
Supporting Dynamic Change in B2B Coordination

Mark G. Matthews
The MITRE Corporation

McLean, VA, U.S.A.

Abstract
B2B applications require coordination of distributed
services according to specific workflow policies. A
major challenge with B2B applications is
implementing a dynamic change to an active
workflow policy. When dynamically changing a
policy, active workflow instances that are in progress
must be transitioned to the new policy in a
dependable manner. To avoid undesirable side effects
of the change, many business organizations find it
necessary to abort active workflow instances prior to
changing a workflow policy. This is an inefficient and
ineffective change process. This paper presents the
SWAP agent-based architecture that supports
dynamic changes in B2B workflow policies. A major
feature of SWAP is the ability to preserve safety and
correctness properties while transitioning in-
progress workflow instances to a new policy without
the need to abort in-progress instances.

Keywords
B2B coordination, dynamic architecture,
dynamic change, adaptive workflow

1. Introduction
Business-to-Business (B2B) applications
involve the coordination of distributed services
over the Internet according to specific business

policies. Workflow management systems are
gaining increasing importance in B2B
applications by automating the coordination of
the services according to specific business
policies, called workflows. The workflow
defines a specific ordered execution of the
services.

The activity diagram in Figure 1 shows an
example of a B2B workflow that involves three
distinct business partners (customer, on-line
merchant, and supplier). The specified order of
execution is as follows: 1) The customer
generates an order for a product and submits the
order to an on-line merchant. 2) The merchant
receives the order and checks the customer’s
credit. 3) If the credit check passes, the merchant
sends the order to the applicable supplier
business partner. If the credit check fails, the
order is rejected and the customer is notified. 4)
If the supplier determines that the ordered
product is available within the inventory, the
supplier ships the product and the merchant
concurrently bills the customer. If the supplier
determines that the ordered product is not
available, the order is rejected and the customer
is notified.

The need to change an implemented
workflow-based coordination policy is bound to

Figure 1: Concurrent Shipping and Billing Workflow Policy

Create Order

order cancelled

order received

Receive Order

Bil l Customer

Reject Order

[if credit check failed]

Check Credit

Check
Inventory

[if credit check passed]

Ship Order

[if inventory unavailable]

[if inventory available]

SupplierOn-Line MerchantCustomer

arise at some point in time in order to respond to
changing business requirements, changing
business policies, or the introduction of new
services. Performance and availability issues
associated with shared network infrastructure
and services may also lead to the need to change
the active policy.

When changing a workflow policy in a B2B
application a major challenge is handling active
workflow instances that are in progress. In
practice many business organizations find it
necessary to abort active workflow instances
prior to changing the workflow policy. Once the
new policy is implemented, the aborted
instances can then be reinstantiated under the
new policy. This is an inefficient and ineffective
change process since it forces work to be
discarded and redone under a new policy.
Automated B2B coordination mechanisms are
needed to support dynamic changes in workflow
policies in a dependable manner.

This paper considers dynamic structural
changes to workflows [5]. In the B2B workflow
depicted in Figure 1 the shipping and billing
activities are performed concurrently. Consider a
scenario in which a change in the workflow is
introduced specifying that the shipping activity
is to be performed after the completion of the
billing activity (Figure 2). Although the
coordination may be "correct" before the change
and correct for orders processed after the
change, there may be problems with orders
undergoing processing when the change is
introduced. Orders that have undergone the
shipping activity but not the billing activity in

the traditional workflow (Figure 1) will not
undergo the billing activity under the new
workflow (Figure 2). The dynamic change in
workflow policy has the undesirable side effect
of failing to bill some customers. To avoid such
undesirable side effects when dynamically
changing a workflow policy, in-progress
workflow instances are typically aborted and
restarted under the new policy. This paper
presents an agent-based architecture that
supports dynamic change in workflow policies
without the need to abort in-progress workflow
instances.

Figure 3 presents a scenario in which a
change in the traditional workflow is introduced
specifying that the inventory and credit checking
activities are to be performed concurrently.

Section 2 discusses the approach for
supporting dynamic change in workflow
policies. Section 3 provides an overview of the
SWAP architecture. The architectural approach
is illustrated through the development of
mechanisms supporting dynamic changes
between the workflow policies in Figures 1-3.
Related work is included in Section 4 and
Section 5 includes a summary and a discussion
of future work.

2. Approach to Dynamic Change in
B2B Workflow Policies
The major challenge involved in dynamically
switching to a new workflow policy is to ensure
the preservation of application specific safety
and correctness properties for all jobs
undergoing processing during the change. For

Figure 2: Sequential Shipping and Billing Workflow Policy

Create Order

order cancelled

order received

Receive Order

Bill Customer

Reject Order

Check Credit

Check
Inventory

Ship Order

[if credit check failed]

[if credit check passed]

[if inventory avaliable]

[if inventory unavailable]

SupplierOn-Line MerchantCustomer

example, in the order processing domain
discussed earlier, there are two primary
properties (activity completeness and non-
redundant activities) that must be preserved
during a dynamic policy change.

The activity completeness property involves
ensuring that all in-progress and future orders
successfully complete all required activities
according to a valid workflow policy. Shipping
and billing atomicity is an example of an activity
completeness property that involves ensuring
that an order undergoes the billing activity if and
only if the order undergoes the shipping activity.

The non-redundant activities property
involves ensuring that in-process orders do not
repeat completed activities as a result of
transitioning between workflow policies. For
example, an order shall not be shipped twice as a
result of transitioning from a parallel billing and
shipping policy to a serial policy.

The SWAP approach to change coordination
is based on an understanding that ensuring the
integrity of application specific safety and
correctness properties during a dynamic
workflow policy change can be accomplished by
the following: a) Using knowledge of the state
of in-progress workflow instances. b) Exploiting
knowledge of the new policy to identify
augmentations to workflow instances required to
ensure key safety and correctness properties.
c) Executing a sequence of actions to bring
about the dynamic change in policies and their
respective states.

The key idea in the SWAP approach
involves defining an agent-based architecture

that contains tracking agents to monitor
workflow policy execution states and a change
coordination agent that uses the tracked policy
states to execute a set of change coordination
actions to safely realize the dynamic change.

3. The SWAP Architecture
In this section we present an overview of
SWAP, an agent-based architecture supporting
dynamic changes in B2B workflow policies. For
simplicity, we consider a case in which dynamic
changes are supported between the three
workflow policy choices depicted in Figures 1-3.

Figure 4 shows a SWAP architecture,
modeled as a UML class diagram using
stereotypes of the UML class, that supports
dynamic changes between three B2B workflow
policies. SWAP is a layered agent-based
architecture with separate layers for application
and change coordination. The architectural
components in each layer, the connections
between the components, and the connections
between the layers are briefly described in the
following subsections.

3.1 Application Coordination Layer
The application coordination layer consists of
agent representatives of the application specific
service components required to perform the
workflow tasks specified by the policies
described above. The client agent performs
activities related to the customer business entity.
The credit, billing, receiving, and rejecting
agents perform activities related to the on-line
merchant business entity. The billing and

Figure 3: Concurrent Inventory and Credit Checking Workflow Policy

Create Order

order cancelled

order received

Receive Order

Bill Customer

Reject Order

Check Credit

Check
Inventory

Ship Order [if inventory
available and
credit check

passed]

[if inventory not available and/or credit check failed]

SupplierOn-Line MerchantCustomer

shipping agents perform activities related to the
supplier business entity. The architecture
includes a workflow scheduling agent for each
supported workflow policy. These agents
implement the individual workflow policies that
govern the coordination between the customer,
merchant, and supplier service agents.

The architecture includes an application
coordination agent that accepts orders from the
client agent and delegates the ordering job to the
active workflow scheduling agent. The
application coordination agent also includes
several data structures for maintaining various
job queues and the status of individual orders.
There is a distinct job queue for each activity
(shipping, billing, inventory, credit, rejecting,
and receiving) within the workflow to indicate
the active orders that are being processed by the
merchant and supplier agents at any point in
time.

The application coordination layer agents
interact via the application coordination event-

channel.

3.2 Change Coordination Layer
The change coordination layer consists of a
tracking agent, a change coordination agent, and
a shared coordination data space.

3.2.1 Tracking Agent
The job of the tracking agent is to maintain
enough knowledge of the state of in-progress
workflow instances to support a dynamic
workflow policy change at any point in time.
The tracking agent interacts with the application
coordination agent via the change coordination
event channel. Each time there is a qualitative
change in one of the application coordination
layer state variables (i.e., key job queues), the
application coordination agent propagates the
change to the tracking agent. The tracking agent
maintains an abstract state vector that abstractly
captures the processing state of the application
coordination layer agents. Each time the abstract
state vector is updated, the vector is written to

Figure 4: The SWAP Architecture for Dynamic Change in B2B Coordination

RJA
<<merchant>>

Legend
IA = inventory agent
CRA = credi t agent
BA = bil l ing agent
SA = shipping agent
RA = receivingagent
RJA= rejecting agent
CLA = cl ient agent
WSA = workflow scheduling agent
ACA = application coordination agent
TA = tracking agent
CCA = change coordination agent
AChan = appl ication coordination channel
CChan= change coordination channel
CSpace = coordination space

SWAP Admin

(from Use Case View)

CLA
<<customer>>

BA
<<merchant>>

IA
<<supplier>>

CRA
<<merchant>>

SA
<<supplier>>

RCA
<<merchant>>

WSA2
<<scheduler>>

WSA1
<<scheduler>>

WSA3
<<scheduler>>

CSpace
<<sharedSpace>>

AChan
<<channel>>

TA
<<tracker>>

CCA
<<changeCoord>>

ACA
<<appcoord>>

CChan
<<channel>>

Application
Coordination
Layer

Change
Coordination
Layer

the coordination space.
The approach to developing the tracking

agent consists of the following steps: 1) Identify
the key state variables of the workflow
scheduling agents in the application coordination
layer. The set of key state variables is referred to
as the state vector. This step requires an analysis
of the behavioral specifications of the workflow
scheduling agents. 2) Identify qualitative
abstractions of the state variables. Qualitative
abstractions are used to reduce the complexity of
the tracking and change coordination agents.
3) Develop a tracking agent behavioral
specification consisting of a state model with
qualitative abstractions based on the state
models of the workflow scheduling agents.
Choosing the right abstractions is critical to the
approach for formal correctness analysis [6].

For the example considered in this paper, the
following abstract state vector adequately tracks
the application layer processing state:

{ }SE CE, AB, AS, ACC, AIC, sva =
In the above equation, AIC, ACC, AS, and

AB abstractly capture the inventory check, credit
check, shipping, and billing job queues. The
credit exceptions (CE) and shipping exceptions
(SE) variables capture exceptions identified
when switching from a concurrent policy to a
sequential policy. CE captures those jobs that
have passed a credit check but not an inventory
check. Once the inventory check has been
passed, these orders will skip the credit check
state specified by the sequential policy.
Likewise, SE captures those jobs that have
completed the shipping activity but not the

billing.
An analysis of the above state variables

shows that it is not important for the tracking
agent to know the individual job ids in each
queue, or even the number of jobs in each queue.
It is only important for the tracking agent to
know if there are any (1 or more) jobs in a state
variable queue. Hence, the qualitative
abstractions of empty (E) and nonempty (N) are
used for all state variables maintained by the
tracking agent. This translates to a requirement
for the application coordination agent to notify
the tracking agent each time a state variable
changes from an empty to a nonempty abstract
value or vice versa.

3.2.2 Change Coordination Agent
The change coordination agent accepts a policy
switching decision from the SWAP workflow
administrator via the shared coordination space.
The change coordination agent, based on current
tracking information maintained in the
coordination space by the tracking agent, then
executes the set of configuration and control
actions required to bring about the dynamic
switching between workflow scheduling agents.
The change coordination agent interacts with the
application coordination agent via the
coordination channel.

Scenario-based analysis is used in the
approach to developing the change coordination
agent. The approach consists of the following
steps: 1) Identify a set of workload scenarios
that covers the state space of the tracking agent
specification. The workload scenarios

Figure 5: Change Coordination Agent Specification

IDLE

exit: read(CSpace,sv)
exit: ^ACA.suspend
entry: ^ACA.activePolicy=PTO

PLAN3

PLAN4

PLAN1

[PFR==1]

[PFR==2]

PLAN2

switch(PFR,PTO)[
PTO==P3]

switch(PFR,PTO)[
PFR==P2&&PTO==P1]

switch(PFR,PTO)
[PFR==P3]

switch(PFR,PTO)[
PFR==P1&&PTO==P2]

[PTO==1]

[PTO==2]

switch(PFR,PTO)

correspond to jobs in different stages of
processing. 2) Generate an event trace for each
workflow policy against each workload
scenario. An event trace captures the changes in
the job-queue state variables as jobs undergo
execution based on the workflow policy.
3) Systematically analyze the event traces for
pairwise switching of policies such that certain
integrity constraints (for example customers get
billed if and only if the product gets shipped) are
preserved. This involves identifying the
workload constraints of the active policy in a
given state (specified by the abstract state
vector) in the trace and the matching workload
constraints of the new policy to be activated in a
specific state. 4) Generate the change plans. This
involves combining the results obtained from the
set of pairwise analyses performed in step 3 and
resolving any discrepancies between analyses.
The configuration actions (change plan) for
activating the new policy then consist of setting
up the workload state variables of the workflow
scheduler agents according to the valid
transitions obtained from the above analysis.
5) Model the change coordination agent as a
decision tree captured by a finite state machine
model. The decision conditions are captured by
the transitions and the actions (change plans) are
captured by the activity states.

The change coordination agent specification
for the example presented in this paper is
depicted in Figure 5. This specification shows
the actions performed upon receipt of a change
decision from the SWAP administrator. For
example, upon receipt of a decision to
dynamically switch from policy 3 to policy 2,
the change coordination agent performs the
following activities. 1) Read the abstract state
vector from the coordination space. 2) Send a
command to the application coordination agent
to suspend operations. 3) Execute plan 1 which
manipulates the job queues in the application
coordination agent to serialize the inventory and
credit checking activities. Change plan details
have not been included due to space limitations.
4) Execute plan 2 which manipulates the job
queues in the application coordination agent to
serialize the billing and shipping activities.
5) Send a command to the application
coordination agent to set the activity workflow
policy to policy 2.

After execution of the sequence of actions
identified above, the application coordination
agent will forward all new orders to workflow
scheduling agent 2. In-progress workflow
instances will continue execution under
workflow policy 2. Those in-progress instances
identified as credit or shipping exceptions will
skip those activities under workflow policy 2.

4. Related Work
The SWAP approach described in this paper
builds on existing research on workflow
management systems and software architectures
to define a domain specific architecture for
dynamic change in workflow-based B2B
coordination.

There has been a significant amount of work
conducted in the area of workflow models and
workflow management systems. Workflow
studies have been conducted by researchers in
the area of organizational design, office
information systems and software engineering
[11,12,13]. Research in automation of workflow
has resulted in several systems [4] that exploit
existing distributed computing technologies. In
most of the systems, adapting to dynamic
changes in a dependable manner is not well-
addressed [7]. More recent work [5, 6, 7] has
started to address such dynamic change
concerns. SWAP develops an integrated
architecture for change management and
develops a systematic method for the design and
analysis of the change coordination mechanisms
in the architecture to ensure safety properties
during dynamic switching between policies.

The SWAP work on change coordination is
related to the area of dynamic software
architectures [1, 8] and on using architectural
specifications to plan and analyze changes in the
run-time system [9,10]. The change coordination
layer in SWAP exploits domain specific
knowledge to identify the necessary components
and their role in the change process.

5. Summary and Future Work
This paper addresses the problem of dynamic
change in the context of a B2B coordination of
services. This paper presents an overview of the
SWAP architecture, an agent-based architecture
that supports dynamic changes in B2B workflow
policies. An instance of the SWAP architecture

supporting dynamic changes between three
workflow policy choices is presented. The
design and analysis of the change coordination
mechanisms within the architecture is discussed.

The above approach has also been applied to
other domains [2,3]. Future work is focused on
generalizing the architecture and methods based
on results obtained in applying SWAP to
multiple task domains.

References
[1] R. J. Allen, R. Douence, D. Garlan.

Specifying and Analyzing Dynamic
Software Architectures, Proceedings of the
1998 Conference on Fundamental
Approaches to Software Engineering (FASE
'98), March 1998.

[2] P. Bose and M. G. Matthews, "Coordination
of View Maintenance Policy Adaptation
Decisions: A Negotiation-Based Reasoning
Approach", Proceedings of the International
Workshop on Self-Adaptive Software,
Oxford, England, April 2000.

[3] P. Bose and M. G. Matthews, "NAVCo:
Negotiation-based Adaptive View
Coordination", in Proceedings of the
Automated Software Engineering
Conference, 1999.

[4] A. Dodac et. al., "Workflow Management
Systems and Interoperability", NATO ASI
Series, Springer Verlag, Berlin 1998.

[5] C. Ellis, K. Keddara, G. Rozenberg,
"Dynamic Change within Workflow
Systems", Proceeding of the ACM
Conference on Organizational Computing
Systems, 1995, pp 10-21.

[6] M. Kamath and K. Ramamritham,
"Correctness Issues in Workflow
Management", Distributed Systems
Engineering Journal, Special Issue on
Workflow Management, Volume 3, Number
4, December 1996.

[7] M. Klein, C. Dellacros, and A. Bernstein,
eds., "Workshop Towards Adaptive
Workflow Systems" CSCW-98 Workshop
Proceedings, ACM Press, 1998.

[8] J. Magee, J. Kramer. Dynamic Structure in
Software Architectures. Fourth SIGSOFT
Symposium on the Foundations of Software
Engineering, San Francisco, October 1996.

[9] P. Oreizy, N. Medvidovic, R. N. Taylor,
"Architecture-based Runtime Evolution",
ICSE 1998.

[10] P. Oreizy et. al., "An Architecture Based
Approach to Self-Adaptive Software", IEEE
Intelligent Systems, 1999.

[11] L. Osterweil, “Automated Support for the
Enactment of Rigorously Described
Software Processes,” Proceedings of the
Third International Process Programming
Workshop, Computer Society Press, 1988,
pp 122-125.

[12] A. Seth, editor, Proceedings of the NSF
Workshop on Workflow and Process
Automation in Information Systems.

[13] L. A. Suchman, "Office Procedure as
Practical Action: Models of Work and
System Design", ACM Transactions on
Office Information Systems, vol. 1, no. 4,
October 1983, pp 320-328.

	Abstract
	Keywords
	1. Introduction
	2. Approach to Dynamic Change in B2B Workflow Policies
	3. The SWAP Architecture
	3.1 Application Coordination Layer
	3.2 Change Coordination Layer
	3.2.1 Tracking Agent
	3.2.2 Change Coordination Agent

	4. Related Work
	5. Summary and Future Work
	References

