
 Joint Synthetic Battlespace Integration Framework (JSB IF)

S. David Kwak, PhD
ESC-CXE, The MITRE Corporation

781-271-6431
dkwak@mitre.org

Lt. Col. Emily Andrew

ESC/CXE
781-377-6421

Emily.Andrew@hanscom.af.mil

Keywords:

Joint Synthetic Battlespace (JSB), Architecture, Integration Framework, Ontology, XML, Semantic Integration,
Syntactic Integration, Plug-and-play, Legacy System Integration

ABSTRACT: The Joint Synthetic Battlespace or JSB will support training, acquisition, test and evaluation, and
research and development communities. To accomplish this, the JSB must operate at many levels of detail,
including: engineering level; entity level; mission level; operational level; and strategic level. The JSB’s broad
scope makes it impractical to build all new simulation components. Instead, the JSB will rely on existing
components as much as possible. Integrating legacy simulations is, therefore, one of the most critical issues for the
JSB.

The JSB Integration Framework (IF) is being designed to address this critical issue. It is hoped that JSB IF
concepts will eventually reduce the effort required for large-scale simulation integration by an order of magnitude.
If successful, the JSB IF would permit construction of complex test beds or experiments in one or two months rather
than one or two years. This paper describes an approach to developing JSB’s integration framework, which clearly
separates integration syntax and semantics, with an emphasis on innovative ontological semantic integration.

1 Introduction
In the United States Air Force (USAF), there is an
emerging need to support development, acquisition,
and deployment of capabilities to support the functions
of task forces. For example, the Global Strike Task
Force (GSTF) has been defined to require existing and
new systems to achieve a higher level of integrated
capability to achieve rapid air strike capabilities under
a variety of possible circumstances. Because existing
systems have been typically developed in a standalone
fashion, their designs have become obstacles to
achieving the full vision of the GSTF. To prevent this
from occurring in the future, systems will have to be
explicitly conceptualized using computer simulation.
The Joint Synthetic Battlespace (JSB) will become one
of the enabling technologies that supports development
of new systems and migration of existing systems into
the integrated GSTF vision, as well as that of other task
forces.

The JSB’s mission includes integration of both legacy
and newly developed simulations. Current simulations
have been developed to meet specific needs and,
therefore, do not usually interoperate well with other
simulations. Because of this phenomenon, the
simulation world, in general, lacks the ability to
support the highly integrated systems envisioned by
task force concepts.

It is for these reasons that the JSB requires a common
simulation architecture and core services, designed to
ease integration of current and future simulations for a
variety of defense modeling and simulation users. This
paper briefly describes the JSB vision and the
development approach being used to realize this vision,
most notably, the JSB Integration Framework (IF).

2 Joint Synthetic Battlespace Vision
The Joint Synthetic Battlespace will be an interactive,
simulated environment and battlespace, which will
allow its users to simulate a variety of defense systems,

at varying levels of detail, using common simulation
components. This JSB concept of operations is
described, in detail, in the JSB CONOPS [1], which
was approved by the AFROC in 2001, and will be used
as a foundation for the JSB Program, which is being
formally instantiated in FY04. This paper presents the
four key areas of the JSB vision and strategy: 1) JSB is
addressing a new problem; 2) many of the required
component simulation capabilities already exist; 3)
existing simulations are not interoperable; and 4)
simulations need a common environment.

JSB is addressing a new problem
Traditional military systems have been designed for a
narrow application domain, however, future weapon
systems are different. These new systems are being
design as more complex systems of systems. This
approach results in a new level of complexity because
of the many possible behavioral interactions within and
among the systems [2]. As system size and complexity
increase, the cost to engineer, test and evaluate these
systems also increases. Therefore, the cost to build
future systems will be much higher than is presently
the case. A sophisticated simulation-based process then
becomes critical, to construct and test these systems
more inexpensively using simulation software, before
building the systems. This is the new problem
addressed in the JSB vision.

Many of the required component simulation
capabilitiess already exist
JSB simulations will not usually be built from scratch,
but will be largely composed of existing simulations.
The United States Air Force Electronic Systems
Center’s preliminary analysis shows that many of the
simulation models needed to meet JSB requirements
already exist. While further analysis and use will
determine whether these models are really adequate to
support all JSB users, this is an encouraging
preliminary result. Simulations for JSB users will be
obtained from a variety of Government organizations
and industry.

Existing simulations are not interoperable
Although many relevant simulations already exist, they
do not generally interoperate without significant effort
because they were created to serve their original users’
specific needs. Incompatible requirements,
architectures, technologies and standards are some of
the main obstacles. While integration approaches do
exist, their utility is usually limited to one-time use. A
new and systematic approach to integrating existing
simulations to form more complex composite
simulation environments is needed.

Simulations need a common environment
True interoperation is more than just having a common
interface specification. A common interface provides
details of the data exchange protocol, which typically
addresses syntactic differences among simulations.
Each simulation still has meets different requirements
and, therefore, has its own algorithms, limitations, and
resolutions. These semantic differences are another
challenge when it comes to true interoperability. An
environment that helps resolve these semantic
differences is needed. Just as human beings need
common semantics to communicate in the same
language, JSB must provide a common environment to
foster meaningful simulation interoperability. JSB’s
prototype of a multi-spectral sensor environment is an
example of the need for providing common semantics.
This prototype effort provides a common synthetic
environment to provide correlated views for sensors
across a variety of spectra and sensor types: electro-
optical; infrared; ground moving target indicator and
synthetic aperture radar. A new effort proposes the
creation of an integration framework to provide a
common contextual understanding, which is described
in this paper.

3 JSB Overarching Framework
The fact that JSB must support both training and
acquisition communities makes flexibility of structure
and composition a key requirement. This flexibility,
when combined with ongoing changes in training and
acquisition requirements, argues against using a single
monolithic system to meet all the JSB requirements.
Therefore, the JSB must include an architectural
framework, a set of simulation components and
standards for combining these components to produce
valid simulations. Each resulting JSB “instance” will
meet its specific user’s needs, for military training,
acquisition support, or concept development. The full
extent of JSB requirements will be satisfied by the JSB
instances, collectively.

Rapid generation of JSB instances is envisioned to be
achieved by the
JSB Overarching
Framework,
which is
notionally shown
in Figure 1. As
shown in the
figure, a JSB
instance will be a
product of the JSB
system
engineering
process, which is
tightly coupled
with the JSB
architecture. The
JSB architecture
will allow for
early exploration,
investigation, and design of internal structures, and
control of flow of the target JSB instance without
actual internal simulation components. Inputs to these
JSB processes include legacy and new simulation
systems, users’ requirements, and existing and new
technologies. The proposed JSB Integration
Framework (IF) is envisioned to provide a means to
put together the JSB internal components following the
overall structure and the control flow captured in the
JSB executable architecture. Finally, a JSB IDE
(Integrated Digital Environment) will be designed to

facilitate retrieving, storing and moving data and
information throughout the JSB. That is, the JSB IDE
will become a library and associated tool set for JSB
system configuration management, documentation
control, program management, collaboration, and
distributed manufacturing of JSB instances.

Figure 2 shows how a JSB IDE could support creation
of a JSB instance. The
set of documents
needed to create a JSB
instance would be
managed by the IDE.
For example, a user
requirements
document, technical
specification document,
and program
management document
could all be managed in
the central knowledge
repository. The IDE’s
multiple view
generation capability
will support semi-
automated creation of
multiple documents

from a single central knowledge store in the IDE.
Because these documents are different views of a JSB
instance, they may each be generated from the formal
specification of that JSB instance.

Presently, human authors manually create these
documents. Collecting necessary knowledge by parsing
the existing document, adding additional knowledge,
and assembling it in a specific format, a target
document is created. For example, JSB CONOPS
(Concept of Operations) is one of the JSB documents,

and is manually created by a group of people. The JSB
IRD (Interim Requirements Document) is subsequently
created by another group of people. JSB CONOPS, the
baseline document is manually parsed to form a
knowledge base, and new knowledge specific to JSB
IRD is added to the knowledge. If the first group of
the people, who created the JSB CONOPS, are not

Figure 1: JSB Overarching Framework

Doc1 Doc2 Doc3

Knowledge

• Capture as central knowledge
• Generate Doc as a representation

Executable Arch
Checker

Computing/Network Environment

Requirement
Technical
User
Management
Finance, etc

JSB Network Infrastructure

JSB Integration Infrastructure

JSB Plug & Play Architecture

JSB Comp

JSB Comp

JSB Comp

JSB Computing Infrastructure

JSB Technical Framework

IDE

JSB Instance

Figure 2: JSB IDE allows for shortening the JSB overall process from Requirement Documentation to
creation of a JSB instance.

JSB Integration Framework

JSB Executable Architecture

JSB System Eng Process

JSB IDE

Legacy & New
Systems

Requirements

Technologies

JSB
Instance

involved in the JSB IRD generation process, a large
portion of the valuable knowledge collected and
created during JSB CONOPS creation process is lost.
The knowledge captured in a form of a JSB CONOPS
document is really limited compared to the knowledge
actually captured by the first documentation group. In
reality, most of the knowledge is simply stored in the
brains of the humans participating in the
documentation process. After the CONOPS
generation process, the knowledge captured in the

human brains has little chance to be carried over to the
subsequent JSB IRD generation process unless the
same people are involved. Although the original group
has been involved, the temporal gap between the two
document generations undermines the effectiveness of
communication. The current form of the CONOPS is,
after all, one of the best-known means to capture the
knowledge; however, it is certainly a narrow channel
for transferring knowledge. Again, there exists
inefficiency of restoring the knowledge captured in the
CONOPS by reading the CONOPS document,
reassembling the knowledge base in the human brains,
and creating the new JSB IRD documentation.

During the above parsing and reassembly process, new
knowledge is added. As new documentation is created
following the process of creation of a JSB instance, the
size of accumulated knowledge is increased as well as
the size of the documents. Thus, the inefficiency of
unpacking and packing knowledge from one document
to the next is also increased. This process would

continue until a complete set of documentation
becomes available to build a JSB instance.

This conventional knowledge accumulation process is
manually intensive. Even so, the current process
focuses on manual creation of written documentations
partly because it is a familiar form of knowledge
capturing since the invention of writing and partly
because there is no other alternative. It is also true that
this manual process has been focused on

standardization on manifestation of knowledge on
papers, rather than the standardizing of storing the
source knowledge. Thus, reusing the captured
knowledge at the source level could not have been
achieved at all. In reality, many documents have been
historically created to simply satisfy a documentation
requirement of a given process rather than to facilitate
knowledge transfer. There is little chance to expect a
significant change in the near future to having a truly
re-usable knowledge representation among the
document generation groups1.

There is emerging technology in this area, and the JSB
IDE is an example. It supports standardization of
knowledge representation, and provides tools and
utilities for capturing, manipulating and extracting

1 Although a single group of people may generate a
series of documents, there is little chance of systematic
generation and maintenance of a single knowledge
base.

JSB Network Infrastructure

JSB Integration Infrastructure

JSB Plug & Play Architecture

JSB Comp

JSB Comp

JSB Comp

JSB Computing Infrastructure

JSB Technical Framework

JSB Sys Eng Process

JSB
Instance

JSB Executable Architecture

JSB IDE

Legacy & New
Sys

Requirements

Technologies

Figure 3: JSB Integration Framework is composed of computing, network,
integration and plug-and-play infrastructures.

various views and formats. Once knowledge is
electronically captured in the tool rich environment, it
becomes much more powerful than any textual form of
knowledge, which is static and not-easily
transformable. Unpacking and packing knowledge
stored in conventional documents are undeniably time
consuming, but the JSB IDE will allow for a direct
management of knowledge, and automatically maintain
the evolution of stored knowledge.

When the above IDE knowledge approach is fully
adopted, JSB instance creation will be greatly
facilitated. JSB system engineers will directly interact
with the knowledge in a form that they need rather than
passive documents written on paper. Moreover, the
JSB IDE will support a backward compatibility so that
the knowledge in the central JSB IDE repository will
support semi-automatic creation of paper
documentations mandated by DOD.

The captured knowledge in the JSB IDE does not just
facilitate creation of mandated acquisition
documentations, but also supports other functions that
required supporting instantiations of JSB instances.
The JSB IDE’s multiple views of the central
knowledge repository permit generation of other
documents and information such as engineering,
managerial, and financial aspects of JSB. Again, all
of the knowledge is captured in the central repository,
and evolves together. Thus, although vastly different
documents and artifacts are generated from the central
repository, the JSB IDE will automatically maintain
consistency across all of the documents that are
generated from the IDE. Traditionally, maintaining
consistencies across totally disjoint groups of people
such as financing, management, engineering, etc has
been a difficult and time-consuming task. The JSB
IDE will vastly improve this problem.

4 JSB Integration Framework
The JSB Integration Framework will be designed to
permit JSB to have true plug-and-play capability. The
internal structure of the JSB Integration Framework is
shown in Figure 3.

The ultimate goal of JSB is to rapidly instantiate JSB
instances by integrating existing, i.e., legacy,
simulation systems and models to produce a JSB
instance. When the required simulation does not
already exist, a new simulation component may be
developed. Therefore, creating a new JSB instance
becomes a composition task rather than a development
task. This concept has is similar to constructing

models from LEGO 2 pieces rather than from raw
materials [4].

Historically, many approaches, architectures, and
protocols have been introduced to achieve LEGO-like
plug-and-play capability for simulation systems, but
they typically fall short. Often a proposed plug-and-
play scheme is narrow in scope and does not cover the
required simulation domain, or it operates at too high a
level and requires custom development to fill in the
details. The JSB Integration Framework will attempt to
address these issues; it will divide the plug-and-play
problem into four levels: 1) computational
infrastructure; 2) networking infrastructure; 3)
integration infrastructure; and 4) plug-and-play
architecture. These levels are illustrated in Figure 3.
The bottom two layers, network infrastructure and
computing infrastructure, use today’s commercial
technologies. In contrast, the top two layers, plug-
and-play architecture and integration infrastructure are
more unique to JSB.

JSB’s Computing Infrastructure layer is envisioned to
use commercial technology to take advantage of the
exponential increase in capability that occurs each year
in this market. This increase is quantified by Moore’s
Law, which states that storage density, in terms of
transistors per square inch, doubles every 18 months
[5]. In fact, Moore’s law has held true for several
decades. By using commercial computing technology
in a layered architecture, the JSB will benefit from
annual improvement in computing technology.

The JSB Network Infrastructure is also based on
commercial technology to take advantage of the
remarkable progress in networking technology. In
some areas, the growth rate of network infrastructure
technology has been surpassing the rate predicted by
Moore’s law. Today’s World-Wide Web concept and
industry were established over little more than the last
10 years and have flourished over an even shorter,
more recent period. Therefore, synchronizing the JSB
computing and network infrastructures with the
commercially available technologies is a wise tactic for
the JSB Integration Framework.
The top two layers of the JSB Integration Framework,
on the other hand, are more JSB-specific. Commercial
technology has less to offer in these areas, although
significant advances are being made in the areas of IT
Centric Enterprise Application Integration (EAI) and
Enterprise Information Integration (EII). The JSB will
use these emerging technologies, as appropriate, within
the JSB Infrastructure layer. The JSB Integration
Infrastructure (JSB I2) will be uniquely designed to
allow for integration of legacy simulation systems

2 LEGO is a registered trademark of The LEGO Group

regardless of their protocols and standards, e.g., ALSP,
DIS and HLA/RTI. JSB I2 will also facilitate
integration of new JSB-compliant simulation models,
components and systems. The JSB I2 will help
transform simulation components, either legacy or
new, into a JSB-compliant plug-and-play components.

In contrast, the JSB Plug-and-Play layer will rely on
development and integration of JSB-specific
capabilities. The JSB Plug-and-play architecture will

provide a true plug-and-play capability of JSB
compliant components. Therefore, the top two layers
are unique to the JSB Integration framework, and
together with the bottom two layers, a truly plug-and-
play architecture is constructed. The details of the top
two layers will be discussed in later sections.

5 Commonly Used Integration
Approaches

Before discussing the details of the JSB Integration
Framework (IF), three commonly used integration
approaches are presented to provide a common basis of
understanding for discussion of the JSB IF. These three
approaches to integration are illustrated in Figure 4.

The first approach is Common Interface Based
Integration. Traditional system engineering falls under
this approach in which the interfacing components are
precisely defined and controlled by a strict engineering
process and specification. In this approach the entire
interface definition of all participating components is

pre-defined. It is usually captured in an interface
control document. Creating a complete set of static
interface definitions is a rather natural process because
the functions of the internal components are statically
definable except for small changes in later parts of the
system’s life. Thus, the internal components can be
manufactured under precise engineering control using
the pre-defined system and interface specifications. In
the simulation world, JSIMS (Joint Simulation System)
falls in this category. That is, all of the JSIMS

components have to conform to the JSIMS interface
specifications before integration into JSIMS. Figure 4
illustrates this by making all components circles, while
the component being integrated has the same circular
shape. Due to the strict traditional engineering
process, i.e., all components are made to confirm the
given standards, the time to construct such a system
tends to be long. A typical time line is several years or
more.

Another commonly used approach is Ad Hoc Interface
Based Integration. This approach is often adopted by
a lab style experimentation or prototyping. Unlike the
first approach, interfaces of the components have not
been manufactured under a single predefined interface
specification. Therefore, most of the participating
components do not interoperate without being
changed. Case-by-case interface modifications are
needed. This integration approach is usually adopted
to create a temporary experimental system. The MC02
(Millennium Challenge 02) modeling and simulation

Common Interface Based Integration
• All components must confirm the single system wide standard.
• Good for a stable system integration
• Traditional system engineering mainly falls in this category.
• Ex) JSIMS, etc
• Timeline: > 5 years

Ad Hoc Interface Based Integration
• Component system are modified for the integration.
• Good for supporting coarse level ad hoc system integration
• Lab style experimentation/prototyping is in this category.
Ex) MC02, etc
• Timeline: about 1 year

Middleware Based Integration
• Middleware is created as needed.
• Good for system integration without modifying components
• Most of Web/IT based integrations fall in this category.
Ex) Web based SIM, etc
• Timeline: < 1 year

Figure 4: Three Commonly Adopted Integration Approaches

system is a good example. The time span for such
integration is about one year or less.

Recently, Middleware Based Integration has been
gaining in popularity. The advantage of this approach
is not requiring modification to the participating
components. This avoids the pitfalls associated with
modifying working systems, which often introduces
errors into previously working systems. Additionally,
a proper modification requires an in-depth knowledge
of the component, which often requires that the
original developer be involved.

Middleware-based integration eliminates the need to
modify existing applications, as long as the required
information is being exchanged through the existing
application interfaces in one form or another. Instead,
middleware is added, as needed, to make the required
translation. In the Web/IT (Information Technology)
world, this approach has been widely accepted and has
achieved great successes. There has been a recent
movement to duplicate this success in the domain of
simulation integration. A typical timeline for this
approach is shorter than for the Ad Hoc Interface
modification approach.

6 JSB Integration Infrastructure (JSB
I2)

The JSB Integration Infrastructure is not one of the
traditional integration approaches, although it shares
many similarities to the middleware approach. To
facilitate our further discussion, a comparison is made
drawing in Figure 5.

The pros of the middleware approach have discussed in
the previous section. Thus, the cons are presented
here. First, the middleware interfaces are usually
constructed manually, and they are created case-by-
case due to the point-to-point nature of connecting two
adjacent components. Therefore, the total number of
middleware creations quickly rises, in a geometric
fashion, as the number of components increases. The
theoretical upper bound of the required middleware
constructions is on the order of N2, where N is the
number of components to be integrated.

Another common attribute of the middleware approach
is that it is constructed as a set of value-to-value
translators, connected from one system to another. This
point-to-point translation is inherent to the middleware,
which presumes a one-to-one mapping of values in one
system to those of another. Contextual aspects of the
data, which are usable and sometimes critical for
subsequent processing, are rarely considered or
implemented3. Therefore, the middleware essentially
becomes a table lookup operation. If data in one
system may represent more than one possible values in
the other system, then this approach will not work. A
middleware approach, which is a context-free one-to-
one translator, cannot handle this complex situation.

3 Anyway, the middleware approach does not facilitate
such contextual transitivity relationship. Often,
middleware implementation approaches make
practically impossible implementation of a contextual
transitivity relationship.

The Middleware Based Integration
– Pro: no modification of components
– Cons

Mainly manual process
Limited to mechanical interface translations
Order N2problem

JSB Integration Infrastructure (JSB I2)
– Ontology based integration

Largely automates the manual process
Semantics oriented interoperation

– Not limited to mechanical translation, such as table
lookup

Maximizes use of open standards and technologies
Order N problem
Reduces the integration time to less than 1 month

Middleware Integration

Ontology Integration

The Middleware Based Integration
– Pro: no modification of components
– Cons

Mainly manual process
Limited to mechanical interface translations
Order N2problem

JSB Integration Infrastructure (JSB I2)
– Ontology based integration

Largely automates the manual process
Semantics oriented interoperation

– Not limited to mechanical translation, such as table
lookup

Maximizes use of open standards and technologies
Order N problem
Reduces the integration time to less than 1 month

Middleware Integration

Ontology Integration

Figure 5: JSB I2 is better than the middleware based integration approach

One-to-many translations are commonly performed in
human language translations. Due to semantic
structural differences of two languages, one
representation (i.e., one meaning such as a word, a
phrase or a sentence) in one language often has
multiple representations in another language.
Therefore, there is a low applicability of mechanical
translations of human languages. Non-determinism
should be resolved by a common context between two
languages. It is common that machine translated text
becomes a laughable object due to out-of-context
usage of translated languages.

The JSB I2 approach will explicitly address the above
disadvantages of the middleware approach. First, the
JSB I2 will turn the N2 implementation issue into an
order N problem. Instead of manual implementation
of each middleware case-by-case, a commonly
ontology is implemented. The N systems are directly
connected to this ontology. Thus, only the N number
of connections is implemented. Figure 5 captures this
concept. Then, JSB I2 automatically creates interfaces
between two systems as needed. Second, the ontology
maintains a common context. Thus, it is capable of
resolving non-determinism of one-to-many translation
cases. Moreover, it updates and maintains the common
context during run-time so that it reflects the latest
common context among the N participating systems.
The advantage of JSB I2 is, consequently, its
implementation economy in reducing the order N2

problem to an order N implementation and its power of
resolving non-determinism with the common context.
It is expected that this ontology approach will
significantly reduce integration of many (i.e., around
40 to 50) systems. Integration of 40 to 50 systems is a
typical complexity targeted by JSB. JSB I2 is also
believed to be cable of significant reduction of the
current order of 1 year integration time. We are
currently targeting for reducing down to one month.

The preceding discussion was about the semantic sub-
layer of JSB I2, which is one of the two aspects of the
JSB I2. The JSB I2 has a syntactic sub-layer, and it
supports the semantic sub-layer by sending and
receiving a data between systems without concern for
the semantic details. This context free syntactic
interoperation is implemented by this sub-layer, and
this approach greatly simplifies implementation of JSB
I2. A simple analogy of this syntactic integration
layer is a LEGO piece’s dimples. They allow for
integration of LEGO pieces without worrying about
the semantic baggage associated with leg pieces, such
as whether they are being used to construct a castle,
truck, human soldier, etc.

On top of the above syntactic interoperation, a
semantic interoperation is implemented, which is the

ontological portion. The current choice for the
semantic representation is XML (eXtensible Markup
Language). XML is also a logical choice. This choice
matches the current trend of DOD and of commercial
industry, which encourages using of XML as system
interface data representations.

XML is not a just one standard of representation of
data, but it comes with a family of utilities such as
XSLT (eXtensible Stylesheet Language Translation),
which allows for point to point XML translations.
XML and its family of utilities really facilitate building
machine understandable knowledge representations,
and a direct knowledge transfer between machines.
Thus, XML provides a foundation for M2M (Machine
to machine). Finally, XML is also human readable.

Adopting XML as a data representation standard
effectively creates multiple islands of “XML-ized” data
language groups. XSLT easily translates one XML
language to another. However, its capability is limited
to a point-to-point translation. Therefore, if we rely on
the standard XSLT, we essentially recreate the
middleware approach discussed before. Instead, JSB
I2 uses ontology to represent the common context and
to translate one set of XML data to another. Although
there has been an issue related to non-standard
representation of the ontology itself, luckily the XML
industry has started to develop standard ontology
representations such as OWL (Web Ontology
Language) [6], RDF (Resource Description
Framework), etc. Therefore, the reuse of ontology will
be greatly facilitated, and an incremental accumulation
of ontology becomes possible.

Adopting the commercial standard is crucial. The
commercial sector continuously improves technologies
with their own investments, and JSB IF, which heavily
leverages the commercial technologies, will be a
beneficiary. JSB IF will benefit by this recent advance
in technology as well as other technologies such as
XML. The current approach is to prototype the JSB
IF while leveraging the above mentioned technologies.

7 Summary and Conclusion
The JSB is a concept that facilitates design, analysis,
development, acquisition, training, and simulated
operation of future mission-oriented C2/weapon
systems, which are essentially a complex system of
systems such as C2 constellation. Realizing the JSB’s
concept requires leveraging all existing assets (i.e.,
simulation systems, communication infrastructures,
organizations, etc) rather than building from scratch.
Thus, the JSB needs to have proper and adequate
abilities and processes that allow for quick integration
of existing assets. Many of these efforts are directly

associated with human organization and programmatic
aspects, but new technical break-through will also be
used as they become available. This new JSB concept
will benefit from existing technologies as well as from
the continual improvement of technology over the
years. As the JSB core technologies, architectures and
processes mature, the JSB will start to reach the full
scope of the vision while significantly impacting
everyday operations of USAF and other DOD services.
Some of the technologies described in this paper are
essential as a necessary step toward the “real” JSB.
Our current efforts will surely bear fruit while
providing much needed valuable data moving forward
to the “real” JSB in the future.

8 References
1. USAF, Joint Synthetic Battlespace For

Simulation Based Acquisition, JSB Concept of
Operation (CONOPS), 2001.

2. Kwak, S.D., “A Multiple Paradigm Behavior
Architecture: COREBA (Cognition Oriented
Emergent Behavior Architecture)”, Proceedings
of 1998 Fall Simulation Interoperability
Workshop, SISO, Orlando, FL, Sept. 14-18,
1998.

3. Kwak, S.D., JSB Overall Framework, Power
Point Presentation, USAF ESC/CXE JSB, May
2002.

4. Kwak, S.D., Andrew, E.B., “Technical
Challenges for Joint Synthetic Battlespace
(JSB)”, Proceedings of 2002 Fall Simulation
Interoperability Workshop, SISO, Orlando, FL,
Sept. 9-13, 2002

5. Moore, G.E., “Cramming more components onto
integrated circuits”, Electronics, Volume 38,
Number 8, April 19, 1965.

6. http://www.w3.org/TR/2003/WD-owl-features-
20030331/, W3C, March, 2003

