
Systematic Generation of Dependable Change Coordination Plans
for Automated Switching of Coordination Policies

Prasanta Bose Mark G. Matthews
George Mason University

Fairfax, VA
pbose@mgfairfax.rr.com

The MITRE Corporation
McLean, VA

mmatthew@mitre.org

Abstract

Distributed information systems for decision support
and e-commerce applications require coordination of
multiple autonomous components and their services to
accomplish a set of global goals. In such systems, a
global and often distributed coordination policy actively
governs the coordination among the distributed
components. The policies are used to interpret messages
or events (e.g., job assignments, changes in data) from the
cooperating components, in order to generate tasks with
sequencing constraints. The generated tasks and their
sequencing are then used as a basis for coordination of
the services provided and required by the components.
This paper presents the SWAP architecture that addresses
the problem of dynamic changes in the needs or context of
the autonomous components via change in the
coordination policy at run-time. We present a method in
the context of SWAP for the systematic generation of
change coordination plans supporting the automated
switching of coordination policies.

1. Introduction

In cooperating information systems, multiple
distributed and autonomous components must be
coordinated to accomplish a set of global goals. In such
systems, a global and often distributed coordination
policy actively governs the coordination among the
distributed components. The policies may be domain
independent or domain dependent. They are used to
interpret messages or events (e.g., job assignments,
changes in data) from the cooperating components, in
order to generate tasks with sequencing constraints. The
generated tasks and their sequencing are then used as a
basis for coordination of the services provided and
required by the components. Current architectures for
such systems are based on design-time analysis and
selection of the coordination policies in effect in a system.

A major problem with such static policy based
coordination is handling dynamic changes in needs and
context of the autonomous components that require
dynamic changes in the coordination policy. For systems
with non-trivial coordination policies, most current
approaches require the system to be shut down,
reconfigured, and then restarted in order to change the
policy. Other approaches require the system to be at a
quiescent state prior to the run-time coordination policy
change [2].

In this paper we present a method for the systematic
generation of change coordination plans supporting the
automated switching of coordination policies. We present
this method in the context of SWAP [3]; an architecture
that supports run-time coordination policy changes for the
class of cooperating information systems.

In section 2, we provide background information on
the SWAP architecture. In section 3, we present a method
for the systematic generation of dependable change
coordination plans. In section 4, we include a brief
example from the multi-source database view
maintenance domain. In sections 5 and 6, we discuss
related work and present a summary.

2. Background

In [3], we present the SWAP architecture for
automated switching of coordination policies in response
to dynamically changing needs and context. A simplified
model of the structural view of the SWAP architecture is
depicted in Figure 1 below.

The SWAP configuration in Figure 1 supports two
coordination policies, P1 and P2. At any point in time, a
single coordination policy is active and governs the
interaction between the application components (e.g., C1-
C3). The active policy is used to interpret messages or
events from source components, in order to generate
messages or events for consumer components satisfying
specific sequencing and data constraints. In order to
support run-time coordination policy changes, SWAP

mailto:pbose@mgfairfax.rr.com
mailto:mmatthew@mitre.org

uses tracking agents (e.g., TA1 and TA2) and a change
coordination agent (CCA).

TA1 TA2

S WAP Adm in

CCA
ab stract s ta te

vector
ab stra ct sta te

ve cto r

c hange
dec is ion

P1

s ta te var ia b le
cha ng e

co nfigura ti on
action s

C3
C2

C1

P2

sta te variab le
c hange

co nfigura ti on
action s

a ppl ica ti on coo rd ina tion app lic a tio n co ord inatio n

Figure 1. Simplified SWAP architecture

A major concern for mechanisms that support dynamic
policy changes is ensuring safe and dependable transitions
between coordination policies. This requires having
knowledge of the processing state of the current
coordination policy. The SWAP tracking agents monitor
the coordination policy components and use specifications
of the policies in order to track the policy execution state.
In response to a switching decision from the SWAP
administrator, the CCA uses the state information
obtained from the tracking agents to coordinate the
actions required to safely bring about the run-time change
in a dependable manner. The CCA includes a set of
change plans specifying when to switch and what
initialization actions to take to bring about the switch.

For the methods to scale up as well as have change
mechanisms that have soft real-time performance, SWAP
relies on the use of abstract policy models for tracking as
well as for generation of the change plans. The
abstractions are generalization abstractions and are
correctness preserving.

3. Systematic Generation of Dependable
Change Coordination Plans

The focus of this paper is on the specification of safe
and dependable change coordination plans, where a plan
specifies the set of actions required to achieve a run-time
switch from policy PFROM to policy PTO under a given
context as captured by the tracking agents. This section
presents a systematic method for generating change
coordination plans. The method is built on the
understanding that the coordination policy components
maintain a set of key state variables that represent the
application state and the tracking agents maintain
abstractions of those key state variables. Furthermore, the
key state variables represent queues associated with
processing a job. Hence a necessary requirement for run-
time change coordination between two polices is to

transfer in-progress jobs from PFROM to PTO. However,
simple transfer of state does not ensure that application
specific safety and correctness properties are preserved
during the change. Satisfying these properties requires
searching for starting states in the target policy PTO that
meet these constraints.

Figure 2 presents a systematic method for generating a
basic change plan which identifies the actions required to
correctly initialize the state variables of policy PTO based
on the current values of the state variables of PFROM. The
method searches the state space (SAFR and SATo) of any
two policies (PFROM and PTO) to generate a change plan
(CPFR-To) for handling all possible transitions from PFROM
to PTO. The two primary steps of the method are
1) abstract event trace generation and 2) basic change
plan generation.
GenerateBasicChangePlan(In:SAFR,SATo,Out:CPFR-To)
CPFR-To = set of change plans
TSAFR, TSATo = set of abstract traces
BEGIN:
1. GenerateAbstractEventTraces(SAFR)
2. GenerateAbstractEventTraces(SATO)
3. Forall ts_fr ∈ TSAFR where ts_fr.stable == true DO
4. Forall ts_to ∈ TSATO where ts_to.stable == true DO
5. Forall sv_fr ∈ ts_fr DO
 5.1.Sv_c=ApplyCorrespondenceMapping(sv_fr);
 5.2. Forall sx ∈ Sv_c DO
 5.2.1. If ∃ sv_to ∈ ts_to such that
subsumes(sv_to, sx) Then
CP=GenerateInitializationPlan(sv_fr, sv_to, PFR, PTO);
 5.2.2 Add (CP, CPFR-TO); //without duplication
END;

Figure 2: Basic change plan generation method

3.1 Abstract Execution Trace Generation
In steps 1 and 2 of the GenerateBasicChangePlan

method in Figure 2 we generate the search space for
possible transitions between policies PFROM and PTO where
the space is defined by the minimal set of abstract event
traces of the policies. Figure 3 presents a systematic
method for generating a “minimal set” of abstract event
traces for the UML state machine specification [9] of a
given coordination policy.

Step 1 of the method in Figure 3 generates the set of
minimal “concrete” event traces. A concrete event trace
consists of a sequence of state vectors for a given policy
where the state vectors contain the real state variable data
(i.e., not abstracted) maintained by the coordination
policy components. The method for generating traces
ensures minimality by generating execution traces of the
state-machine specification such that no cyclic path is
traversed more than once in any trace. The method
ensures reachability by considering only those input
events in the transitions that are plausible.

Step 2 of the method in Figure 3 applies the state
abstraction mapping rules used by the tracking agents to
abstractly track policy execution states. The mapping
produces a set of abstract event traces TSA where an
abstract event trace shows the set of abstract state vectors
encountered by the tracking agents while tracking the
processing of a particular workload scenario as captured
by a corresponding concrete event trace.
GenerateAbstractEventTraces(In:SA, Out:TSA)
SA = state chart specification of source policy;
TS = set of traces of global state vectors for a policy;
TSA = set of traces of global abstract state vectors;
BEGIN:
1. TS = GenerateAllMinimalRuns(SA) ;
2. Forall ti ∈ TS DO
 2.1 AbstractMap(ti, ta);
 2.2 Add(ta, TSA);
3. Forall ta ∈ TSA DO
 3.1 MarkStableStates(ta, ta');
 3.2. Replace(ta, ta');
END;

Figure 3. Abstract event trace generation method

Step 3 of the method in Figure 3 evaluates the stability
of each state vector in an abstract event trace. A state
vector is considered unstable for run-time switching
purposes if it is of a very short duration and hence, the
state is likely to change before the change configuration
agent has time to select a change plan and begin execution
of the plan. We consider sequences of short duration
states as atomic and do not support the dynamic switching
of coordination policies during these atomic sequences.

3.2 Basic Change Plan Generation
In steps 3-5 of the GenerateBasicChangePlan method

in Figure 2, we exhaustively search the abstract state
space (TSAFR and TSATO) of policies PFROM and PTO to
generate a basic change plan CPFR-TO for handling all
possible transitions from PFROM to PTO.

For a given stable starting state sv_fr (specifying when
to transition) in ts_fr, the inner loop (step 5 in Figure 2)
finds those stable states sv_to (specifying where to
transition) in ts_to that match the workload constraints in
the source state. The matching operation involves:
1) Mapping the source state sv_fr to a corresponding state
sx in the target policy based on a set of correspondence
rules for mapping the abstract state variables of policy
PFROM to the abstract state variables of PTO. 2) Checking
for subsumption of sx by sv_to. The condition part of a
basic change plan (a reactive rule) is then sv_fr and the
action part is a set of configuration actions that initialize
the state variables of the policy PTO to conform to the state
vector sv_to.

The method in Figure 2 deals solely with the
configuration of the state variables of the coordination
policies. The change plans generated by the method must
be augmented with additional actions to ensure the
preservation of application-specific safety and correctness
properties during the switch.

4. Example

To illustrate, we consider an example in which the
application components in Figure 1 are a set of
autonomous databases in which a materialized view is
incrementally maintained at one database from source
relations contained within the other databases. In such an
example, an incremental view maintenance policy is
required to maintain consistency between the source data
and the client view. We consider the case in which the
policies P1 and P2 in Figure 1 are the Strobe and C-
Strobe incremental view maintenance policies [10].
Assuming that we are given UML state machine [9]
specifications for the Strobe and C-Strobe policy and
tracking agents, the problem then is to execute the method
in Figure 2 to generate a set of change coordination plans.
The UML state machines for the C-Strobe policy and
tracking agents are depicted in Figures 4 and 5.

Wait i ng

ent ry / De lta=nul l
ent ry / W L=null
on sv c hange/ ^TA2.sv c hange

Processi ng Inse rt

entry / W L=WL+Ui
entry / UQ S=UQ S+Q i,j ,k
on sv c hange/ ^TA2 .sv c hange

Pro cessi ng De l e te

ent ry / W L=Ui
on sv c hange/ ^TA2.sv c hange

sourceEv aluat e(Qi, j, k)

P rocessin g A nsw er

entry / Delta=De lta+Ai, j, k
entry / UQ S=UQ S-Qi,j, k
do/ CD =c hec kBuf f er()
on sv c hange/ ^TA2 .sv c hange

sou rceUpda te (U i)[
Ui is an i nse rt]

sourc eUpdate(U i)[U i
is a delete] v iewUpdate(Ai)

process Answer(Ai,j , k)sourceEv aluat e(Qi, j, k)

view Up da te (De l ta)

[C D==nul l &&
U QS == not null]

Figure 4. C-Strobe policy specification

Wa it ing

ent ry / update(csv)
on update(csv)/ ^CC A .csv

P rocessin g Del ete

ent ry / update(csv)
on update(csv)/ ^CC A .csv

Processing In sert

ent ry / update(csv)
on update(csv)/ ĈC A.csv

P rocessi ng A nswer

ent ry / update(csv)
on update(csv)/ ĈC A.csv

svch ange(U QS,+ +)

sv change(Delta,N)

sv change(Delt a,E)

sv change(U QS, --)

sv change(UQ S,--)

sv change(WL,E)

sv change(W L,N D)

svchange(WL,NI)

sv change(UQ S,++)

svc hange(WL,E)

Figure 5. C-Strobe tracking agent specification

The GenerateAbstractEventTraces() method produces
four event traces through the C-Strobe state machine. An
example event trace is included in Table 1 and the
corresponding abstract event trace is included in Table 2.
Table 3 shows the output of the

GenerateBasicChangePlan() method for a switch from C-
Strobe to Strobe. The plan shows the actions required to
initialize the state variables such that state information
pertaining to in-progress jobs is preserved during the
switch.

Table 1. C-Strobe event trace (minimal run)
ID E ve nt S e quenc e IB W L U QS D elta S tate

0 initial s ta te (idle) nu ll nu ll nu ll nu ll W
1 ACA.sou rceUpd ate(U1 ,in se rt,r1) U 1 nu ll nu ll nu ll W
2 C SA.sou rceUpd ate(U1 ,in se rt,r1) nu ll nu ll nu ll nu ll T
3 W L =W L+U 1 nu ll U 1 nu ll nu ll P I (e)
4 Q 1,1,0=V(U 1) nu ll U 1 nu ll nu ll P I
5 A1,1,0 =Q PA.sou rceEvalua te (Q 1,1,0) nu ll U 1 nu ll nu ll T
6 U QS=UQ S+Q 1,1,0 nu ll U 1 Q1 ,1,0 nu ll P I (e)
7 C SA.p roce ssAnsw er(A1,1,0) nu ll U 1 Q1 ,1,0 nu ll T
8 U QS=UQ S-Q 1,1,0 nu ll U 1 nu ll A1,1,0 PA (e)
9 D elta=De lta +A1 ,1 ,0 nu ll U 1 Q1 ,1,0 A1,1,0 PA (e)

1 0 C D=che ckBu ffe r() nu ll U 1 nu ll A1,1,0 PA (e)
1 1 C I=che ckBu ffe r() nu ll U 1 nu ll A1,1,0 PA
1 2 viewU pd ate(Delta) nu ll U 1 nu ll A1,1,0 PA
1 3 C MA.viewUp da te (Delta) nu ll U 1 nu ll A1,1,0 T
1 4 W L =null nu ll nu ll nu ll A1,1,0 W (e)
1 5 D elta=nu ll -- final s ta te (idle) nu ll nu ll nu ll nu ll W (e)

Table 2. Abstract C-Strobe event trace
ID Event Sequ en ce W L a

U QSa
in/o ut DEL TA a Sta te sta ble

0 initial s ta te (idle) E 0 /E E W ye s
1 AC A.sou rceU pd ate(U1 ,in se rt,r1) E 0 /E E W ye s
2 C SA.sou rceU pd ate(U1 ,in se rt,r1) E 0 /E E W ye s
3 W L =W L+U 1 N I 0 /E E T T
4 Q 1,1,0=V(U1) N I 0 /E E PI no
5 A1,1,0 =Q PA.sou rceEvalua te (Q 1,1,0) N I 0 /E E PI no
6 U QS=UQ S+Q 1,1,0 N I 1 /N E T T
7 C SA.p roce ssAnswer(A1,1,0) N I 1 /N E PI ye s
8 U QS=UQ S-Q 1,1,0 N I 0 /E E T T
9 D elta=De lta +A1 ,1 ,0 N I 0 /E N PA no

1 0 C D=che ckBu ffe r() N I 0 /E N PA no
1 1 C I=che ckBu ffe r() N I 0 /E N PA no
1 2 viewU pd ate(Delta) N I 0 /E N PA no
1 3 C MA.view Up da te (D elta) N I 0 /E N PA no
1 4 W L = null E 0 /E N T T
1 5 D elta=nu ll - - final s ta te (idle) E 0 /E E W T

Table 3. Basic change plan (C-Strobe to Strobe)
PFR sv_fr PTO sv_to initialization plan
C-Strobe (E,E,E,W) Strobe (E,E,E,W) none

C-Strobe (NI,N,E,PI) Strobe (N,NFP,E,EV)

SSA.WL=CSA.WL,
SSA.UQS=CSA.UQS,
CSA.WL=null,CSA.UQS=null

C-Strobe (NI,N,N,PI) Strobe (N,NFD,N,EV)

SSA.WL=CSA.WL,
SSA.UQS=CSA.Q[WL],
SSA.AL=processAnswer(Delta[1]),
CSA.WL=null,
CSA.UQS=null,CSA.Delta=null

C-Strobe (NI,N,N,PA) Strobe (N,NFD,N,EV) same as above

5. Related Work

The SWAP work on change coordination is related to
the recent work in the area of specifying and analyzing
dynamic software architectures [1, 5] and on using
architectural specifications to plan and analyze changes in
the run-time system [4, 7]. An approach to run-time
software evolution based on exploiting an explicit
architectural model of the system is presented in [6]. The
SWAP change coordination method presented in this
paper exploits domain specific knowledge to identify the
necessary components and their role in the change
coordination process. The SWAP work also exploits

existing UML [8, 9] standards for object modeling to do
architecture modeling.

6. Summary

The focus of this paper is on the specification of safe
and dependable change coordination plans, where a plan
specifies the set of actions required to achieve a run-time
switch between two coordination policies under a given
context. We present a systematic method for generating
change coordination plans for the change coordination
agent within the SWAP architecture. The method
identifies the set of actions required to transfer state
information pertaining to in-progress jobs from the
current coordination policy PFROM to another coordination
policy PTO. Future work is focused on developing an
automated tool kit to support the generation of domain-
specific instance architectures conforming to the generic
SWAP architecture.

7. References

[1] R. J. Allen, R. Douence, and D. Garlan, “Specifying and
Analyzing Dynamic Software Architectures,” Proceedings
of the 1998 Conference on Fundamental Approaches to
Software Engineering (FASE '98), March 1998.

[2] P. Bose and M. G. Matthews, “Coordination of View
Maintenance Policy Adaptation Decisions: A Negotiation
Based Reasoning Approach,” Proceedings of the
International Workshop on Self-Adaptive Software
(IWSAS 2000), April 17-19, 2000.

[3] P. Bose and M. G. Matthews, “An Architecture for
Achieving Dynamic Change in Coordination Policies,”
Proceedings of the 4th International Software Architecture
Workshop (ISAW4), June 2000.

[4] D. Garlan and M. Shaw, “Software Architectures:
Perspectives on an Emerging Discipline,” Addison Wesley
Publishers, 1996.

[5] J. Magee, and J. Kramer, “Dynamic Structure in Software
Architectures,” Fourth SIGSOFT Symposium on the
Foundations of Software Engineering, San Francisco,
October 1996.

[6] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-
based Runtime Evolution,” Proceedings of the International
Conference on Software Engineering (ICSE), 1998.

[7] P. Oreizy et. al., “An Architecture Based Approach to Self-
Adaptive Software,” IEEE Intelligent Systems, 1999.

[8] J. Robbins, N. Medvidovic, D. Redmiles, and D.
Rosenbloom, “Integrating Architecture Description
Languages with a Standard Design Method,” Second EDCS
Cross Cluster Meeting, Austin, Texas, 1998.

[9] J. Rumbaugh, I. Jacobsen, and G. Booch, “The Unified
Modeling Language Reference Manual,” Addison Wesley,
1999.

[10] Y. Zhuge, H. Garcia-Molina, and J. Wiener, “The Strobe
Algorithms for Multi-Source Warehouse Consistency,”
Proceedings of the International Conference on Parallel and
Distributed Information Systems, December 1996.

	Introduction
	Background
	Systematic Generation of Dependable Change Coordination Plans
	Abstract Execution Trace Generation
	Basic Change Plan Generation

	Example
	Related Work
	Summary
	References

