript T indicates the transpose of the matrix.  Eq. (6) is
solved for the differential correction vector, x, and the process is iterated until the
updated state converges.  The covariance matrix, C,  is given by

(7) C = (ATWA)-1.

Four sensors are positioned on the equator at 0, 90, 180, and 270 degrees latitude.
Range measurements are simulated by adding normally distributed errors to the truth
orbit.  We simulate range measurements at uniform time intervals as long as the satellite
is in the sensors’ field of view.  We assume that the standard deviations of the range
errors of all the sensors are the same and have the value s.  Thus, W = s -2 I, where I is

the identity matrix.

SIMULATION RESULTS

Consider a satellite with Btrue = 0.01 m2/kg in a near-circular orbit at an altitude of
400 km and an inclination of 60 deg.  This is a typical value for the ballistic coefficient
for payloads and rocket bodies.  We take the true density, rtrue, at an altitude of 400 km to

be 3.725 ¥  10-12 kg/m3, and assume it is constant over small variations in altitude so that
the satellite experiences a constant atmospheric density.  This density value was taken
from an exponential atmospheric model5, but we are not using the exponential variation
of density with altitude.  For each Monte Carlo trial, we take the initial state vector to be
the truth state vector and the ballistic coefficient B = Btrue.  Each Monte Carlo trial uses a
simulated value of r as a sample from the normal distribution with mean rtrue and

standard deviation 0.15 rtrue, and a set of sensor range measurements with zero mean and

standard deviation s.  The differential correction process will correct the state vector and

ballistic coefficient B to fit the simulated density r and sensor measurements.

The energy dissipation rate (EDR) of a satellite is defined by the path integral

(8) EDR = -(1/T) Ú
2

1

s

s

aD ∑ ds,

where T is the time between the points s1 and s2, which we take to be the differential
correction fit span, and ds is the differential arc length along the orbit.  For the above
satellite, EDR = 0.008408 (W/kg), which corresponds to a moderate amount of drag.

Using the truth orbit of the satellite, we compute the sample standard deviations
(sDu, sDv, sDw) of the (Du, Dv, Dw) position errors at the epoch time from n Monte Carlo

trials, where (u, v, w) is the radial, in-track, and cross-track coordinate system relative to
the satellite.  We also compute the sample standard deviation sDB/B of (B – Bideal)/Bideal.



For each Monte Carlo trial, the 3 ¥  3 spatial part of the covariance matrix C is rotated
into the (u, v, w) coordinate system to obtain the standard deviations (sDu, sDv, sDw).  The

square root of the (7,7) entry of C is sDB/B.  We then take the sample mean and sample

standard deviation of these covariance derived sigmas.  A 100(1 - a)% confidence

interval for the standard deviation is given by

(9) ((1-n)1/2s/(c2
1-a/2, n-1)

1/2, (1-n)1/2s/(c2
a/2, n-1)

1/2),

where s is the sample standard deviation, n is the number of samples, and c2
p, n is the

(100p)th percentile of the c2 distribution with n degrees of freedom.  The level of

significance is a, which we will take as 0.05.

Table 1 shows the statistics for the Monte Carlo simulation for the above satellite
with n = 1000, s = 10.0 m, a 1-day fit span, and a 60 sec interval between sensor

observations.  The sample standard deviations of the covariance derived sigmas are
extremely small, implying that these sigmas are essentially constant between Monte
Carlo trials.  This is due to the fact that the sensors’ range sigma, the fit span, and the
interval between sensor observations are kept constant for the Monte Carlo trials.  For
each variable, the means of the covariance derived sigmas all fall within the 95%
confidence interval for the standard deviations obtained from Eq. (9).  Thus, each of these
sigmas is a good estimate of the standard deviation of the errors.

Table 1

ERROR STATISTICS FOR SATELLITE AT 400 KM ALTITUDE

Variable Sample
mean

Sample
standard
deviation

95% confidence
interval for the
standard
deviation

Sample
mean of
covariance
sigma

Sample standard
deviation of
covariance
sigma

Du (m) -.09 2.68 (2.56, 2.80) 2.64 .000001

Dv (m) .09 3.65 (3.41, 3.73) 3.53 .000001

Dw (m) -.01 2.38 (2.28, 2.49) 2.46 .000003

(B – Bideal)/Bideal -.00006 .00116 (.00111,.00122) .00120 .000001

The relative variation of B from Bideal is very small, 0.0012 or 0.12%.  However,
the relative variation (sample standard deviation of (B – Btrue)/Btrue) of B from Btrue is
large, 0.165 or 16.5%, which is larger than the 15% error in r.  The sample mean of B is

0.01028, which is a 2.8% error from Btrue.  Because we assumed that the errors in r are

normally distributed and B is approximately equal to Bideal, Eq. (4) implies that B is not



normally distributed.  The median is a more robust estimate of the central tendency of a
distribution than the mean.  We note that the median of B is 0.01010, which is a 1.0%
error from Btrue.  From Eq. (4), 1/Bideal = r/(Btrue rtrue).  Since B is approximately equal to

Bideal, we expect that 1/B is approximately normally distributed with mean 1/Btrue = 100.0
and standard deviation equal to 15.0.  The sample mean of 1/B is 99.60 and the sample
standard deviation of 1/B is 14.83.  We note that 1/(mean(1/B)) = 0.01004, which is a
0.4% error from Btrue.  The Kolmogorov-Smirnov test6 is applied to 1/B and the normal
distribution with mean 100.0 and standard deviation 15.0.  Figure 1 shows the cumulative
distribution of 1/B and the cumulative normal distribution.  The maximum vertical
distance, d, between the two graphs is 0.032, which corresponds to a probability of 0.248
from the Kolmogorov-Smirnov test with 1000 samples.  At the level of significance of
0.05, we cannot reject the null hypothesis that 1/B is normally distributed with mean
100.0 and standard deviation 15.0.

Figure 1  Cumulative Distribution of 1/B and the Cumulative Normal Distribution

From an examination of empirical ballistic coefficients of many satellites during
the year 2000 obtained from special perturbation differential corrections of real world
sensor observations, neither B nor 1/B appears to be normally distributed.  It is therefore
advisable to use the median of B as the best estimate of the true value of the ballistic
coefficient.  Note that median(B) = 1/(median(1/B)).  In general, if f(X) is a monotonic
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transformation of a random variable X, then median(f(X)) = f(median(X)), i.e., the
median is preserved under a monotonic transformation.  The mean of a random variable
is not preserved under a monotonic transformation.

Table 2 shows other Monte Carlo simulations for the same satellite with different
values for s, fit spans, and time intervals between sensor observations.  Each Monte

Carlo simulation in Table 2 contains 1000 trials.  All the covariance derived sigmas are
within the 95% confidence interval for the standard deviations and are thus good
estimates of the standard deviations.  The second row of Table 2 is the Monte Carlo
simulation from Table 1.  Since W = s -2 I, Eq. (7) implies that C is proportional to s2 and

the covariance derived sigmas are proportional to s.  The first three rows of Table 2 show

this linear dependence on s.  Rows 1, 4, and 5 of Table 2 show that the covariance

derived sigmas are approximately proportional to 1/ n , where n is the number of sensor

measurements.  This 1/ n  relationship between the sigmas and the number of sensor
measurements is a result of the assumption that the sensor measurements are statistically
independent.  Real world sensor measurements may not be independent when the time
interval between observations is short, in which case we would need to simulate the
observations in a track as an auto-correlated time series instead of independent
measurements.  Rows 1, 6, and 7 of Table 2 show that the covariance derived sigmas for
the position errors are fairly constant for different fit spans, provided the number of
sensor measurements remains constant.  (There is a slight increase in sDv and a slight

decrease in sDw as the fit span increases.)  However, sDB/B is approximately proportional

to 1/n2, where n is the number of days in the fit span.

Table 2

MONTE CARLO SIMULATIONS FOR SATELLITE AT 400 KM ALTITUDE

s (m) Fit
span
(days)

Time
interval
between
sensor
observations
(sec)

Number of
sensor
measurements

sDu (m) sDv (m) sDw (m) sDB/B

100 1 60 131 26.36 35.28 24.60 .0120
10 1 60 131 2.64 3.53 2.46 .00120
1 1 60 131 0.26 0.35 0.25 .000120
100 1 30 265 18.25 25.12 18.53 .00844
100 1 10 794 10.40 14.52 11.39 .00486
100 2 120 126 26.93 40.98 23.37 .00344
100 3 180 128 26.65 43.22 19.01 .00162



Now consider the same satellite with Btrue = 0.01 m2/kg in a near circular orbit at
an altitude of 800 km and an inclination of 60 deg.  We take rtrue = 1.170 ¥  10-14 kg/m3,

and assume it is constant over the small variations in the altitude of the satellite.  This
density was taken from the exponential atmospheric density model at an altitude of 800
km from Table 7-4 in Ref. 5.  This same satellite at an altitude of 800 km has an EDR
equal to 0.00002423 W/kg, which corresponds to a very small amount of drag.

For each Monte Carlo trial we again take the model density, r, to be a sample

from the normal distribution with mean equal to rtrue and standard deviation equal to 15%

of rtrue.  Table 3 shows the statistics for the Monte Carlo simulation for this satellite with

n = 1000, s = 100.0 m, a 3-day fit span, and a 60 sec interval between sensor

observations.  All the covariance derived sigmas for the position errors are nearly
constant between Monte Carlo trials, and their means fall within the 95% confidence
interval for the standard deviations.  However, the covariance derived sDB/B is not

constant between Monte Carlo trials (its sample standard deviation is 0.095), and the
sample mean of sDB/B is not in the 95% confidence interval for the standard deviation.

There is an observability problem for this ballistic coefficient at this altitude with these
sensor measurement errors and fit span.  The differential corrections for B are fitting
sensor measurement noise and are unable to correct B to Bideal.

Table 3

ERROR STATISTICS FOR SATELLITE AT 800 KM ALTITUDE

Variable Sample
mean

Sample
standard
deviation

95% confidence
interval for the
standard
deviation

Sample
mean of
covariance
sigma

Sample standard
deviation of
covariance
sigma

Du (m) -.24 8.34 (7.99, 8.73) 8.26 .000009

Dv (m) -.18 19.59 (18.77, 20.49) 19.58 .000019

Dw (m) .21 10.67 (10.22, 11.16) 10.42 .000049

(B – Bideal)/Bideal -.0133 .245 (.235,.256) .270 .095

This observability problem can be overcome by decreasing the sensor
measurement errors or increasing the fit span.  Increasing the number of observations
only marginally improves the observability of B.  Table 4 shows other Monte Carlo
simulations for this satellite with different values for s, fit spans, and time intervals

between sensor observations.  Each Monte Carlo simulation in Table 4 contains 1000
trials.  The first row of Table 4 is the Monte Carlo simulation from Table 3.  All the
covariance derived sigmas are within the 95% confidence interval for the standard



deviations except sDB/B in the first row.  The first three rows of Table 4 show the linear

dependence on s.  The sample standard deviation 0.245 is a better estimate of the

standard deviation than sDB/B for the first row and better fits the linear trend with s.

Rows 1, 4, and 5 of Table 4 show that the covariance derived sigmas are approximately
proportional to 1/ n , where n is the number of sensor measurements.  Rows 1, 6, 7, and
8 of Table 4 show that the covariance derived sigmas for the position errors are fairly
constant for different fit spans, provided the number of sensor measurements remains
constant.  (There is a slight decrease in sDw as the fit span increases until the fit span

equals 12 days, in which case there is a slight increase in sDw.)  Again, sDB/B is

approximately proportional to 1/n2, where n is the number of days in the fit span.  The
sample standard deviation 0.245 is a better estimate of the standard deviation than sDB/B

for the first row and better fits the 1/n2 trend with the length of the fit span.

Table 4

MONTE CARLO SIMULATIONS FOR SATELLITE AT 800 KM ALTITUDE

s (m) Fit
span
(days)

Time
interval
between
sensor
observations
(sec)

Number of
sensor
measurements

sDu (m) sDv (m) sDw (m) sDB/B

100 3 60 727 8.26 19.58 10.42 .270
10 3 60 727 .83 1.96 1.04 .0247
1 3 60 727 0.08 0.20 0.10 .00246
100 3 30 1453 5.83 13.84 7.37 .181
100 3 10 4367 3.35 8.02 4.32 .102
100 6 120 737 8.34 20.42 7.52 .0630
100 9 180 741 8.49 20.11 5.86 .0280
100 12 240 724 8.76 20.27 6.25 .0163

CONCLUSIONS

It has been shown that the covariance derived sDB/B is a good estimate for the

standard deviation of (B – Bideal)/Bideal, provided there are no observability problems for
the ballistic coefficient, B.  If there are no observability problems for B, sDB/B is small (on

the order of 1% or less).  The standard deviation of (B – Btrue)/Btrue can be quite large and
depends on the errors in the atmospheric model density, r.  It has also been shown that



the covariance derived sigmas for the position errors and sDB/B have specific functional

dependencies on the sensor measurement errors, differential correction fit span, and
number of independent observations in the fit span.
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