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Abstract. Distributed information systems for decision-support, logistics, and
e-commerce involve coordination of autonomous information resources and
clients according to specific domain independent and domain dependent
policies. A maor challenge is handling dynamic changes in the priorities,
preferences, and constraints of the clients and/or the resources. Addressing such
a challenge requires solutions to two problems: a) Reasoning about the need for
dynamic changes to coordination policies in response to changes in priorities,
preferences, and constraints. b) Coordinating the run-time assembly of policy
changes in a dependable manner. This paper introduces the NAV Co approach
to address these problems. The approach involves exploiting negotiation-based
coordination to address the first problem and model-based change coordination
to address the second problem. These two key features of the approach are well
suited for realization using an agent-based architecture. The paper describes the
architecture with specific emphasis on the analysis and design of the agent
specifications for negotiation and change coordination.

1 [Introduction

Distributed information systems for decision-support applications, logistics, and e-
commerce involve coordination of autonomous information resources and clients
according to specific domain independent and domain dependent policies. A major
challenge is handling dynamic changes in the preferences and constraints of the
clients and/or the resources.

Consider the domain of distributed decision-support applications where
autonomous information resources are coordinated to meet the information demands
of client specific decision-support views. In such a domain, there is continuous
change in Quality of Service (QoS) properties and constraints of the clients,
information resources, and shared communications infrastructure. Current
architectures for coordination of distributed information resources to support client
specific views are static in nature; that is the coordination policies cannot be
dynamically changed to meet changing demands. As an example, consider the
following scenario from the supply-chain application domain:
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A decision-support view for inventory management is maintained from multiple
autonomous information resources within a supply-chain. Customer order
information from customer sites, product assembly information from manufacturer
sites, and parts inventories from parts supplier sites are configured to support an
order-fulfillment view used by inventory managers of the suppliers and consumers. As
orders, product assembly requirements, and parts inventories constantly change,
changes in the view must be coordinated to achieve consistency and to support
management decisions.

There are multiple view maintenance policies available to support the above
inventory management task. Typical systems are based on static architectural
decisions (on view maintenance policies) at design time by considering tradeoffs
between consistency, communications costs, and processing costs. Suppose a high-
cost complete consistency view maintenance policy was selected for implementation
at design time. Further suppose that several inventory managers are simultaneously
executing intensive on-line analytical processing (OLAP) queries against the order
fulfillment view. The queries are competing with the view maintenance policy for
system resources. Under these conditions, both the queries and the view maintenance
task are likely to suffer from poor performance. Short of shutting down,
reconfiguring, and restarting the system, current architectures have no way of
prioritizing preferences and dynamically responding to changing preferences and
congtraints.

1.1 Self-Adaptive Software: Requirements

A key observation to be made from the above discussion is that automated and
dynamic approaches to addressing the problem of changing preferences and
congtraints require architectures and adaptive mechanisms that achieve dynamic self-
design in response to changing preferences and constraints. The four major
capabilities of such self-adaptive software systems are: i) Detecting a change in
context or a change in needs. The system should be able to monitor its behavior and
detect deviations from its commitments or the presence of new opportunities. It
should be able to accept new needs from external sources and evaluate for deviations
with respect to current commitments. ii) Knowing the space of adaptations. It must
have knowledge of the space of self-changes it can choose from to reduce deviations.
iii) Reasoning for adaptation decision. It should be able to reason and make
commitments on the self-changes and commitments on revised goals. iv) Integrating
the change. It should be able to package the change if required and perform
assembly/configuration coordination to insert the change into the existing systemin a
dependable manner with minimal disruption to existing behaviors.

1.2 NAVCo Approach: Key | deas
The NAV Co approach described in this paper considers a family of adaptive systems

for information view management. The key distinctive features of the approach are:
a) Changes in committed preferences and context assumptions trigger the adaptation



process. b) An adaptation space defined by a set of view maintenance policy objects
that forms the basis of design for a set of middleware coordination agents.
¢) Reasoning for change accomplished through a negotiation based process involving
the clients and information resource agents. d) Use of verified assembly plans for
change integration. The above features of the NAVCo approach are well suited for
realization using agent-based concepts and an agent-based architecture.

The following sections of the paper describe the agent-based architecture. The
paper focuses primarily on the negotiation-based coordination used to reach a change
decision and the consequent coordination used to incorporate the change decision. In
the context of NAVCo, a change decision equates to a decision to switch between
view maintenance policies at run time.

2 Multi-Resource View Maintenance Palicies. Background

Multi-resource view maintenance falls within the domain of distributed decision-
support database systems. A simplified model of thisdomain isillustrated in Figure 1.
As illustrated in Figure 1, a view (V) is maintained from a set of autonomous data
sources (S;, S,,...,S,). Theview isajoin of relations (ry, r,, ) within the data sources.
The update/query processor and view maintenance policy components execute a
distributed algorithm for incrementally maintaining the view. As data within a source
changes, the associated update/query processor sends notification of the update to the
view maintenance policy (VMP) component in Figure 1, which in turn queries the
other sources to compute the incremental effect of the source update. After the
incremental effect of the update has been computed, it is propagated to the client
view. Client applications, such as on-line analytical processing (OLAP) and data
mining, execute queries against the view. The data sources also support transactional
environments, which result in updates to source relations that participate in the view.

The agent-based architecture presented in this paper focuses on providing
mechanisms to allow run-time switching of view maintenance policies. Four VMPs
are briefly discussed and compared in this section. A complete description of these
policies can be found in[1, 21].

The Strobe algorithm is an incremental VMP that achieves strong consistency. The
Strobe algorithm processes updates as they arrive, sending queries to the sources
when necessary. However, the updates are not performed immediately on the
materialized view (MV); instead, alist of actions (AL) to be performed on the view is
generated. The MV is updated only when it is certain that applying all of the actions
in AL (as a single transaction at the client) will bring the view to a consistent state.
This occurs when there are no outstanding queries and all received updates have been
processed.

The Complete-Strobe (C-Strobe) algorithm achieves complete consistency by
updating the materialized view after each source update. The C-Strobe agorithm
issues compensating queries for each update that arrives at the VMP between the time
that a query is sent from the VMP and its corresponding answer is received from a
source. The number of compensating queries can be quite large if there are continuous
source updates.



The SWEEP agorithm achieves complete consistency of the view by ordering
updates as they arrive at the VMP and ensuring that the state of the view at the client
preserves the delivery of updates. The key concept behind SWEEP is on-line error
correction in which compensation for concurrent updates is performed locally by
using the information that is aready available at the VMP. The SWEEP algorithm
contains two loops that perform an iterative computation (or sweep) of the change in
the view due to an update.
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Fig. 1. Distributed Decision-Support Database System Domain

The Nested SWEEP agorithm is an extension of the SWEEP algorithm that allows
the view maintenance for multiple updates to be carried out in a cumulative fashion.
Nested SWEEP achieves strong consistency by recursively incorporating all
concurrent updates encountered during the evaluation of an update. In this fashion, a
composite view change is computed for multiple updates that occur concurrently.

2.1 Cost-Benefit Analysis

The performance of VMPs can be compared based on the communications and
processing costs required to maintain a certain level of consistency. Communications
costs can be measured with respect to the number and size of messages required per
update. Processing costs can be measured with respect to the processing burden that
the algorithm places on both the client and the data sources.

Table 1 compares the communications and query processing cost of four VMPs.
The cost of the algorithms is dependent on the number of data sources, n. The costs of
the C-Strobe and Nested SWEEP algorithms are highly dependent on a workload
characterization factor, a where O<a<1, which reflects the rate of updates received. If
updates arrive infrequently a=0 and if updates arrive continuously a=1. The client
processing cost of a delete update in the Strobe and C-Strobe algorithms is highly



dependent on the number of pending updates, p. The costs in Tables 1 and 2 depict
the case in which the VMP components are co-located with the client.

Table 1. VMP Cost Comparison

Algorithm Update Type |Comm. Cost Client Cost Server Cost
Strobe Delete 1 1+p 0

Insert 2n-1 (n-1)+1 1
C-Strobe Delete 1 1+p 0

Insert 2(n-D+2a(n-1)!+1 |(n-D)+a(n-1)!+1 |1+a(n-2)!
SWEEP deletefinsert  [2n-1 (n-1)+1 1
Nested SWEEP |deletefinsert  [2(1-a)(n-1)+1 (1-a)(n-1)+1 (1-9)

As illustrated in Table 1, the cost of the agorithms is highly sensitive to the
volume and types of updates. To illustrate, consider the inventory management
scenario introduced in Section 1. Further assume that there are four information
resources, one client view, and the following dynamic workload:

» Period 1 -high volume, high insert (100 inserts, O deletes, X seconds)
» Period 2 - low volume, balanced (50 inserts, 50 deletes, 3X seconds)
 Period 3 - medium volume, high delete (0 inserts, 100 deletes, 2X seconds)

The cost of each algorithm over these periods can be calculated using the formulas
in Table 1. The value of the parameter p is assumed to be O for low traffic, 10 for
medium traffic, and 100 for high traffic. The value of the parameter, a, is assumed to
be O for low traffic, 1/3 for medium traffic, and 1 for high traffic. The cost of the four
algorithms over Periods 1-3 isillustrated in Table 2.

Table 2. Cost in Inventory Management Scenario

Algorithm Comm Cost|Client Cost |Server Cost
Strobe 1200 1750 150
C-Strobe 2400 2350 350
SWEEP 2100 1200 300

Nested SWEEP |1250 775 158
Example 1 750 1525 75

Example 2 950 625 108

Currently a single algorithm is selected at design time and cannot be changed
without shutting down and reconfiguring the system. Design-time tradeoffs must be
made with respect to consistency versus client, server, and communications costs. The
design-time decision can have a profound effect on the processing and
communications requirements to support the view. If, however, the algorithm can be
dynamically changed at run-time, these tradeoffs can be made continuously as
preferences and constraints change. As illustrated in the two examples at the bottom
of Table 2, the ability to dynamically switch algorithms can result in significant cost
savings and improved performance in a constrained environment.



Example 1 shows that communications cost can be minimized by initialy
implementing the Nested SWEEP agorithm and then dynamically switching to the
Strobe algorithm between periods 1 and 2. This results in a cost reduction of 450
messages over a static implementation of the Strobe algorithm. This frees up valuable
shared communications resources for more critical applications.

Example 2 shows that client processing cost can be minimized by implementing
the Nested SWEEP algorithm during periods 1 and 3, and the Strobe algorithm during
period 2. This results in a cost reduction of over 1000 queries over a static
implementation of the Strobe agorithm. This frees up valuable resources for
processing-intensive analysis queries and results in a significant performance
improvement for analysis users.

3 NAVCo Agent-Based Architecture

The NAVCo approach to adapting view maintenance policies in response to
changes in the needs of the clients or changes in the constraints imposed by the
resources is based on negotiation reasoning between the clients and resources
followed by dynamic change coordination. The approach is based on a layered
architecture with agent-based middleware in each layer. The layers in the architecture,
shown in Figure 2 as a UML class diagram, separate the concern for policy change
reasoning, policy change coordination and application specific information view
maintenance based on a policy. The architectural components and connections are
modeled as stereotypes of the UML class. For the sake of brevity, we limit our
discussions in the rest of the paper to an example involving switching between the
Strobe and C-Strobe policies described in the previous section. The architectural
components in each layer, the connections between the components and the
connections between the layers are briefly described below.

3.1 Negotiation Coordination Layer

The key component types of the negotiation coordination layer (bottom layer in
Figure 2) are a negotiation facilitator agent (NFA), a client negotiation agent (CNA),
and resource negotiation agents (RNAS) that communicate via a shared data space
called the Negotiation space (NSpace). The CNA and RNAs provide an agent-
oriented negotiation interface to the client and resources. The negotiation is based on
a formalization of the WinWin model [2, 3]. The communication of a negotiated
change decision from the negotiation layer to the change coordination layer is via the
shared Nspace.

3.2 Change Coordination Layer
The change coordination layer (middle layer in Figure 2) performs the actions

required to dynamically switch between view maintenance policies in response to a
communicated switching decision from the negotiation coordination layer. The



change coordination layer consists of a Strobe tracking agent (STA), a C-Strobe
tracking agent (CTA), a change coordination agent (CCA), and a shared data space
(CSpace). There is one tracking agent per scheduler agent in the application
coordination layer. A tracking agent interacts with the monitoring interface of its
associated scheduler agent via the change coordination event channel (CChan). Each
time a scheduling agent experiences a qualitative change in one of its state variables,
the change is propagated to the associated tracking agent which abstractly tracks the
execution state of the scheduling agent. The CCA accepts the communicated
switching decision from the NFA via the NSpace and, based on the current tracking
information maintained by the tracking agents, executes the set of configuration and
control actions required to bring about the dynamic switching between VMP
scheduling agents within the application coordination layer. The CCA interacts with
the control interface of the scheduling agents via the CChan. The CSpace is used to
communicate the tracking knowledge from the tracking agents to the CCA.

<< gpphterface>> <<applnterface>> << gpp Interface>> <<applnterface>>
RM Al RMA2 RM A3 CMA
<<channel>>
AChan
<<scheduler>> <<queue>> <<appCoord>> <<queryProcessor>> <<scheduler>>
SSA 1B ACA QPA CSA

<<channel>>

<<tracker>>
CTA

<<sharedSpace>>
CSpace

<<tracker>>
STA

<<changeCoord>>
CCA

<<sharedSpace>>

<< gpphterface>>
RNA1

<< app nterface>>
RNA2

<<applnterface>>
RNA3

<< facilitator >>
NFA

<<applnterface>>
CNA

Fig. 2. The NAV Co Agent-based Architecture




3.3 Application Coordination Layer

The application coordination layer (top layer in Figure 2) consists of agent
representatives of the application specific service components that act to perform
view maintenance. The application component interfaces necessary to support
distributed view maintenance are achieved by the resource and client manager agents
(RMA and CMA respectively) as depicted in Figure 2. The RMASs provide the
functionality of the update/query processor depicted in Figure 1. To allow flexible
switching of view maintenance policies, the activities of a view maintenance policy
are decomposed and realized by a set of modular agents (scheduler, queue, and query
processor) that allow reuse and flexible switching by localizing the change element to
the scheduler agent. The scheduler agents (SSA for Strobe and CSA for C-Strobe)
dynamically schedule updates and queries according to a specific VMP. The query
processor agent (QPA) executes a query processing schedule. The input buffer (1B)
component queues update tasks to be scheduled by the scheduling agent. An
application coordinator agent (ACA) delegates view maintenenace tasks (in terms of
updates) to the active scheduler agent. The agents interact via the application
coordination event-channel (AChan). The SSA, CSA, IB, and QPA each contain a
control interface and associated methods to allow the change coordination and control
agent to perform configuration and control actions. The SSA and CSA also include a
monitoring interface and associated methods to allow tracking agents to track policy
execution states.

4 Design and Analysis of Negotiation Coordination Layer

The model for negotiation coordination used in our approach is based on the WinWin
[2, 3] model used in multi-agent (representing stakeholders) requirements negotiation.
In such a model, the participating agents collaboratively and asynchronously explore
the WinWin decision space that is represented by four main conceptua artifacts:
i) WinCondition - capturing the preferences and constraints of a participant. ii) Issue -
capturing the conflict between WinConditions or their associated risks and
uncertainties. iii) Option - capturing a decision choice for resolving an issue.
iv) Agreement - capturing the agreed upon set of conditions which satisfy stakeholder
WinConditions and/or capturing the agreed options for resolving issues. The artifacts
specify the message objects passed between the agents. The object model for the
WinCondition object developed for negotiating VMPs is shown in Figure3. The
object explicates attributes relevant to expressing preferences and constraints for the
distributed view maintenance problem.

NAV Co incorporates three types of negotiation reasoning schemes that extend the
WinWin model to consider a reactive model of negotiation. The first method, used
during the initial establishment of the task and for negotiation of the initial policy,
takes a task-driven approach and is triggered when a new client WinCondition is
submitted. Asillustrated in Table 3, the client initiates the task through submission of
a WinCondition containing the task parameters and any preferences and constraints.
The second method, depicted in Table 4 and used for run-time dynamic renegotiation



of policies, is conflict driven and is triggered by changes in preferences and
congtraints. In this scheme any team participant may submit a revised WinCondition
based on changing component preferences and constraints.

Win C ondition

WinConditionID : string

ComponentlD : String

Role : one of {Provides, Requires}

View : QueryObject

InsertVolume : int

DeleteVolum e : int

Update Mode : one of {Incremental, Batch}

BatchPeriod : Integer

ConsistencyLevel : one of {Convergence ,Weak,Strong,Com plete}
ComponentCostTolerance : one of {Low,Medium ,High}
LatencyTolerance : one of {Low Medium ,High}

Fig. 3. The WinCondition Object Model

Table 3. Task Driven Negotiation Protocol

1. CNA submits a WinCondition to NFA. The WinCondition identifies the task
preferences and constraints of the Client
2. The NFA analyzes the posted WinCondition and identifies | ssue(s)
3. The NFA generates potential Options that Resolve the Issue(s): Options are policy
decisions that are either derived from a) the resource (RNA) preferences or b) global
policy knowledge
4. NAs (both CNA and RNAS) evaluate the Option(s)
5. If anoptionisaccepted by all NAs

Then {Agreement = Accepted Option, Agreement propagated to CCA for
implementation}

Else { one or more NAs post revised WinConditions

GoToStep2} EndlIf

Table 4. Conflict Driven Negotiation Protocol

1. CNA or RNA submits revised WinCondition to the NFA.
2. NFA analyzes revised WinCondition against existing related WinConditions to
generate I ssue(s) resulting from conflicting interaction
3. NFA generates potential Options that Resolve the Issue(s)
4. If no change in existing Options (i.e., Option has already been Agreed upon)
Then { NFA marks the issue as Resolved}
Else { CNA and RNAs eva uate the Option(s)
If anoptionisaccepted by all NAs
Then { Agreement = Accepted Option, Agreement propagated to CCA}
Else { CNA and/or RNAs post revised WinConditions, Go To Step 2 }
End If
End If




The third method is priority driven and is used when an acceptable policy cannot
be negotiated among all team participants in a predetermined amount of time. In this
scheme, team participants are assigned a priority based on inputs from the task owner.
The option with the highest overall utility, based on globa and team member
priorities, is selected.

The above negotiation reasoning methods exploit the context and view
maintenance problem domain to generate the issues and options and to evaluate the
options as follows: 1) Given one or more WinConditions, issue generation involves
formulating a query to identify VMP specification objects that satisfy the
WinConditions. Here the issue is formalized as a query object (globa goa
generation). 2) Given the formulation of the issue, option generation involves
evaluation of the query to retrieve plausible VMP specification objects and their
refinements based on action-theory knowledge of the NFA. 3) Given the options,
option evaluation involves checking for consistency of an option against the
committed WinConditions representing active beliefs of the RNAs.

<<Entity>> <<Entity>>
Capacity Task

TaskKD: Sting
Team : String
Role : one of{Provide s Requires}
View : Query Object
‘ Priority :one of{Low,Medium,High}
Constrains UpdateM ode : one of {Incremental,Batch}
Batch Period : Integer
ConsigencyLevel: one of {Convergence ,Weak,Strong,Complete}
InsertVolume : Numb er

1 |DeleteVolume : Number
<<Entity>> ~

NormalQueryVolume : Number
HeavyQueryVolume :Number
MaxQueryVolume : Number

WinCondition 1 4\ .1
Constrains
WinConditionID : String 1
TaskiD : String Z<Entitves
QoSID : String S .
. . — Qos
Status: one of {Active,Pending}|1 —

1 QoSID : String

Team : String

QueryVolume : Number

MessageVolume : Number

ComponentCostTolerance : one of {Low,Medium,High}
Determine/ LatencyTolerance : one of {Low,Medium, ,High}

<<Entity>>
Metrics
CPUStatus : Struct v
MemoryStatus: St ct [~ SIS
4 . 1 | CPUStatus
NetworkStatus : Struct
1 |CPUUtlization : Percent

CPUThreshold1 :Percent

: CPUThreshold2 : Percent
CPUStatus:one of{Underloaded,Normal,Overloaded}
1
<<Entity>> <<Entity>>
Me mory Status NetworkStatus

MemoryUtilization : Percent Averagelatency : Number
MemoryThreshold1 : Percent NetworkT hresholdl : Number
MemoryThreshold 2 : Percent NetworkT hreshold2 : Number
MemoryStatus: one of {Underloaded Normal,Overloaded} NetworkStatus : one of {Underloaded,Normal,Overloade d}

Fig. 4. RNA and CNA Data Model



4.1 Modelsto Support Negotiated Selection of VM P

In order to support the agent negotiation coordination protocols outlined above,
NAVCo defines the client and resource negotiating agents to have a) declarative
models of preferences and constraints represented as a database of facts, and
b) action-theory for issue generation, option generation and evaluation that are
represented as a set of rules. We briefly describe below the data models and some
examples of the rules that have been formulated and prototyped in our initial
experiments.

<<Entity >>
Options
<<Enfity >> OptionID : String
Policy Contain IssuelD : String
Policy : String
Policy : String
ComponentID : String
Consistency Level : one of {Convergence,Weak,Strong,Complete} |0 0.. )
ClientCostEstimate : Number
UpdateMode : one of {Batch, Incremental} .
ServerCostEstimate : Number
1 RelativeLatency : one of {Low,Medium,High}
H Status : one of {Accepted,Rejected,Negotiating}
as
N 1.
<<Enfity >> Address
Policy Cost

Policy : String
UpdateVolume : one of {Low,Medium,High}

UpdateDistribution : one of {Balanced,High_Insert,High_Delete} <<Entity >> Evaluate
RelativeNetworkCost : one of {Low,Medium,High} Issues

RelativeClientCost : one of {Low,Medium,High} IssuelD : String

RelativeServerCost : one of {Low,Medium,High} WinConditionID : String

AssertionID : String
OptionsList : String

Involve 1
1
<<Entity >>
WinConditions
WinConditionID : String <<Entity >>
ComponentID : String Participants
InsertVolume : Number Have ComponentID : String
DeleteVolume : Number = ComponentType : one of {Client,Server}
UpdateMode : one of {Increm ental,Batch} 1 1 |Role : one of {Provides,Requires}
BatchPeriod : Integer View : Query Object
Consistency Level : one of {Convergence,Weak,Strong,Complete} Priority : one of {Low,Medium,High}
ComponentCostTolerance : one of {Low,Medium High} Imply
Latency Tolerance : one of {Low,Medium,High}

<<Entity >>
Workload

UpdateVolume : one of {Low,Medium, High}
UpdateDistribution : one of {Balanced,High_Insert,High_Delete}

Fig. 5. NFA DataMode

The class diagram shown in Figure 4 captures the data model underlying the
information maintained by the CNA of the clients and the RNA of the resources. The
model in essence articulates the WinCondition as consisting of two parts. @) Task part
of type provides or requires depending on the component type (resource or client).
The task part explicates the role to be played, prioritization of tasks, task preferences,
and update volume and distribution submitted to the team in support of the task.
b) QoS congtraint part articulating the constraints imposed on the task. The QoS



schema specifies the component workload to support the task and the component QoS
constraints based on the status of component resources captured as QoS metrics. The
data model also specifies global integrity constraints in terms of the capacity of the
clients and resources.

The data model specifying the content of the information in the NFA is given in
Figure 5. The data-model captures specifications of the VMPs and their associated
costs. The data model also contains models of the WinConditions, 1ssues, and Options
that get posted to or generated by the NFA. Some of the important data elements are
a) identification, characteristics, and costs of available coordination policies, b) task-
specific meta-data, and c) overall team-level workload characterization, preferences,
and constraints.

The rules for issue and option generation are modeled as database trigger rules that
analyze an update and create issues, options and option evaluations. The trigger rule
in Table 5 creates an Issue, whose semantics is that of a query assertion to select a
Policy, in the Issues tables when there is an update in the WinCondition table. It
accesses relevant constraints imposed by a task specific WinCondition that must be
met by aVMP.

Table 5. An Example of an Issue Generation Rule modeled as a Trigger Rule

TRIGGER <Issue generation> on INSERT into WinConditions
(INSERT into Issues(...)

WHERE |ssue. Assertion =

(SELECT Policy

FROM PoalicyCost x| Policy

WHERE UpdateV olume = WinCondition.UpdateV olume
AND UpdateDistribution =WinCondition.UpdateDistribution
AND ConsistencyL evel = WinCondition.Consistencyl evel
AND UpdateM ode=WinCondition.UpdateM ode
AND RelativeClientCost < =WinCondition.ComponentCostT ol erance))

5 Design and Analysis of Change Coordination L ayer

A major requirement on the agent-based mechanisms for run-time change
coordination of view maintenance policiesis ensuring application state independence.
This involves ensuring that the sequence of change actions, imposed by the change
agents, leads to a connection state that is consistent with the application level
processing state without the policy change. The key idea underlying the NAVCo
approach to addressing the above requirement is based on the understanding that
ensuring such a property involves a) use of knowledge of the processing state of the
current view maintenance policy components, b) exploiting knowledge of the
behavior of the new policy component to identify the starting state of the new policy
such that continued processing from that state would be a consistent progress of the
processing state of the current policy, and c) a sequence of actions that brings about
the change in activities of the policies and their respective states.



The above understanding is trandlated into agent design constraints by having
1) tracking agents that use abstract specifications of the view maintenance policies to
track their processing states, and 2) a change agent to coordinate the actions required
to bring about the change.

The design of the change agents is based on decision rules for control and
configuration of the policy-based application layer coordination agents. The rules are
obtained by systematic pairwise analysis of switching from one policy to another and
identifying changes that do not introduce any inconsistencies in the application
specific processing states (such as inconsistent workloads). The questions then are:
1) What are the right abstract behavioral specifications of the view maintenance
policy agents that need to be tracked? 2) What is the method for obtaining the
specifications of the change agents? 3) Given the error-prone manual generation of
the decision rules that get used to program the change agents, how do we analyze and
debug the correctness of the decision rules used by the change agents? The following
two subsections describe the NAV Co approach to specifying the agent-behaviors for
tracking and generation of the rule-based specifications of the change agents.

5.1 Tracking Agent: Behavior Specification

The answer to the first question, raised above, is based on domain analysis of the
algorithms for view maintenance. In particular, we identify the state variables
underlying the scheduling agent, the query processing agent and the input buffer that
represent the application specific processing state and are manipulated by the
algorithms to provide view maintenance. Based on such analysis, we have identified
the following set of explicit state variables represented by the different components:
a) the scheduler's current workload defining the incoming updates from the
application specific information resources, b) the query processor's pending tasks
(called here the unanswered query set), c) the tasks that have been completed but yet
to be scheduled for propagation into the client view, and d) the concurrent update
tasks that arrive at the buffer during the processing of an update (necessary to identify
and execute compensating queries to eliminate the inconsistency of the current answer
due to interacting concurrent updates).

For a given view maintenance policy, the abstract behavior specification is based
on qualitative abstractions of the state variables. The abstractions aid in characterizing
the overall workload of the different components in the design for a specific palicy,
that must be gracefully preserved during transitions between view maintenance
policiesin order to satisfy the application state independence criteria.

5.2 Change Agent: Behavior Specification

The behavior specification of the Change Agent is modeled as a decision tree
captured by a finite state machine model (activity diagram in UML) where the
decision conditions are captured by the transitions and the actions are captured by the
activity states. The decision tree is obtained by a two-step process.



Step 1 - Identify intermediate states. In this step, different workload scenarios are
considered and the policies are manually executed to generate event traces for each
policy against each workload scenario.

Figure 6 shows a scenario consisting of a single insert operation with no concurrent
updates. The scenario modeled as a sequence diagram shows a partial interaction
between the application components and the view maintenance agents, where: 1) An
insert is submitted by the RMA of an information resource and received by the active
scheduling agent (SA). 2) The SA generates a query based on the received insert and
schedules it for execution by the query processing agent (QPA). 3) The QPA
decomposes the query and sends sub-queries to other resources as required to
generate an incremental view update. 4) The QPA sends the query answer to the SA.
5) The SA processes the update and propagates it to the CMA of the client view.
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Table 6 shows the event trace table generated by C-Strobe based on the workload
scenario in Figure 6. The table shows the sequence of the distinct abstract state
vectors (corresponding to the qualitative abstractions of the state variables identified
in the previous sections and tracked by the tracking agents in the architecture) that
result from the execution of the view maintenance objects. Similarly, Table 7 shows
the event trace table for the Strobe policy objects.

Step 2 - Obtain change plans. The second step involves analyzing for pairwise
switching of policies to identify workload constraints of the active policy in a given
state (specified by the abstract state vector) in the trace and the matching workload
congtraints of the new policy to be activated in a specific state. The configuration
action for activating the new policy is then setting up the workload state variables
according to the valid transitions obtained from the above analysis.

This step consists of two sub-steps: 1) identifying the entry in the second trace such
that continued processing from that point in the trace would be a consistent progress



of the processing state of the first trace, and 2) determining the sequence of actions
required to map the state variable values of the first trace to appropriate state variable
values of the second trace.

Table 6. Partial event trace generated by C-Strobe

ID |[Event Sequence WL JUQS |Delta |CD |State
1|initial (idle) z E E E (W
2|WL=W L+U1 | E E E |T
3]Q1,1,0=V(U1) I E E E |EV
41UQ S=UQS+Q1,1,0 | N E E |EV
5|Al=source_evaluate(Q1)to QP | N E E EV
6|processAnswer(Al) from QP | N E E |T
7| Delta=Delta+A1,1,0 I N N E |T
8lUQS=UQS-Q1,1,0 | E N E |T
9| CD=checkBuffer() | E N E |P

10| Delta=null z E E E |U

11|WL=null z E N E |T
12|final (idle) z E E E |W

Table7. Partial event trace generated by Strobe

ID Event Sequence WL JUQs AL |PL |STATE
1]initial (idle) 0|E E E W
2|lwL=wL+U1 >0 |E E E T
3|Q1=v(U1l) >0 |E E E EV
4luQs=uQs+Q1 >0 |[NE/FP |E E EV
5|setpending(Q 1)=null >0 |INE/FP |E NE |EV
6]Al=source_eval(Q1) to QP >0 |NE/FP |E NE |EV
7|lprocessAnswer(Al) from QP >0 |INE/FP |E NE |T
8JUQS=UQS-Q1 >0 |[E E NE |T
9linterim state >0 |E E NE |P

10|delete pendingList(Q1) >0 |E E E P
11|AL=AL+A1l >0 |E NE |E P
12|AL=null >0 |E E E T
13|WL=null 0|E E E T
14|final (idle) 0|E E E W

6 Prototype

The adaptive view coordination architecture has been modeled using Rationale Rose
98 Enterprise Edition. Use cases, class diagrams, object collaboration diagrams, and
seguence diagrams have been developed. Initial prototypes have been developed for
both the negotiation and application views (layers). Prototypes for resource manager,
resource negotiation, change coordinator, and negotiation facilitator agents have been
developed. Each prototype agent consists of a Java application and a Microsoft
Access database.



All agent-to-agent coordination is accomplished through the use of the Nspace,
which is implemented using JavaSpaces technology. WinConditions, options,
dynamic switching plans and other objects are written as entries into the Nspace. The
Nspace notify and read methods are utilized to route the entries to the appropriate
agents. The prototype agents currently utilize input and output text files to simulate
interactions with clients and resources. Initia results show that the NAV Co reactive
reasoning methods can exploit the JavaSpaces based design environment to make
negotiated decisions on the policy objects.

7 Reated Work

There has been a significant amount of work conducted in the area of view
maintenance resulting in a spectrum of solutions ranging from a fully virtual approach
where no data is materialized at one extreme to a fully replicated approach where full
base relations are copied at the other extreme. The Strobe [21] and SWEEP
algorithms [1] are a hybrid of these two extremes and are designed to provide
incremental view maintenance over multiple, distributed resources.

The NAV Co work builds on the negotiation research performed by the community
in requirements negotiation as well as automated negotiation. Negotiation is a
complex and difficult area of active research pursued by researchersin different fields
of study. Research progress has been made in different approaches to negotiation:
a) Human Factors approach - here the major focus is understanding methods and
techniques employed by humans to negotiate so as to manage the human factors of
pride, ego, and culture [8, 15, 16]. The work on understanding people factors in
requirements negotiation falls in this category. b) Economics, Game Theory and
Bargaining approach - here research progress has been made on theoretical models of
outcome driven negotiation and self-stabilizing agreement to achieve some
equilibrium [11] and process driven negotiation [14]. Research on negotiation focuses
on the group decision context where the power to decide is distributed across more
than one stakeholder/agent as opposed to group decision making where a single
decision maker relies on a set of analysts [12]. Two key aspects of the negotiated
decision studied in most of the research are conflict and interdependence of decisions.
Conflict has been used constructively in cooperative domains to explore negotiation
options [3]. c) Artificial Agents approach - here the focus has been on developing
computational agents that negotiate to resolve conflict [6], to distribute tasks [17, 19],
to share resources [22], to change goals so as to optimize multi-attribute utility
functions [18]. In general, the models for agent cooperation and negotiation consider
negotiation between multiple agents driven by global utility functions or driven by
independent local utility functions. The WinWin [2, 3] modd used in NAVCo
considers both types of drivers typical of negotiating teams having local preferences
aswell as global constraints.

The NAVCo approach is also similar in spirit to the work on architecture-based
run-time evolution [13]. Our approach and reasoning tools differ from [13] in terms of
the nature of automation. The work in [13] focused on providing a support
environment where the necessary analysis for dynamic change and conseguent



operationalization can be performed. The NAV Co approach and prototype discussed
in the paper is motivated by automated switching via automated negotiation reasoning
and change coordination realized by the middleware agents in the negotiation layer
and the change coordination layer.

8 Summary and Future Work

This paper develops a Negotiation-based Adaptive View Coordination (NAV Co)
approach for a class of distributed information management systems that allows view
maintenance policies to be dynamically adapted to meet changes in QoS preferences
and constraints in a run-time environment. The key ideas in the NAVCo approach
involve negotiation-based coordination and model-based tracking and policy change
coordination. The ideas are well suited for realization using agent-based concepts and
architecture. The paper describes the layered agent-based architecture with specific
emphasis on the agent-oriented middleware at each layer that supports a) cooperative
change reasoning via multi-agent negotiation coordination and negotiated artifacts
representations, and b) change coordination via model-based tracking and change
agents. With respect to the change-coordination layer, the paper details systematic
approaches to specifying the tracking agents and synthesizing the rule-based
specifications of the change agents. Current work is targeted towards developing
monitoring agents that monitor the application layer middleware agents and can be
used to trigger the policy switching process based on reifying the run-time
performance concern as a change in committed WinConditions. Also such monitors
would be useful to validate the adaptation in terms of performance benefits gained as
a result of switching. Future work will focus on debugging the agent specifications
using model checking approaches as well as further extensions to the capability of the
negotiating agents for issue generation, option generation and evaluation rules.
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