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Abstract 
This study’s goal was to model airspace 

Dynamic Density and complexity (and hence 
controller workload) using traffic characteristic 
metrics.  The focus was on metrics that could 
eventually enable Traffic Flow Management (TFM) 
personnel to strategically prevent overloads using 
triggers other than predicted sector traffic count.   

Potential metrics from past studies were 
assessed in terms of how well they could be predicted 
at time horizons required for TFM decision support 
(up to 120 minutes), and their face validity.  Also, 
proportional odds logistic regression determined the 
metrics’ usefulness for predicting subjective 
complexity ratings collected in an FAA-NASA study.   

Based on these analyses, a subset of 12 metrics 
was chosen (from the original 41).  Further multiple 
regression analyses were conducted with this reduced 
model, to determine which metrics provided unique 
contributions to the prediction of subjective 
complexity, and to see the extent to which the same 
complexity factors related to subjective workload in 
different airspaces.   

Structured interviews with a sample of eight 
Traffic Management Coordinators were used to 
cross-check the quantitative findings.   

Specific aircraft proximity, density, and 
airspace structure metrics were found potentially 
useful for real-time TFM decision support.  Many of 
the useful metrics were normalized and smoothed 
measures from an algorithm developed by 
Wyndemere, Inc.  Also, it was found that different 
metrics related to subjective complexity in different 
centers, but the differences were small enough that a 
generalized set of complexity metrics might be 
applicable to multiple airspaces, at least in the near 
term.  Future work could determine the viability of 
airspace-adapted complexity algorithms.   

The fact that multiple types of metrics are useful 
suggests that a multidimensional visual 
representation of predicted workload might be useful 
in TFM, as opposed to combining all relevant factors 
into a single metric.  

Introduction 
The Air Traffic Management (ATM) system 

features ever-increasing traffic volume, in addition to 
more dynamic traffic flows and the need to 
accommodate more airspace user preferences.  
Aviation researchers and developers have therefore 
been exploring such concepts as collaborative 
decision making, dynamic resectorization, and shared 
separation authority.  An issue cutting across all of 
these concepts is the need for operationally useful 
sector workload measures.  

Significant research interest has been generated 
in the concept of “Dynamic Density” (DD) and 
complexity, identified as integral issues in the “Free 
Flight” concept [1, 2].  DD, it was envisioned, would 
be used to define situations where the traffic was 
complex enough to require reversion to centralized 
control for that place and time.  The motivation to 
study DD arose from the notion that the number of 
aircraft in a sector may not adequately reflect the 
difficulty of working that sector, which remains an 
important issue even before the implementation of 
Free Flight procedures.   

The primary measure of sector volume currently 
used in the U.S. for operational decisions about 
staffing and TFM initiatives, such as rerouting flights 
out of an overloaded sector, is the peak aircraft count 
-- the most aircraft that will be in the sector during 
any minute of a 15-minute period.  This metric is 
imperfect for several reasons.  First, it fails to reflect 
the duration for which the peak load will continue, 
and so is insensitive to sustained high workload 
periods.  In addition, it is very sensitive to minor 
fluctuations in the sector entry or exit time of a few 
flights, which can change the peak count without 
changing the amount of sustained workload.  Finally, 
the same flight count can represent a vastly different 
level of controller workload, depending on the 
comple xity of the traffic mix and flows, and the 
weather.  A number of DD equations have been 
proposed, all involving a single workload metric 
derived from weighted combinations of multiple 
sector workload factors.  Various taxonomies have 
been proposed for workload metrics; among the most 
useful is that of Histon et al. [3], who divide 
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workload metrics into airspace design factors, 
dynamic traffic characteristics, and operational (e.g., 
procedural) factors, and list a number of each.   

The majority of the factors in DD equations are 
dynamic traffic characteristics, which would 
generally be the most useful for realtime decision 
support.  Measures of actual controller activity, e.g., 
communications and physical interaction with the 
workstation, are more difficult to record, and may in 
any event be less useful in workload models 
applicable to realtime decision support.  Manning et 
al. [4, 5] found that communications measures 
correlated with subjective workload, but did not 
provide incremental predictive benefit over other 
factors.  They also found that certain physical 
workload parameters, such as route displays and strip 
requests, were not well correlated with controller 
performance and mental workload.  These authors 
provide some evidence that other physical workload 
parameters (e.g., data entries) are important in 
workload models; however, most of the useful factors 
in their models are traffic characteristics.  

Many researchers have found traffic measures 
other than count to be relevant to Air Traffic Control 
(ATC) workload.  Significant relationships have been 
demonstrated between complexity-type measures and 
subjective workload, stronger than the relationship 
between peak count and subjective workload [6].   
Similar results were found in [5], as mentioned 
above.  Delahaye and Puechmorel [7] propose 
airspace complexity models based on factors 
including relative aircraft position and velocity, and 
crossing traffic angles.  Further evidence that traffic 
count may be insufficient to reflect workload comes 
from [8], wherein several characteristics of sectors 
other than peak count were found to be related to 
operational errors, and from [9], a human-in-the-loop 
simulation study suggesting that operational errors 
may be more likely to occur after rather than during a 
peak in traffic count.  Chaboud et al. [10] reviewed 
two separate studies on using complexity metrics to 
assess a facility’s performance and usual workload; 
in both studies, number of aircraft changing altitudes 
(and traffic volume) emerged as important factors. 

There is clear evidence that DD measures, other 
than traffic count, may reflect sector workload. 
However, the weighted combinations used in DD 
equations are less actionable; i.e., it may not be clear 
how to resolve the high-workload situation.  If the 
traffic count exceeds the operationally-defined 
threshold by three aircraft, the solution is to remove 
three flights.  In contrast, the DD equations derive 
abstract numbers from which the solution is not 
obvious.  Therefore, one purpose of the present study 

was to explore metrics more reflective of workload 
than simple traffic count, that still provide some 
indication to the decision maker as to what factor(s) 
is/are predicted to cause the problem, and thus 
provide improved decision support.  One method for 
doing this would be to select a small number of 
metrics that could be presented individually. 

Much of the past research on sector workload 
has focused on the opinions, behavior, and subjective 
and objective performance of controllers at the sector 
level, since it is the controller who is responsible for 
safety and whose workload is ultimately of interest.  
However, the personnel with the first opportunity to 
impact controller workload are Traffic Management 
Coordinators (TMCs), who make decisions affecting 
how much traffic a controller will have to deal with, 
as well as traffic complexity.  Thus, it is appropriate 
to predict and represent traffic load in a way that can 
help the TMC decide on actions affecting controller 
workload.  With only a few exceptions, e.g., [11], in 
which researchers collected subjective difficulty data 
from a limited number of TMCs at one ATC facility, 
the TFM perspective on sector complexity has not 
been well studied.  

The overall goals of this work were to suggest 
indicators of sector workload that could be used 
operationally for realtime TFM decision support.  As 
mentioned above, rather than using observed metrics 
of physical work such as data entries and radio 
communications, the study focused on the traffic 
characteristics that ultimately lead to increases in 
actual work.  These are more readily predictable 
before-the-fact (i.e., using trajectory modeling) and 
also may be related to cognitive aspects of workload 
that are not be directly observable.  

The quantitative characteristics of potential 
metrics were assessed using data from a joint FAA-
NASA DD study [12].  Additionally, to assess 
metrics’ utility from an operational perspective, 
feedback was collected from current TMCs using a 
structured interview.  

Quantitative Analysis of 
Complexity Indicators 

To be operationally useful, TFM complexity 
metrics must be closely correlated with controller-
perceived workload, and must be better predictors of 
such workload than sector count, since sector count is 
probably the most intuitive workload metric.  Also, 
these metrics must be predictable using available data 
sources and prediction algorithms.  Predictability of 
DD measures was studied in [13]; the present study 
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extends that work to a larger number of airspaces and 
a wider traffic sample. 

MITRE worked with the Simulation and 
Analysis Branch (ACB-330) of the FAA to 
systematically evaluate four different algorithms for 
predicting controller-perceived air traffic complexity.  
The complete results of this study are available in 
[12] and [14].   The complexity model presented here 
is an outgrowth of the previous work, and draws from 
all of the previously proposed complexity algorithms.  

Complexity Metrics 
The four DD algorithms included two 

developed at NASA Ames Research Center [6, 15], 
one developed by the FAA [16], and one developed 
at Wyndemere [17].  A summary of all four 
algorithms can be found in [12].  Each algorithm uses 
predicted trajectories to compute a variety of 
complexity-related metrics, and combines those 
metrics into a single value for the predicted 
complexity (or DD).  The four algorithms together 
contain 41 individual metrics, spanning many types 
of traffic features, including most of those discussed 
previously.  Because many of the metrics have 
similar definitions, and based on the desire for model 
parsimony, a subset of the 41 metrics was derived.  
Parsimony is important both for operational reasons – 
i.e., ATC personnel can more readily be trained on 
the meaning of each metric if the model has fewer 
metrics – and to reduce computational load, 
especially important if the model will be 
implemented in a realtime decision support system.  
The next two subsections describe the analyses. 

Subjective Workload Ratings 
In order to provide “truth” data against which to 

compare the comple xity metrics, subjective traffic 
complexity ratings were collected at Fort Worth 
(ZFW), Atlanta (ZTL), Cleveland (ZOB), and Denver 
(ZDV) Air Route Traffic Control Centers (ARTCCs).  
A total of 72 30-minute traffic samples were taken, 
evenly divided between the ARTCCs and 
representing a range of sector types. For each 30-
minute traffic sample, controllers and supervisors (up 
to three of each) were shown a traffic replay and 
asked to rate the situation at two-minute intervals.  
Two ratings were given: a Complexity rating from 1 ( 
“very easy”) to 7 (“very hard”), and a Number of 
Controllers rating (1, 2, or 3, indicating how many 
controllers would be required to handle the traffic 
situation) [12]. 

The yardstick for determining the metrics’ 
success at predicting the subjective ratings was the 
geometric mean, over all observed ratings, of the 
probability predicted by the model for the rating 
observed.  This will be referred to as Geometric 
Mean of Probability (GMP), and can be calculated as: 

GMP = exp((edf - (AIC/2))/N) 

where: edf = equivalent degrees of freedom (the 
number of model parameters estimated from the 
data), and AIC, referring to Akaike’s Information 
Criterion [18] is given by the following formula [19]:  

AIC = 2 edf - 2 ln(L)  

where L is the likelihood of all observations (ratings), 
given the model, and N is the number of 
observations.   

In the GMP formula, the expression edf - 
(AIC/2) is the natural logarithm of likelihood of 
model parameters, given the observations.  That 
likelihood, by definition, is the joint probability of all 
observations, given the parameterized model.  GMP 
can vary from 0 to 1, inclusive.  It would equal 1 if 
and only if the model predicted a probability of 1 for 
each observed rating, and would be 0 only if the 
model predicted a 0 probability for each observed 
rating.   

Applying GMP analysis to the traffic metrics 
and complexity ratings, a proportional odds logistic 
regression model [19] was built to predict the 
Complexity or the Number of Controllers rating from 
one or more of the DD metrics.  The metrics’ values 
in a given traffic sample were used to predict the 
probability of each subjective rating (e.g., 1 to 7), and 
GMP was derived by comparing the probabilities 
predicted by the model, to the actual ratings of the 
study participants.  

Predictability of Complexity Metrics 
Computing complexity metrics requires 

knowledge of current and projected  aircraft position 
and velocity vectors, which in turn requires a 
trajectory prediction algorithm and a system to 
synthesize the track reports, flight plans and wind 
data required for trajectory prediction.  A prototype 
developed for the FAA/MITRE Collaborative 
Routing Coordination Tools (CRCT) program was 
used for this purpose [20].  

In the past, the CRCT prototype has been used 
for developing TFM decision-support capabilities, 
focusing on human-in-the-loop evaluation.  However, 
for this study only the algorithmic core was needed.  
Therefore, a modified version of the prototype was 
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used containing none of the human-computer 
interface elements, but featuring a modified traffic 
analysis module to compute the complexity metrics.  
The metrics were computed by replaying archived 
traffic data from the Enhanced Traffic Management 
System (ETMS), and wind data.  ETMS data contains 
flight plans, 1-minute position reports, ground delay 
program information, and airline collaborative 
decision making information.  The CRCT prototype 
trajectory modeler used ETMS and wind data, and 
adapted ATC restrictions to create trajectories of all 
aircraft included in a 30-minute scenario.  For each 
minute of a simulation run, values of all DD metrics 
were predicted from 0 to 120 minutes into the future 
in 1-minute time intervals.  Therefore, in order to 
cover the 30-minute subjective data collection period, 
the replay was started two hours prior to the start of 
the period and allowed to run until the period was 
over. 

Quantitative Results   
To arrive at the smaller subset of metrics, each 

of the 41 metrics, as well as several basic 
characteristics of the sector or traffic (including 
traffic count) was assessed on the following criteria: 

• GMP and AIC. Performance, on the GMP 
measure described earlier, of a univariate linear 
model attempting to predict the Complexity and 
Number of Controllers ratings from that metric, 
and whether the metric was retained in a 
multivariate model built to minimize AIC, which 
balances predictive power and parsimony.   

• Predictability.  Least number of minutes of look-
ahead time at which the correlation between the 
prediction and the actual value falls below 0.3, 
calculated via the methods described above. 

• Face validity. Metrics were considered more 
desirable if they met the following quantitative 
characteristics, defined in [14], that any metric 
should satisfy in order to make operational 
sense: 

1. Adding another aircraft should not reduce 
complexity. 

2. Shrinking the geometry of the airspace, or 
increasing the speeds of all aircraft in the 
airspace, should not reduce complexity. 

3. Repositioning one aircraft so that it is 
now farther from every other aircraft should not 
increase complexity. 

4. The metric should be independent of the 
orientation and origin of the coordinate system. 

• Redundancy.  The metric, assuming it is 
desirable on the other characteristics,  should 
have a low correlation with others that capture 
the same traffic characteristic (e.g., aircraft 
proximity or speed).  This criterion shows 
whether the metric provides a unique 
representation of the situation not captured by 
other metrics that attempt to measure similar 
characteristics of the traffic. 

The most desirable metrics according to this 
analysis are listed in Table 1.  Details of the analysis 
are found in [14]. 

Table 1.  Complexity Metrics in Reduced Model. 

Metric Definition 

NUM  Sector aircraft count 

MAP Monitor/Alert Parameter (operationally 
defined threshold) 

SECTVOL Sector Volume, cubic nautical miles 
(nm) 

SC Speed Change; number of aircraft with 
an airspeed change greater than 10 knots 
or 0.02 Mach during a 2-minute interval 

WACT A normalized measure of the aircraft 
count per sector 

WDEN A normalized measure of the aircraft 
density per sector 

WCLAP A measure incremented by aircraft pairs 
with less than 8-nm horizontal distance, 
and to a lesser extent by pairs with less 
than 13-nm horizontal distance  

WCONVANG A measure of the convergence angle for 
aircraft pairs within 13 nm of each other 

WCONFLICTNBRS A measure of the number of aircraft in 
close proximity to an aircraft pair 
projected to be in conflict 

WCONFBOUND A measure of the number of aircraft 
pairs in conflict with each other and 
close to a subsector boundary 

WALC A measure of the number of aircraft 
with an altitude change greater than 500 
feet per minute  

WASP A measure of the distribution of aircraft 
relative to sector structure 

 

Most of these metrics (those beginning with 
“W”) are from the Wyndemere algorithm [17].  It is 
likely that these metrics perform better at the 
aforementioned criteria because they are corrected by 
a normalization factor.  In addition, some are 
smoothed, beginning with the maximum of the given 
parameter over some time interval, rather than an 
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instantaneous value.  This aids predictability, because 
if a high value of a metric is predicted to begin at a 
given minute and actually occurs several minutes 
later, the analysis used in this study will record a 
prediction error for the original predicted minute, 
though the prediction is still operationally valid.  
Other metrics in the subset are SC from the NASA 
algorithm [6], and NUM, MAP, and SECTVOL, 
which are basic traffic or sector characteristics that 
are not specific to any of the algorithms, but that are 
component terms in some of the DD metrics. 

Airspace-Adapted Models  
One might expect that a model relating traffic 

and subjective metrics would better reflect the 
characteristics of a given airspace if adapted to the 
airspace, by adjusting the coefficients of predictors in 
the equation, and/or by adjusting the set of metrics 
that are retained for the model.  Adaptation models 
can be used to infer whether a model fit to data for 
multiple airspaces exhibits an adequate fit for a 
particular airspace.  

Analyses were conducted to examine the 
adaptability of models predicting the subjective 
ratings from values on the aforementioned DD 
metrics.  Adaptability was assessed across the four 
aforementioned ARTCCs.  To assess each metric’s 
relative importance in each adapted model, it was 
determined how much a model’s GMP would 
decrease if each regressor were dropped from the 
model, one at a time.  These results are shown in 
Figures 1-2, which show the decrement in GMP 
relative to the GMP for that center’s full model, 
which adjusts for the slight differences between 
centers in the ability of the full model to predict the 
subjective ratings.  A higher value means that the 
metric is more important to the model, i.e., the model 
would be less predictive of the subjective rating if 
that metric were dropped.  

GMP Reduction from Dropping Metric from Complexity Rating Equation
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Figure 1. Contribution of Each Metric to Model 
for Complexity Rating. 

GMP Reduction from Dropping Metric from Number of Controllers Equation
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Figure 2. Contribution of Each Metric to Model 
for Number of Controllers Rating. 

The figures show that some metrics do not affect 
the models’ ability to predict subjective complexity 
ratings for any center or either subjective rating.  
These include SC, WALC (relating to speed and 
altitude changes, respectively), WCONFLICTNBRS 
(“conflict neighbors” factor), and WCONVANG 
(“convergence angle” factor).  Even though these 
metrics individually exhibit the aforementioned 
desirable quantitative characteristics, they do not 
provide much unique contribution to a regression 
model explaining the subjective ratings.  Therefore, if 
the goal is as parsimonious as possible a set of 
metrics, these may be candidates for dropping, 
though as discussed later, some of these metrics may 
still be operationally desirable. 

It can also be seen that different metrics provide 
a high unique contribution to the prediction of 
subjective complexity, depending on the center.  For 
example, the WDEN measure contributes more to the 
predictive power of the models in ZOB and (at least 
for the Number of Controllers rating) in ZTL.  This 
may be because density varies more in these centers.  
A number of other differences exist as well, 
suggesting that different factors may contribute to 
perceived complexity and difficulty, in different 
centers and altitudes.   

It can be concluded that there is some difference 
in the complexity “profile” depending on the 
airspace.  Additional analysis assessed the magnitude 
of these inter-center differences. The 12-metric 
model was used to predict the most likely 
Complexity and Number of Controllers ratings, 
which were compared with the participants’ actual 
ratings to determine the percent of ratings predicted 
correctly.  For the Complexity ratings, the prediction 
was permitted to be within one rating point of the 
actual rating, due to the wide range of possible 
responses and the fact that with Likert scales having 
this many points, there is no great semantic 
difference between responses near each other on the 
scale.  Figures 3-4 show the results. 
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Figure 3. Predicting Complexity Rating from 
Traffic Characteristics with General and Adapted 

Models. 
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Figure 4. Predicting Number of Controllers 

Rating from Traffic Characteristics with General 
and Adapted Models. 

Naturally, a slight benefit is always observed 
when the model is adapted to the altitude band.  
According to a chi-square analysis, adopting a 
criterion of p<.01 for statistical significance, the 
number of correctly-predicted ratings is significantly 
increased by adapting to the center’s data for all four 
centers, with one exception, the complexity rating at 
ZDV, which approaches significance (p~.10).   

It can be concluded that the traffic parameters 
associated with subjective complexity differ between 
ARTCCs.  Whether these statistically significant 
differences are operationally significant is a question 
for future research.  The fact that percentage 
differences are relatively small suggests the viability 
of using the same complexity metrics for all 
airspaces, at least as a start.   

Operational Interview 
A structured interview was administered to 5 

TMCs from ZKC (Kansas City ARTCC) and 3 from 
ZID (Indianapolis ARTCC).  For each of 16 
workload factors, TMCs rated, from 1 (“not at all 

important”) to 5 (“very important”) the overall 
importance of the factor to TFM decision making.  In 
addition, several illustrated questions were included 
regarding how information about sector workload 
should be displayed.  Each workload factor was also 
accompanied by graphics to ensure consistent 
understanding of the question’s meaning.  The 
workload factors chosen for the interview were based 
on a review of controller workload literature and on 
input from MITRE/CAASD personnel, many with 
ATC experience.  The factors do not map exactly to 
the DD metrics used in the quantitative analyses, but 
do represent the constructs captured by those metrics.  
For example, WALC equals 1.60355 times the 
number of flights climbing at greater than 500 feet 
per minute.  The information of interest from the 
operational personnel was not the appropriateness of 
the parameters 1.60355 and 500, but whether the 
arrival and departure banks producing altitude 
changes are important for TFM decision support. 

Each participant was interviewed by 
MITRE/CAASD facilitators. Participants were 
reminded at the outset that future capabilities were 
being studied, and that they should therefore focus on 
what information could be useful, as opposed to what 
they use today.  In addition, participants were asked 
not to consider how predictable they believed each 
factor to be when making judgments about its utility, 
so that responses regarding metrics’ operational value 
could be studied independently of their quantitative 
characteristics.  Results of the ratings with regard to 
overall operational importance of each factor are seen 
in Table 2. 



7 

 

Table 2.  Rated Operational Importance of 
Factors. 

Factor Mean 
Importance 

Predicted peak number of aircraft  4.63 
Percent sector capacity unavailable 
due to severe convective weather 

4.63 

Weather at busy destination 
airports of flights traversing sector 

4.63 

Traffic at same altitudes on 
merging/crossing flows 

4.50 

Impact of severe convective 
weather on other sector(s) 

4.38 

Total number (occupancy) 4.25 
Departure push near sector 4.25 
Arrival push near sector 4.13 
Traffic at same altitudes, close 
lateral proximity 

3.88 

Amount of time above MAP 3.75 
Number of aircraft to enter sector 3.06 
Merging/crossing point near sector 
boundary 

2.63 

Merge or cross at narrow angles 2.43 
Mix of aircraft type 2.38 
Traffic off airways, structured 
routes, or usual routes 

2.25 

Total time in sector across all 
aircraft 

1.50 

 

What Decisions Would Complexity Factors 
Support? 

As part of the structured interview, TMCs rated 
which of the 16 workload factors could and could not 
be used in executing each of 7 common decisions or 
tasks: 

• Volume Management 
• Ensuring Capacity is Utilized Efficiently 
• Miles In-Trail 
• Ground Stops 
• Ground Delay Program 
• Lateral Rerouting 
• Altitude “Rerouting”, e.g., capping.   
 

Figure 5 illustrates the percent of  “yes” 
responses for each task for the six factors from Table 
2 that relate directly to traffic complexity. 

 

Figure 5.  Percent TMCs Saying Each Factor 
Could be Used for Each TFM Decision. 

The complexity measures that TMCs believe 
they would use for making decisions about most 
initiatives are traffic at the same altitudes on merging 
or crossing flows, and traffic at the same altitudes in 
close lateral proximity.   The decisions for which 
complexity factors are deemed most useful are 
volume management and ensuring capacity is utilized 
efficiently. 

However, there is a wider variety of factors that 
the majority of TMCs could use for lateral rerouting 
decisions.  Merging near sector boundaries or at 
narrow angles, and traffic off usual routes, were rated 
by a majority of TMCs as useful for lateral rerouting 
decisions despite lower overall importance ratings for 
these factors.  Several TMCs commented that while a 
rerouting initiative would not be implemented simply 
to avoid complexity factors like narrow-angle 
crossings or merge points near a boundary, some 
TMCs would take care that an initiative they put out 
did not introduce these types of situations. 

A larger variety of complexity factors are 
relevant to altitude rerouting as well.  For example, 
one TMC reported that the aircraft type mix factor 
comes into play for altitude rerouting, because props 
(propeller aircraft) could be capped in a lower sector 
if it would prevent the complexity resulting from a 
mix of props and jets in the overlying sector.  

Operational Viability of Multidimensional 
Workload Predictions 

Potential drawbacks of using a single weighted 
DD sum for realtime decision support were discussed 
earlier.  To obtain operational input on this issue, the 
proposed display of multidimensional complexity 
information seen in Figure 6, was presented to TMCs 
for comment. 
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Figure 6.  Bar Chart Showing Multidimensional 
Workload Predictions. 

The bar chart presents four different workload 
elements, and each is predicted to have a certain 
value, which is color coded according to whether it 
exceeds some operationally defined threshold, and by 
how much.  The design of the chart is inspired by 
previous MITRE/CAASD work, and by the 
principles of emergent features and proximity 
compatibility [21].  Details of the interface, and the 
factor names and thresholds, were not discussed; the 
goal was feedback on the general concept of 
multidimensional workload. 

The above display was considered less useful 
than a single DD-type measure of workload by some 
participants, partly because many TFM decisions 
today are based on the unidimensional measure of 
peak count, and TMCs are therefore used to looking a 
single number.  Also, having too many factors to 
analyze may create information overload, drawing 
attention from and slowing the decision process.  

However, the results also show willingness to 
use multidimensional information.  Some of the TMC 
comments indicate that the display in Figure 6 could 
help to decide whether an alerted sector was “really 
red”, as one participant put it (i.e., really required 
initiative(s) to reduce the flow).  Specifically, if all 
the factors were high, multiple initiatives might be 
required, while if only one factor was high, no 
initiative would be needed.  

Pros and cons were stated for both single and 
multidimensional workload representation. One  
possible solution, shown in Figure 7, would allow the 
TMC to view predicted sector demand color-coded 
for count, composite DD, or the “dashboard” of 
Figure 6.  This option received favorable comments 
from TMCs. 

 

Figure 7.  Option to Display Predicted Demand by 
Count or Complexity. 

Responses to the interview questions regarding 
workload factors can be combined with the 
quantitative results to determine which workload 
factors and metrics might be operationally important 
in TFM as well as exhibiting appropriate quantitative 
characteristics.  More detail on the results of  the 
interview can be found in [22]. 

Conclusions 
 It was determined from the operational 

interview that aircraft at the same altitudes on 
crossing flows and/or in close lateral proximity are 
important factors for TFM decision making.  DD 
metrics that were found to capture this factor include 
WCONFLICTNBRS and WCLAP. It was found that 
WCONFLICTNBRS does not provide much 
incremental benefit to the models predicting 
subjective difficulty from traffic characteristics.  The 
WCLAP measure may be a more promising 
proximity-related workload measure.  

Other complexity-oriented metrics, including 
merging and crossing points near a sector boundary 
(which could be captured by WCONFBOUND), are 
less important overall in TFM.  However, they may 
represent useful parameters to present in what-if tools 
for determining the potential impact of TFM 
initiatives before deciding to implement them. 

The impact to en-route sectors of arrival and 
departure pushes emerged in the interview as another 
complexity-oriented factor that influences decisions 
about TFM initiatives.  Appropriate metrics from the 
DD equations that relate to this factor include WALC 
and SC, since arrival and departure banks increase 
the number of flights changing speed and altitude.  
Although these two metrics did not provide a unique 
contribution to the prediction of subjective workload, 
they represent an operationally different traffic 
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characteristic than other metrics, and therefore may 
be useful for TFM decision making. 

In addition to complexity factors, it is obvious 
that TFM requires some measure of volume.  The 
interview investigated potential volume measures 
other than peak count.  Of the alternate volume 
measures presented in the interview, amount of time 
above MAP may be the most promising for inclusion 
in an operational system.  The “occupancy” factor 
also received high ratings, but some of the TMCs’ 
comments supporting the occupancy factor were 
really about the length of time for which the high 
workload would continue, e.g., “gives an idea 
whether it's busy for a minute or is it really going to 
be busy”, and “gives an idea of how busy (sector will 
be) over a sustained period”.  The quantitative 
characteristics of these and other alternate volume 
measures have yet to be studied systematically. 

Adapting a set of metrics to a specific center 
generally provides a statistically significant 
improvement to the prediction of subjective difficulty 
ratings from traffic characteristics.  However, most of 
these significant differences are relatively small from 
a practical perspective.  If complexity metrics were 
implemented in the TMU in the relatively near term, 
it would probably be unnecessary to use different 
models for each airspace.  If a set of complexity 
metrics did in fact have different operational 
importance in different centers, local protocols for 
usage of the information could be adapted without 
actually adapting the metrics themselves.  For the 
longer term, future work with a larger sample of 
airspaces could determine the operational and 
computational viability of airspace-adapted 
complexity and DD equations. 

Future work could also focus on metrics other 
than those studied herein.  During the interview, 
TMCs informally identified additional ways of 
numerically representing complexity and workload.  
These include the predicted load on a subsector (i.e., 
a specific posting fix), projected arrival rate at an 
airport of interest as compared to the airport’s 
acceptance rate, and, when large-scale rerouting is 
underway, information regarding the percentage of 
rerouted flights on each potential reroute corridor.   

Other potential workload measures not addressed 
in this study are the number of different routes 
through a sector that aircraft are on, and the number 
of restrictions and constraints currently underway in 
the sector, such as miles-in-trail and altitude 
restrictions.  These factors arose in informal 
conversations with TMCs and with  MITRE/CAASD 
personnel experienced in controller workload 

research [e.g., Al McFarland and Melvin Zeltser, 
personal communication, 2002]. 

The mixed operational feedback regarding the 
display options points to the need for further concept 
development and experimentation to determine the 
relative merits of using the multivariate 
representation, the single DD number, or both.   

Improved measures of complexity would find 
applications outside TFM decision support, including 
realtime decision support for the operational 
supervisor.  In particular, the relationship of the DD 
metrics to the Number of Controllers ratings, is 
relevant to the study of supervisor automation 
capabilities, as this type of staffing decision is an 
important role of the operational supervisor.  
Applications of these results also exist for post-event 
analysis and airspace des ign -- see [14] for a brief 
discussion -- and airspace slot allocation.   

A variety of complexity and other workload 
factors were deemed operationally important and 
were shown to relate to subjective workload.  
Therefore, it can be concluded that multiple aspects 
of workload, not limited to volume measures, are 
relevant to TFM decision making.  It is also 
concluded that the concept of using complexity 
information in TFM has some viability and that the 
DD metrics mentioned in this section, among others, 
may be promising for individual or combined 
presentation to help TMCs make decisions to 
enhance efficiency and safety. Conclusions are 
necessarily preliminary, because data were only 
collected from a small number of ARTCCs.  Human-
in-the-loop simulation and further algorithmic 
analysis are required to derive more definitive 
recommendations regarding which complexity 
metrics can aid TFM decision making, and regarding 
specific procedures for the use of this information.  
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