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Section 1

Introduction

1.1  Purpose of the Report

1.1.1  Background of the Report

MITRE is developing a methodology for analyzing the performance and cost of future
national command-control and information systems, emphasizing so-called sensor to shooter
systems. The methodology is named CAPE, which stands for C4ISR analytic performance
evaluation. The CAPE methodology supports MITRE in its role as a systems engineer for
national C4ISR systems.1

CAPE involves the extensive use of mathematical models and computers to estimate
system performance and cost. Though many MITRE project briefings and reports describe
the results of CAPE modeling, heretofore MITRE has not provided general documentation of
how its staff constructs and uses mathematical models in applying the CAPE methodology.

1.1.2  Objective

This report provides general documentation of the purposes, technical basis, and
fundamental methods of CAPE modeling.

1.1.3  Anticipated Benefits

The report will help MITRE s sponsors to understand the technical basis of CAPE
modeling. It will clarify the CAPE methodology for them, create a common terminology and
framework for discussing C4ISR modeling with MITRE staff, and provide them the
information necessary to judge the general suitability of CAPE models for specific analyses.
The report will also serve MITRE s own staff for internal training in CAPE modeling and for
the development of databases and libraries to support the CAPE methodology. It will
facilitate communication between the builders of CAPE models and their MITRE colleagues.

1.2  Organization of the Report
The report covers the following topics:

1. Introduction — Purpose of the report, organization, background, related documents

                                                  

1 C4ISR  stands for Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance. See the Glossary for further information.
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2. Overview of the CAPE Methodology — Purpose, scope, and uses of the CAPE
methodology; distinctive principles of CAPE modeling; existing CAPE models;
hardware and software for CAPE models

3. The Inputs and Outputs of CAPE Models

4. Modeling Operational Processes with CAPE — Characteristic C4ISR processes and
how they are represented in CAPE models

5. A P P E N D I C E S  — Justification of the CAPE Principles, Deriving a Model of Target
Movement, Glossary

1.3  The Origin of CAPE Modeling
In the late 1980s, Henry A. Neimeier began developing a collection of useful analytic

techniques for modeling system performance, applying them in many MITRE projects.2 The
techniques include methods for modeling analytic queues  and using analytic risk
evaluation,  as well as other methods described below. They also include techniques for
implementing such modeling with two software packages named Analytica (originally
named Demos) and Extend.

In the mid-1990s, Roy C. Evans, Jr., originated a continuing and expanding series of top-
level C4ISR investment analyses for MITRE s sponsors. He built the first mission-oriented
analytical model, CAPSTONE, using Demos. As input to Demos, he used Extend to
calculate C4ISR system-level estimates of technical performance.

Evans then enlisted Neimeier to bring his analytic system modeling techniques to bear on
particular signals-intelligence system-design issues in the context of national and theater
imagery and other ISR capabilities. The analysis that resulted was named Sensor to Shooter.
Neimeier first used Extend simulations for this work. He later transferred the simulation
model to Demos.

In 1997, under Evans s direction, several members of MITRE s staff, including
Neimeier, were using analytic system modeling techniques and Analytica to model different
aspects of the performance of national surveillance and reconnaissance systems. It was then
that the name CAPE originated, at Dr. Russell Richards’s suggestion, as an umbrella phrase
to signify the general modeling methodology the analysts were using and applying to C4ISR
studies. The analysts  work was part of the Department of Defense s C4ISR Mission
Assessment study (CMA).  In addition, new models of battlespace awareness (BAM) and
air/land/maritime force engagement (ALMEM) were created and first used at about this time.
The CMA and its follow-on studies had participants from many Defense Services and

                                                  

2 See the bibliography in the section immediately below. Also see Analytic  in the Glossary.
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Agencies, as well as from several Federally Funded Research and Development Centers and
other Defense contractors.

During the CMA study, analysts at both MITRE and the Secretary of Defense s C4ISR
Decision Support Center (DSC) embraced the CAPE methodology when they found that
current military operations research models and approaches would not satisfy their analytic
needs.  They needed tools to explore a large set of C4ISR study questions quickly, identify
key factors, compare alternative hypothetical combinations of new C4ISR capabilities in
terms of mission effectiveness, and to provide an analytic umbrella connecting the results of
detailed system level analyses in a sensible, mission-oriented context.  These analysts knew
that the existing models either did not address the C4ISR domain explicitly, addressed it
poorly, or they required too much time and effort for data collection and analysis.3

1.4  Related Documents

1.4.1  Technical Papers on Techniques of Modeling

Analytic queue

• Neimeier, H. A., A New Paradigm for Modeling the Precision Strike Process
(Unclassified), in the Proceedings of the 1996 IEEE Military Communications
Conference (SECRET)

• Neimeier, H. A., Analytic Network Queuing,  a paper presented in Stirling,
Scotland, at the International System Dynamics Conference, 1994.

                                                  

3 Here is the basis for these findings: Admiral Owens, Vice Chairman of the Joint Chiefs of Staff, asked the
Military Operations Research Society to conduct a workshop on Joint Warfare Capability Assessments
(JWCAs) in October 1995. Dr. Stuart Starr of MITRE chaired the C2IW working group. That working
group concluded that the tools to support JWCAs in the area of C2IW were deficient. Admiral Owens then
created the C4ISR Decision Support Task Force to look at current US capabilities to do C4ISR studies. Dr.
Russell Richards of MITRE chaired the working group on assessing the capabilities of current tools. His
working group found that the tools (models and simulations) built by the Services had a stovepipe
orientation and most had major deficiencies with respect to supporting Joint assessments of C4ISR. The
working group produced a paper summarizing the input from 80 or so organizations (government, FFRDC,
and contractors). In all, a total of over 700 tools were identified as being used to support C4ISR analyses.
However, the working group s assessment was that there were many serious deficiencies for supporting
JWCAs, JROC decisions, QDRs, and so forth. The DSTF recommended the establishment of the C4ISR
Decision Support Center and the C4ISR Joint Battle Center to provide core organizations with a focus on
joint studies of C4ISR. Both organizations were created.
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Analytic risk evaluation

• Neimeier, H. A., Analytic Uncertainty Modeling Versus Discrete Event Simulation,
Phalanx, March 1996.

• Neimeier, H. A., Use of Response Surfaces and Utility Functions in Nonlinear
Multiattribute Risk Simulation,  Sixth AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Bellevue, Washington, 4—6 September
1996.

• Neimeier, H. A., Analytic Uncertainty Modeling,  a paper presented in Stirling,
Scotland, at the International System Dynamics Conference, 1994.

• Neimeier, H. A., Nonlinear Multiattribute Risk Simulation,  unpublished paper, no
date

• Neimeier, H. A., Nonlinear Multiattribute Risk Simulation Using Response
Surfaces,  unpublished paper, no date

1.4.2  Technical Papers on CAPE Analyses

• Parker, S. K., Modeling the Collection and Exploitation Trade-Off in the C4ISR
Mission Assessment Study, MITRE Technical Report 98W0000042, May 1998.

• Belldina, J. S., Neimeier, H. A., Pullen, K. W., Tepel, R. C., An Application of the
Dynamic C4ISR Analytic Performance Evaluation (CAPE) Mode,. MITRE Technical
Report 98W0000004, December 1997.

• Richards, R. F., Neimeier, H. A., Hamm, W. L., Alexander, D. L., Analytical
Modeling in Support of C4ISR Mission Assessment (CMA),  a paper published in
the proceedings of the International Command and Control Conference, 1997.

• Neimeier, H. A., A New Paradigm for Modeling the Precision Strike Process,  a
paper presented at MILCOM 96.

• Neimeier, H. A., Precision Strike Process for Mobile Targets,  64 th MORS
Symposium, Fort Leavenworth, Kansas, 18—20 June 1996.

1.4.3  Briefings on CAPE Topics

• Kuskey, K. P. and Tepel, R., A High-Level Model of Target Location, Movement,
and Engagement,  67 th MORS Symposium, West Point, New York, 24 June 1999.

• Belldina, Jeremy, Weapon/Target Pairing Algorithm Used in Dynamic CAPE,
INFORMS Military Applications Society Conference, Huntsville, AL, May 1998.
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• Neimeier, H. A., C4ISR Analytic Performance Evaluation (CAPE) Models,
INFORMS Military Applications Society Conference, Huntsville, AL, May 1998.

• Parker, S. K., Modeling the Performance of Imagery Exploitation Systems,
INFORMS Fall Conference, Dallas, Texas, October 1997.

• Neimeier, H. A., Precision Strike Attack Process for Mobile Targets,  64th MORS
Symposium, Fort Leavenworth, Kansas, 18—20 June 1996.

1.4.4  Other Documentation of CAPE Models

• Rueda, Catalina, Documentation of the Dynamic CAPE Model,  August 1998,
unpublished.

• Rueda, Catalina, Documentation of the E-CAPE Model,  August 1998, unpublished.

1.4.5  Other Papers

• Davis, P., Starr, S., Thomas, C., Report of Synthesis Panel,  MORS Mini-
Symposium on Quick Reaction Analyses and Methodologies (QRAM), October 1—3,
1996.

• Neimeier, H. A., and Gulledge, T., Functional Economic Analysis of Purchasing at
MITRE,  a paper presented in Stirling, Scotland, at the International System
Dynamics Conference, 1994.

• Neimeier, H. A., MITRE Abbreviated Functional Economic Analysis Tool (MAFEA),
MITRE Technical Report 92W0000037, February 1992.

• Neimeier, H. A., Performance and Sizing Models to Support IRS Tax Modernization
System, MITRE Technical Report 88W00232, June 1989.

• Neimeier, H. A., and Scholl, M. M., A Modeling Approach for Tax System
Modernization (TSM), MITRE Technical Report 88W00231, January 1989.
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Section 2

Overview of the CAPE Methodology

The CAPE methodology, while broad, is applied to the domain of C4ISR systems within
the context of federal decision making. This limited domain shapes the purpose, scope, and
uses of CAPE analysis.

2.1  The Purposes of CAPE Analysis
Viewed from a variety of perspectives, one may describe the purposes of CAPE analysis

as follows:

• Support top-level, cross-functional planning and analysis in C4ISR organizations,
where questions must be answered quickly, typically within two months, or be
overcome by events.

• Provide a framework for discussion of complex future systems — an analytical
framework within which many people can share and test their intuition, judgment,
and knowledge about the behavior of hypothetical new systems.

• Visualize, understand, and estimate the benefits and costs of implementing alternative
choices for future investments, doctrine, and organization of C4ISR functions and
systems. Do this at the level of operational requirements and broad capabilities more
than at the level of detailed system design.

2.2  Scope of CAPE Analysis
The elements of CAPE analyses include operational concepts, scenarios, environments,

sensors, targets, collection processes, processing-exploitation-dissemination (PED)
processes, command-control processes, communications, computers, and warfare processes.
CAPE modelers spend much of their time gathering and analyzing information to build up
their knowledge about the elements.

The elements in CAPE analyses are usually conceptualized at the abstract level of
aggregates, averages, and probability distributions instead of at the level of individual actors
and events.

The results of CAPE analyses, stated in terms of measures of effectiveness and
performance, are usually developed at the analytical level of averages (expectations) and
sensitivity analyses, not at the more detailed analytical level of probability distributions or
risk profiles. On the other hand, probabilistic information is usually used in CAPE analyses,
and probability distributions are sometimes calculated as intermediate results.
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2.3  Uses of CAPE Analysis
Analysts investigate two primary questions with the CAPE methodology: (1) Which

system capabilities and characteristics have the most impact on benefit and cost? and (2)
What are the estimated benefits and costs? The range of actual and potential inquiry with
CAPE models is summarized as follows.

2.3.1  Estimation of C4ISR Performance and Benefits

The emphasis in CAPE analysis has been on performance and benefits. The CAPE
methodology has been used to

• Identify first-order relationships between C4ISR system characteristics and
warfighting measures of effectiveness (MOEs) and measures of performance
(MOPs);

• Analyze C4ISR investment tradeoffs in terms of the investment-to-MOE connection,
i.e., the effects of investments on warfighting effectiveness across the whole sensor-
to-shooter chain;

• Quantify the contribution of alternative future C4ISR systems and concepts to
warfighting effectiveness; and

• Quantify the benefits of improvements in various systems and concepts using
measures of performance and measures of effectiveness

2.3.2  Estimation of C4ISR Costs

While most CAPE analyses have emphasized system effectiveness, the CAPE
methodology may also be used to analyze the cost implications of C4ISR systems. It is
suitable for modeling the costs of acquisition, operations and maintenance, logistics, and
R&D. It is suitable for calculating rough order of magnitude  (ROM) cost estimates for
alternative mixes of C4ISR systems. It has been used to estimate operational costs.

2.3.3  Resource Allocation

The CAPE methodology is compatible with the use of mathematical programming
techniques to optimize the allocation of resources over competing designs or requirements
for system elements. To date this method has not been utilized.

2.4  Distinctive Principles of CAPE Modeling
The purpose and scope of the CAPE methodology have led MITRE s staff to three basic

principles to guide all CAPE modeling. An understanding of the principles goes a long way
toward explaining why any particular CAPE model was constructed the way it was.
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2.4.1  Principle 1. Model Complex Uncertain Phenomena with Aggregate
Probabilities

Represent uncertain actors, situations, and events with probability distributions, either
continuous or discrete, which aggregate more complex underlying phenomena. This
approach averages over  many potentially complex interactions instead of modeling the
interactions explicitly. Practically, this approach enables rapid experimentation with the
models to discover key factors and relationships. Here are two examples:

Discrete random variable. Let us say the weather at any place and moment may be clear,
cloudy, or rainy. In CAPE models, we average over  all the complexity of moment-to-
moment and place-to-place fluctuations in weather and all the ways that military systems
respond to the fluctuations. We assign unconditional probabilities, such as .5, .25, and .25, to
represent the concept that whenever a sensor looks at any location the weather will be clear,
cloudy, or rainy, respectively, regardless of what the weather was at any earlier time. These
probabilities will represent the weather throughout the model, averaging over  all the hour-
to-hour and place-to-place variations in weather that might be represented in an event-driven
simulation model.

Continuous random variable. An actor on the battlefield who stops will usually move
again some time later. In CAPE models, we aggregate over all possible reasons for stops and
starts and assign a probability density function to the pause time  per stop. We do this not
for individual actors, but for a whole class of actors. For instance, the pause (dwell time) per
stop for a mobile command post could be an exponentially distributed random variable with
a mean of 30 minutes. This probability density function for the random variable would then
represent all kinds of mobile command posts throughout the analysis, averaging over  all
the complex interactions of one actor with another and with the environment that might cause
the pause to be small or large.

2.4.2  Principle 2. Strive for Simple Analytic Calculations of Probabilistic Results

There are three aspects to this principle, all of which reduce the amount of calculation
needed to answer a question about the main effects being modeled. First, always calculate
results simply as averages (probabilistic expectations) without variances or risk profiles
(probability distributions). In other words, focus calculations on the main effect itself, not on
the variability of the main effect. Plan to use sensitivity analysis to explore the variability,
but only as needed. Second, in probabilistic calculations, where several random independent
variables may take on a range of values and combine in various ways as functions of the
random variables, try hard to keep the whole analysis in terms of the parameters and
moments of the distributions. In other words, avoid calculating the actual probability
distributions of intermediate functions of random variables unless the distributions are very
important to your results. Third, only as a last resort use numerical analysis or random-
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number generation and statistical sampling to find the moments or the distributions of the
combined functions.

2.4.3  Principle 3. Simulate Simply

When a CAPE model is used to calculate a state history for a C4ISR dynamic
probabilistic system, use a non-sampling, fixed-time-step method that approximates the
inputs of successive time-steps as the expected values of the outputs of previous steps. This
principle using expected outputs of one time step as deterministic inputs for the next time
step focuses CAPE analysis on the main (first order) effects in the state history and avoids
extensive calculations. It is inexact, but it is the most useful calculation that can be done
without also calculating the probability distributions or moments of the outputs and using
random-number generation and statistical sampling.

*

The three principles of the CAPE methodology produce C4ISR models that differ greatly
from many existing models used for military operations research. Such existing models are
used to statistically estimate the performance of systems by repeated next-event simulations
of the systems  operation. MITRE staff believe that the simplifications of the CAPE
methodology, which avoids statistical sampling, are more appropriate to the class of
problems they address than the other models. There are several reasons (see Appendix A).

Implicit within the principles of CAPE modeling is the requirement that the analysts who
build the models are sophisticated probabilistic thinkers. They should have a strong grasp of
probability mathematics, dynamic systems, and of dynamic probabilistic systems, so that
they can make the simplifications inherent in the principles while preserving the
correspondence between the CAPE models and the real world.

2.5  Existing CAPE Models
The following descriptions of current CAPE models illustrate the variety of subject

matter the CAPE methodology can cover.

Air-Land-Maritime Engagement Model (ALMEM) — ALMEM is a dynamic model derived
from Dynamic CAPE. It calculates joint performance in theater level conflicts in terms of
attrition of enemy and own forces. Unlike Dynamic CAPE, for which the analyst determines
the lengths of battle phases, ALMEM calculates the lengths of the battle phases, using force
ratios and other factors. ALMEM finds out how long the battle lasts. It also finds out how
much the battle costs, including such costs as materiel, operations and support, and veterans
benefits. Some 200 variations of ALMEM have been used for various analyses. ALMEM was
employed in Global Engagement 97 to model the impact of C4ISR actions on scenario
outcome. Other versions were used to evaluate new theater architectures (DSC Task 2,
IMINT/MTI CDA, and IOSA-2).
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Close CAPE - Models ground combat as limited to a single division. It includes ground-
oriented sensors, special operations, placement of sensors on roads, area versus linear
sensors, intelligence fusion (signals, imagery, and human intelligence). It uses scenarios from
the Close Support End-to-End Assessment (CSEEA) study.

Cruise Missile Defense — This model calculates the percentage of cruise missiles that can
be engaged and destroyed for a given set of missile flight geometries. Defensive systems that
are modeled include, airborne ISR sensors, ground based air defense systems, fighter aircraft
defensive systems, on-board and off-board aircraft sensors and communication capabilities.

Deep CAPE - Models the air strike mission against targets that are as deep as 350 km to
determine the sensitivity of various measures of effectiveness to variations in such factors as
imagery quantity and timeliness, communications delay, and shooter  characteristics.

Dominant Battlefield Awareness (DBA) - DBA is defined as sensing and understanding
what is happening and then communicating that information in timely fashion to the forces
that need to know what is happening. Based upon red forces and their movement
characteristics, the DBA model calculates the DBA that can be achieved for a given mix of
ISR capabilities. The model includes the effects of environment and enemy behavior on the
amount and quality of data that can be collected and disseminated on a timely basis by
intelligence, surveillance, and reconnaissance (ISR) assets. The measure of performance is
the amount of information (area and points) collected and disseminated on a timely basis.
The model also includes an aggregate cost estimate of the ISR assets needed to provide a
given level of DBA.

Dynamic CAPE - Models the effectiveness of the strike mission and supporting
intelligence systems as affected by various strike and intelligence factors, including theater
environment, target, sensor mix, sensor platform. Models 50 time periods, remaking
platform-weapon-target assignments for each time period. With this model forces can be
deployed gradually over time; and weapons, platforms, sensors, and targets are attrited daily.

E-CAPE - Models the imagery-exploitation subsystem of the intelligence collection
process to determine the sensitivity of exploitation throughput and delay to various factors
such as the percentage of imagery sent out of theater for exploitation, the number of imagery
analysts in theater, the exploitation rate, and the use of automated exploitation tools.

Fuse CAPE - Evaluates multi-sensor fusion over a large environmental envelope.

Geo CAPE - Extends Deep CAPE to model the effects of terrain masking and foliage and
to produce a measure of battlefield awareness,  calculated as the percentage of targets for
which the location is accurately known. The computer display shows a map of the conflict
region with target icons that are color-coded to show how well blue forces can identify their
location.
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Global CAPE - Models naval forces and operations in addition to Air Force missions and
sensors. Weapons include strategic ballistic missiles.

Integrated Overhead SIGINT Architecture (IOSA) Model - This model calculates the total
volume of signals emitted that are of interest for a specified mission, the number of signals
that are closed and the amount of data that is collected, received and down-linked by the
overhead systems. The model groups detailed signals of interest into signal families with like
electrical characteristics to reduce the computational requirements. The model allows the
user to specify the mission of interest (e.g. JSEAD, DCA, counter proliferation, treaty
oversight, etc.), the architecture of the overhead SIGINT system (altitude, aperture size,
access parameters, etc.), the percent contribution of the overhead system versus the airborne
collectors, and the country of interest.

Probability of Closing the Kill Cycle - This model calculates the likelihood that a mobile
target can be engaged by a weapon system if it has been detected by an ISR system. The
model uses the speed of the mobile target after it begins to move, the average time between
mobile target moves, the accuracy and latency of the ISR sensor and the response time and
footprint of the weapon system to calculate the likelihood that the weapon system
successfully kills the mobile target.

SEAD CAPE - Models and evaluates the suppression of enemy air defenses over a large
environmental envelope. New SA10 and SA12 surface to air missiles are evaluated.

SEASCAPE - Models and evaluates present and future naval task force survivability
against present and future anti-ship missile defense. Autonomous, task force cooperative
engagement capability (CEC), and integrated CEC operations modes are evaluated.

Tactical Ballistic Missile Defense (TBMD) Model — This model allows the user to specify
the characteristics of the attacking TBM (e.g. geographic launch and aim points, burn time,
velocity at burnout, etc.) and the number and geographic distribution of all of the family of
system (FOS) TBM components that are to be modeled. The model calculates the number of
TBMs that survive each segment of the TBM’s flight regime (boost, mid-flight, exo-
atmospheric, and endo-atmospheric). The actual parameters of the TBM’s ballistic flight path
are calculated and the times to detect and engage along with the probability of kill for
defensive systems are combined to assess the defensive system capabilities.

2.6  Software and Hardware for CAPE Models

2.6.1  Overview of Software and Hardware

MITRE staff have built CAPE models with Analytica and Extend, which are commercial
off-the-shelf software applications. Analytica and Extend run on both Macintosh and
Windows personal computers.
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Analytica is the preferred tool to rapidly prototype new CAPE models, often in a matter
of hours. Analytica s graphic user interface makes it easy for analysts to demonstrate models
to subject matter experts and then to adapt the models on-the-fly  to reflect reality more
accurately. However, Analytica is not currently computationally efficient for dynamic
models. Extend is efficient. Another current drawback of Analytica is that it does not provide
a procedural programming language. When a CAPE model involves a complex algorithm,
such as a numerical integration, a programming language is virtually indispensable. Extend
has such a language.

Therefore, once a CAPE model stabilizes (few changes are being made), MITRE staff
often convert the model from Analytica to Extend to reduce running time or to enable better
algorithms. When dynamic models are involved, Extend is 30 to 500 times faster than
Analytica and requires one-tenth the memory. (MITRE staff have partially automated the
conversion of models from Analytica to Extend.)

Though MITRE staff have selected Extend for CAPE modeling, any other software
development package producing compiled code (e.g., C or FORTRAN) could be used.

2.6.2  Analytica

Lumina Decision Systems, Inc. of Los Gatos, California is the source of Analytica.4 The
software is available for Windows 95/98/NT 4.0 and the Macintosh OS. Lumina describes
Analytica as follows: Analytica is a visual software tool for creating, analyzing, and
communicating quantitative models. It provides an alternative to the spreadsheet, providing
graphical influence diagrams to show qualitative structure of models, hierarchical models to
organize complicated models into manageable models, and intelligent arrays with the power
to scale simple models up to handle large problems.

CAPE modelers use Analytica for its intelligent arrays,  which might be described as
hierarchical, multi-dimensional spreadsheets linked via equations. The intelligent arrays
support quick visual modeling of multi-dimensional concepts, automatically determining the
order of calculation for all intermediate results as the user reconfigures and reconnects
various parts of the model. Another capability of Analytica is dynamic modeling, where the
outputs of one time period are used as inputs for the next time period. CAPE modelers use
this Analytica capability, but not extensively because it slows down the computations.
Instead, when dynamic modeling is important, MITRE s CAPE modelers use Extend.

Analytica has a strong capability for probabilistic modeling through Monte Carlo
methods (and variations thereof). However, the CAPE methodology avoids such probabilistic

                                                  

4 Lumina Decision Systems, Inc.: 1-408-354-1841 or toll-free 1-877-6-LUMINA; or
http://www.lumina.com
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methods in the interests of quick calculation. Thus the CAPE methodology uses Analytica
minus its probabilistic support.

While Analytica may be used to represent influence diagrams, it does not have
mathematical programming algorithms to solve influence diagrams (or decision trees) for
optimal decisions. If CAPE modelers should wish to find optimal mixes of systems, they will
need to extend Analytica s capability, either by embedding optimization into an Analytica
model or by drawing upon another software tool that has solution algorithms, such as DPL
by Applied Decision Analysis, Inc., of Menlo Park, California.5

2.6.3  Extend

Imagine That, Inc. of San Jose, California is the source of Extend.6 The software is
available for DOS, Windows 3.1/95/NT and the Macintosh OS. Summarizing from the web
page: Extend is a dynamic, iconic simulation environment with a built-in development
system for extensibility. It enables a discrete-event, continuous, or a combined discrete-
event/continuous process or system to be modeled. Extend has libraries of pre-built blocks
that can be accessed from a drop and drag menu. For custom effects, functions of several
blocks can be combined into one through hierarchy or by using an equation editor. Or custom
blocks can be built using Extend s built-in C-like language (Mod-L) and dialog editor.
Models built with Extend are compiled before operation.

Extend is used by MITRE staff to implement CAPE models because Extend is a
convenient general programming environment providing fast compiled code, and because it
provides good visualization functions for graphically portraying results. For CAPE models,
any compiled language with good graphical functions could be used instead of Extend.
MITRE staff do not use Extend s probabilistic simulation capabilities for CAPE models,
since the principles of the CAPE methodology rule out probabilistic simulation in the
interests of short computations and simple sensitivity analyses. (On the other hand, MITRE
staff do use Extend s simulation capabilities outside of CAPE models to develop parameters
for use in CAPE models.) Though speed and memory are gained by converting a CAPE
model from Analytica to Extend, one loses Analytica s automated intelligent array
capability to choose the order for calculating all intermediate results. With Extend, the model
builder must determine and specify the order in advance or provide an algorithm for
choosing the order. If the model is changed, the order may need to be revised.

                                                  

5 See Applied Decision Analysis s DPL web page: www.adainc.com/sw/whatis.html.

6 Imagine That, Inc.: 1-408-365-0305; or http://www.imaginethatinc.com
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Section 3

The Inputs and Outputs of CAPE Models

3.1  Introduction
Each CAPE model is built in more or less modular fashion, but there is currently little

commonality or uniformity of the modules across the models. That is, a modular CAPE
architecture has not been formalized. Though all CAPE models reflect the same design
principles and have similar inputs, outputs, and processes, in a formal sense each is ad hoc.
MITRE staff are considering how to modularize the elements of the models.

As a basis for describing CAPE models in this report, we consider the three broad ways
the models represent the real world:

1. Inputs — decisions, initial conditions, constraints, assumptions, uncertain events;

2. Processes — interactions of the inputs; and

3. Outputs — measured results of the processes.

This section of the report describes and illustrates the inputs and outputs that have been
modeled in various CAPE analyses. By reviewing the section, the reader will appreciate the
level of aggregation and fidelity used in the CAPE methodology. Because the emphasis in
CAPE is on performance, the order or presentation begins with the outputs and then
describes the inputs that cause the outputs. Section 4 of the report describes the processes by
which inputs are transformed to outputs.

3.2  Outputs — Measures of Performance and Effectiveness
The most important outputs for several CAPE models are described here. As is implicit

in Principle 2, the outputs are always expected values, not probability distributions.

3.2.1  ALMEM

• Lengths of campaign phases

• Percentage of targets killed

• Attrition of own forces

• Attrition of enemy forces

• Territory controlled

• Cost — 20 year marginal cost of force structure and C4ISR
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3.2.2  Deep CAPE

Deep CAPE s outputs are for a chosen day in the conflict (e.g., day 1, day 17). They
show the successive reduction, by process phase, in the proportion of targets at risk.

• Target elements sensed per day

• Percentage of targets collected that are downlinked for processing

• Percentage of targets that get through processing with sufficient time left for attack

• Percentage of targets with adequate TLE (target location error) and time to attack

• Percentage of targets that are at risk

• Costs

3.2.3  Dynamic CAPE

The following cumulative and/or daily-expected results are calculated, by day, for 50
days:

• Targets killed and remaining targets (fixed and mobile/relocatable)

• Targets at risk (percentage of remaining targets that can be successfully found and
attacked before they are expected to move)

• Autonomous kills (supplement to kills from planned sorties)

• Attrition of strike aircraft

• Attrition of sensor platforms

• Daily cost to conduct the war (weapons expended, logistics, sensor attrition, and
aircraft attrition)

• Remaining strike sorties

• Remaining sensor platforms

• Remaining weapons

• Phase results (results for target elements by processing phase)

− Target elements sensed per day

− Target elements downlinked per day

− PED of target elements (target-element images exploited per day)
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− Targets at risk (target elements per day that can be successfully found and
attacked)

3.2.4  E-CAPE

• Spare time (the time available to attack targets after exploitation is complete)

• Exposure (percentage of targets with positive spare time after PED)

• Average exploitation delay in theater and out of theater

• Throughput (percentage of collected imagery that is exploited)

• Communications bandwidth required to pass imagery

3.2.5  SIGINT (signals intelligence) Models

MITRE staff have generally used CAPE models of SIGINT to develop measures of
performance to use in other CAPE models that develop measures of effectiveness. The
following measures of performance are representative of many others used in SIGINT
models:

• Percentage of all vehicles bringing drugs into a country that can be tracked with
SIGINT

• Percentage of a hypothetical new surface-to-air missile that can be located

3.2.6  Tracking Models (single-sensor and multi-sensor intelligence fusion models)

The following measures are usually found as functions of the number of sensors of
various types, the number of elements per target tracked as a group (e.g., company or
brigade), and sensor revisit times.

• Proportion of targets located

• Probability of maintaining birth-to-death track for a target through several move
cycles

• Proportion of targets currently seen and tracked correctly

• Target location error (TLE), given that a target is tracked

3.3  Inputs — the Actors and the Stage
While the outputs of CAPE models are invariably expected values, the inputs take several

different forms. The following sections describe illustrative inputs in terms of what they are
(content) and how they are represented (form). The form of the input can be a simple index, a
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constant, a table of constants, a probability, a table of probabilities, a probability density
function, or an equation.

3.3.1  Theater Environment Charactistics

The theater environment in the CAPE models is typically described using the following
factors:

3.3.1.1  Country

The scenario or location of interest is represented as an index (e.g., North Korea, Iraq,
Iran) that will condition other input tables and constants.

3.3.1.2  Range Bands

Typically, the theater is divided into four range bands. The range bands represent strips
of the country that are as wide as the theater and have various depths. Their depths are
generally chosen to coincide with the range bands of the Deep Attack Weapons Mix Study
(DAWMS), as follows:

(1) 0-40 km

(2) 40-150 km

(3) 150-340 km

(4) 340+ km

The range bands are represented as an index, with the names above.

3.3.1.3  Range-band Area

The size of each range band, in square kilometers or square nautical miles, is represented
as a table that is indexed by country and by range band.

3.3.1.4  Weather

Weather can affect the effectiveness of the sensors as well as the ISR sortie rates in some
models. Typical weather conditions in CAPE models are

(1) Clear

(2) 50% cloudy

(3) Full clouds

(4) Light rain

(5) Medium rain
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(6) Heavy rain

The weather is represented by an index and a table, as follows:

• Weather  is defined as an index, with the names given above; and

• Weather Proportion  is defined as a probability table, indexed by Weather  and by
country, giving the percentage of time each indexed country experiences each type of
weather.

3.3.1.5  Foliage

Foliage can affect the effectiveness of sensors. Typical foliage categories in CAPE
models are

(1) Clear

(2) Urban

(3) Scrub

(4) Forest

The foliage in a particular country is described by the percentage of the area that is
covered by the type of foliage. Foliage coverage is represented by an index ( Foliage ) and a
table ( Foliage Proportion ) that is indexed by foliage and by country.

3.3.1.6  Terrain Masking

The terrain of a country may inhibit a sensor from accessing targets of interest. Terrain
masking (delimitation) is modeled as the percentage of a country s area that is not visible
because of its terrain. Terrain masking is represented as a table of such percentages indexed
by country. In addition to the country, the altitude of the collection platform can affect the
amount of delimitation. Sensors on high altitude platforms are less likely to be affected by
terrain considerations. In some models the amount of terrain masking is represented as a
function of the platform altitude.

3.3.2  Operational Environment Characteristics

The following factors are used to describe the operational environment in a CAPE model.
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3.3.2.1  Phase of War

The phase of the war may be described in terms of (1) pre-SEAD7 and post-SEAD, or (2)
phases 1, 2, 3, 4. Phase is represented as an index. The phases in the CAPE model are used in
describing which assets are available at what point in the conflict. They also may be used to
determine whether airborne platforms can over fly the theater or must standoff.

3.3.2.2  Operations Tempo

If troops are moving more frequently, then it is more difficult to monitor them. The
frequency of troop movement affects both collection requirements (how often collection
must be done) and the ability to collect, process, exploit and disseminate the image of a
target before the target moves. Operations tempo is represented as a table of frequencies of
troop movement indexed by rangeband and phase of war.

3.3.2.3  IPB (Intelligence Preparation of the Battlefield)

If good IPB can be accomplished, the locations of many targets will be available at the
start of the conflict. IPB is modeled as the percentage of target locations that are known at
the start of the conflict. IPB is represented as a table of percentages indexed by Good IPB
and Poor IPB.

3.3.3  Target Charactericstics

3.3.3.1  Target Class

Targets are modeled in terms of broad target classes. The target classes used in most of
the CAPE models are those used in the DAWMS, which categorize approximately 200
targets into seven classes:

(1) Short intercept

(2) Short mobile column (<10 vehicles)

(3) Long mobile column (>10 vehicles)

(4) Small long dwell target

(5) Large long dwell target

(6) Small fixed target

(7) Large fixed target

                                                  

7 SEAD stands for suppression of enemy air defenses.  It denotes a supposed time in a scenario at which
one has defeated an enemy s air defenses.
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3.3.3.2  Target Quantity

The number of targets in a range band on any given day is represented deterministically
as a table of quantities indexed by target class and range band. It is assumed that the targets
are uniformly distributed throughout each range band.

3.3.3.3  Target Area

The target area (size) for a specific target in a target class is considered to be a random
variable, since some targets in a class are larger than others. Further, the target area is
represented as a continuous random variable for which our uncertainty may be described
using a triangular probability density function. The three parameters of the triangular
distribution are the minimum, mode, and maximum target size, which all vary by target class.
Target area is represented by a table of such parameters indexed by target class. In
calculations, the algebraic equations for a triangular distribution, involving the three
parameters, also represent the target area.

3.3.3.4  Target Pause

The length of time a mobile or relocatable target stays in one location after it stops.
Target pause is modeled as a continuous random variable with our uncertainty characterized
by a triangular probability density function. It is represented as a table of min-max-mode
parameters of the triangular distribution, indexed by target class.

3.3.3.5  Move Time

Move time is the length of time a mobile or relocatable target moves after leaving a
location before it stops again. Move time is often modeled as a constant for each target class.
It has been represented as a table of constants indexed by target class. It can also be modeled
as a random variable and represented as a table of parameters of a probability density
function, indexed by target class.

3.3.3.6  CCD (Concealment, Cover, and Deception)

CCD models the percentage of targets not seen due to the fact the red force sometimes
employs a CCD measure. The percentage depends on the target class and whether the target
is moving or stationary. CCD is represented as a table of percentages indexed by target class
and target mode (fixed or mobile/relocatable).

3.3.3.7  Elements Per Target

Some targets contain more than one element (e.g., mobile column greater than 10
vehicle). This is used when considering weapons allocation and when determining the
resolution required for detection of the target. Elements per target is represented as a table of
constants indexed by target class.
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3.3.3.8  Target Value

Some targets are more important than others are. When calculating the platform plan or
the weapon-target-pairing algorithm, the value of a target can be used to select important
targets for attack. The target value is modeled as a constant for each target class. It is
represented as a table of constants indexed by target class.

3.3.3.9  Signals Target Classes

Signals target classes are represented as an index. Some signals target classes used as
indices in CAPE models are as follows:

(1) Leaders

(2) Non-government organizations

(3) Groups

3.3.3.10  Emitter Class

Each signals target uses signal-producing devices, which are called emitters, such as
telephone, mobile phone, radar, and radio. Emitters are modeled in broad signal families, not
as specific emitters. Emitters are represented by an emitter class  index, whose members
include such titles as

(1) All UHF radios

(2) Special UHF radios

(3) Mobile telephones

(4) Iridium telephone

3.3.3.11  Emitter Quantity

The quantity of emitters is represented as a table of quantities of emitters per signals
target, indexed by emitter class and signals target class.

3.3.3.12  Emitter Characteristics

Emitters are modeled in terms of various electrical characteristics, such as power, shape
of the power, waveform, and bandwidth. The emitter characteristics are represented in a table
of characteristics indexed by emitter class.

3.3.4  Collection Mix Characteristics

The term collection mix  is used to describe some combination of actual and/or
proposed collection platforms whose performance is evaluated using a CAPE model. The
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following variables are used to describe the platforms in a collection mix. Not all of the
variables described below are used in all CAPE models.

3.3.4.1  Platform Type

The different types of collection platforms (e.g., U-2, Global Hawk, P-3) are represented
as an index. The platform may be an aircraft or a satellite. With current CAPE models, the
sensors on a platform are implicitly part of the platform type. For instance, a Global Hawk
with a SIGINT package would be a different platform type than a Global Hawk with an
IMINT package.

3.3.4.2  Mix Quantities

This is the quantity of each type of collection platform in the scenario of interest. The
quantities may be varied by the analyst, but they are treated as constants for any particular
run of the model. Mix quantity is represented as a table of platform quantities indexed by
platform type and country (scenario).

3.3.4.3  Deployment Rate

The deployment rate indicates when and in what quantity a particular type of collection
platform is available for use. The deployment rate may be specified in terms of pre-
SEAD/post-SEAD, phase of the war, or the day of conflict, depending upon the CAPE
model. The deployment rate is a function of the time phased force and deployment list
(TPFDL). Deployment rate is represented deterministically as a table indexed by platform
type and time (e.g., day, phase). The table specifies either (1) the number of collection
platforms arriving in each time period, or (2) the percentage of the total deployable number
arriving in each time period.

3.3.4.4  Platform Plan

The platform plan is used to assign a platform(s) to collect in a particular range band. The
platform plan may also be a function of pre-SEAD/post-SEAD, the phase of the war or the
day of conflict. For each platform, it is the proportion of each range band that is to be
covered by the platform. While set up to handle any proportion, in practice it is usually zero
or 100 percent. Occasionally it is 50 percent. The platform plan is an input to the model. It
does not necessarily represent the optimal allocation of the collection assets. The platform
plan is represented as a table of proportions indexed by platform type and range band.

3.3.4.5  Impact of Weather on Sensor Type

Weather conditions may degrade the ability of sensors to collect usable imagery.
Degradation is modeled as the probability that an image is not useful due to a weather
condition. The effect of weather varies by sensor type, with electro-optical (visual) imagery
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being most sensitive to the weather and SAR being the least sensitive. The impact of weather
is represented as a table of degradation probabilities indexed by weather condition and by
sensor type.

3.3.4.6  Impact of Foliage on Sensor Type

The type of foliage in a country may degrade the usefulness of a given sensor. This loss
is modeled as the probability that a collected image is not useful because of foliage. The
impact of foliage is represented as a table of degradation probabilities indexed by foliage
type and by sensor type.

3.3.4.7  Sortie Rate

The number of potential sorties per sensor platform per day is modeled as a constant.
Sortie rate is represented as a table of constants indexed by platform type.

3.3.4.8  Impact of Weather on Sortie Rate

Weather conditions may prevent an airborne sensor platform from being able to sortie.
The probability that the mission cannot be performed is represented in a table indexed by
weather condition and platform type.

3.3.4.9  Correlation

Several sensors in the mix may see and collect information on the same target. This
phenomenon is accounted for by correlation,  a percentage of sensed targets that are not
duplicates. A correlation of 90 percent, for instance, would mean that ten percent of sensed
targets are duplicates, and 90 percent of sensed targets are separate targets. Correlation is
represented as a constant.

3.3.4.10  Collection Platform Attrition Rate

Due to mechanical failures or enemy air defenses, collection platforms may be lost. The
attrition rate is used to account for the loss of platforms. It decreases the number of platforms
as a function of time and sortie rate. It is a constant for each collection platform. It is
represented as a table indexed by collection platform type.

3.3.5  Collection Platform Characteristics

The discussion of platform characteristics is divided into general characteristics and then
characteristics specific to various types of sensors. For ease of presentation, the descriptions
below say that the characteristics are represented by separate tables. However, the usual
practice is to build one large table indexed by platform type and platform characteristics.
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The one table contains all the virtual  tables described below. In calculations, Analytica s
slice  function is used to retrieve the data for each virtual table.

3.3.5.1  General Platform Characteristics

3.3.5.1.1  Duty Cycle
The duty cycle is the reciprocal of the number of platforms required to maintain a

twenty-four hour orbit. Duty cycle models the percentage of a platform s service time in
which the platform provides continuous coverage. The duty cycle considers flight endurance
as well as maintenance and downtime. The equivalent number of twenty-four hour orbits is
calculated by multiplying the number of platforms by the duty cycle. Duty cycle is
represented by a table of duty cycles indexed by platform type.

3.3.5.1.2  Altitude
The altitude of a sensor platform influences (1) the distance its sensors can see into a

country, (2) the effects of terrain masking, and (3) the survivability of the platform in regions
where there are enemy air defenses. The altitude may or may not be directly used in a
calculation, but if not, it may influence the analyst s decision when defining the platform
plan. The altitude is represented as a table of altitudes indexed by platform type.

3.3.5.1.3  Range
The distance an airborne platform can fly from its base/ground station influences the

range bands in which it can be employed. The range is not necessarily represented in a CAPE
model or used directly in a CAPE calculation, but it is used by the analyst when defining the
platform plan.

3.3.5.1.4  Required Stand-off Distance
This is the distance that an airborne collection platform must standoff to avoid air

defenses pre-SEAD. This factor is used to calculate which range bands the sensor can access
and therefore what percentage of targets in the range band the sensor can image. It also
affects terrain masking. The required standoff distance is represented as a table of distances
indexed by platform type.

3.3.5.2  For Imagery Collection

3.3.5.2.1  Area Collection Rate
An area collection rate is specified for each of a platform s imagery sensors. It is the

amount of area imagery the platform can collect per hour with the sensor. The area collection
rate is represented as a table of rates indexed by sensor type and by platform type.
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3.3.5.2.2  Point Collection Rate
A point collection rate is specified for each of a platform s imagery sensors. It is the

number of point images the platform can collect per hour with the sensor. The point
collection rate is represented as a table of rates indexed by sensor type and by platform type.

3.3.5.2.3  Sensor Resolution
The resolving power of a sensor is modeled as a single parameter, the sensor resolution,

which is the smallest area that the sensor can discriminate. (Sensor altitude affects sensor
resolution, so sensor resolution and platform altitude must not be varied jointly when
sensitivity analysis is done.) CAPE analysts have used the same resolution for both point and
area collection, though different resolutions could be used if the specific information were
available. The sensor resolution is compared to the target area of a target class (a random
variable) to determine the probability the sensor will detect/identify targets in the target class.
Sensor resolution is represented as a table indexed by sensor type. It could also be indexed
by target type if specific information were available.

3.3.5.2.4  Area Imagery Proportion
This is the percentage of time that a sensor collects imagery at the area rate instead of the

point rate. The area imagery proportion may be represented as a constant across all platform
types or as a table indexed by platform type.

3.3.5.2.5  Collection Efficiency
This is the percentage of time a collection platform is collecting imagery. It is always less

than 100% because of turns, sensor mode transitions, and the geographical laydown of the
collection requirements. It accounts for the lost collection time when the platform is moving
between targets or moving the sensor. It is applied as a percentage that reduces the effective
collection rate. The same collection efficiency is assumed for point collection as for area
collection. It is the same for all platforms. It is represented as a constant.

3.3.5.3  For Signals Collection

The sensor and platform characteristics for signal collection are too sensitive to discuss in
this report. Generally, they are related to the sensitivity of the sensor, the flexibility to direct
the sensor to collect signals from emitters repeatedly, the capability of the sensor to listen to
the full range of the emitter s frequency range, and the capacity to transmit information to
processing stations.
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3.3.5.4  Other Collection

3.3.5.4.1  Sensor Circular Error Probable (CEP)
Sensor CEP is used as target location error (TLE) for fixed targets. TLE is used in the

weapon-allocation process (see p. 42). For mobile targets, it is combined into a weighted
average along with the accuracy of TLE cues from other intelligence sources (see below,
section on Cueing). It is represented as a table indexed by sensor type and platform type.

3.3.5.4.2  Downlink Capacity
This is the communications capacity ( bandwidth ) between a sensor platform and a

processing facility, represented as a table of constants indexed by platform type.

3.3.5.4.3  Cueing
• TLE cue — The target location error (TLE) of other intelligence sources that cue the

sensor. It is modeled as a constant for each target class, and it is represented by a
table of constants indexed by target class.

• Other INT cue — The proportion of targets that have been cued from other intelligence
sources. It is assumed to be independent of target class. It is represented as a constant.

3.3.6  Imagery Exploitation Characteristics

The process of imagery exploitation is represented with varying levels of fidelity within
the CAPE models. It is usually modeled simply in terms of the time it takes to exploit an
image after the image is collected. The time includes a waiting time, since there will usually
be a backlog of images to exploit, plus the time to do the exploitation itself.

The E-CAPE model, which focuses on the exploitation process, includes different
exploitation sites and the use of automated exploitation aids.8 It also models the exploitation
time as a function of workload. The formulas for the exploitation time (see p. 36) make use
of the following factors:

3.3.6.1  Imagery Arrival Rate

The average hourly number of satisfactory images arriving for exploitation, which is
represented in CAPE models as a dependent variable that is calculated from various inputs
and other intermediate results.

                                                  

8 The use of E-CAPE is documented in Parker, S. K., Modeling the Collection & Exploitation Trade-Off in
the C4ISR Mission Assessment Study, MITRE Technical Report 98W0000042, May 1998.
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3.3.6.2  Imagery Arrival Distribution

The variation in the inter-arrival times of collected imagery. It is modeled by the
coefficient of variation, which is the quotient of the standard deviation of the inter-arrival
times and the average inter-arrival time. It is represented as a constant, though it may be
varied by the analyst in sensitivity analysis.

3.3.6.3  Number of Imagery Workstations

The workstations are used to exploit the arriving satisfactory images. The number of
workstations is represented as a constant. (By specifying the number of workstations instead
of the number of analysts, the implicit modeling assumption is that the workstations are
always staffed.)

3.3.6.4  Exploitation Rate

The average number of satisfactory images exploited per hour per workstation
represented as a constant.

3.3.6.5  Exploitation Distribution

The variation in the time required to exploit an image is modeled by the coefficient of
variation, which is the quotient of the standard deviation of the service time and the average
service time. It is represented as a constant.

3.3.7  Weapon Characteristics

3.3.7.1  Engagement Time Requirements

The minimum time from the tasking of an aircraft or missile until the weapon engages
the target, represented as a table of time requirements indexed by platform type and range
band.

3.3.7.2  Weapon TLE (Target Location Error) Requirements

The accuracy with which the target s location must be known in order to use a weapon
effectively. TLE for a target is compared to the weapon TLE requirement when allocating
weapons. Weapon TLE requirements are represented by a table of TLEs indexed by weapon.

3.3.7.3  Inventory

The number of weapons in the inventory at the start of the scenario, represented as a table
indexed by type of weapon.
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3.3.8  Strike Platform Characteristics

3.3.8.1  Potential Sortie Rate

This is the number of aircraft that can be launched per day. The initial value of the
potential sortie rate is represented in a table indexed by platform type. In a dynamic model,
the initial value changes with aircraft attrition and with the deployment of new platforms.
Another variable, the assigned sortie rate,  counts the actual strike sorties, differentiated by
platform type.

3.3.8.2  Strike Platform Attrition Rate

The probability that a strike platform is lost when it is sent on a mission (sortie),
represented as a table indexed by platform type, range band, and phase of the conflict.

3.3.8.3  Expected Kills Per Sortie (EKS)

An aircraft may carry several weapons (i.e., munitions) and use them to attack several
targets. The expected kills per sortie  is the expected number of targets destroyed per sortie.
It is represented as a table of EKS constants indexed by strike platform type, munition, and
target type.
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Section 4

Modeling Operational Processes with CAPE

Several techniques for modeling operational processes are used so repeatedly in CAPE
analyses that they may be said to be characteristic of CAPE models. Most of the techniques
help implement the second principle of the CAPE methodology, doing probabilistic
calculations analytically and simply. This section describes the techniques in the context of
the operational processes they have supported. However, the techniques are not limited to the
specific processes identified here. They are general modeling techniques that support the
three CAPE principles of modeling (see p. 8).

4.1  Determining the Efficiency of Collection Processes

4.1.1  Overview of Imagery Collection

CAPE modelers have approached the imagery-collection process in four basic steps. The
four steps and the basic input parameters used in each step are as follows:

1. For each specific platform/sensor combination, determine the proportion of targets
that will be masked from collection. Use these input parameters:

• Weather, terrain, and foliage theater-environment characteristics

• CCD (concealment, cover, and deception) target characteristic

2. For each platform/sensor combination, determine the effective collection rate (images
per hour of operation). Use these input parameters:

• Area and point collection rates

• Area imagery-proportion

• Collection efficiency

3. For each range band, determine the number of targets (by target type) that could
theoretically be observed for each sensor/platform combination, given a plan for the
allocation of sensors to the range band. Use these input parameters:

• Platform plan

• Correlation

• Collection rate

• Range band area
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• Sortie rate

• Stand-off distance, range band depth, sensor range

• Note: If the sensor is standing off, and the sensor range can only reach half-way into
the range band, then it will have access to at most half of the targets, just due to the
effects of standoff. You then must also consider the area to be covered and the
collection rate.

4. For each platform/sensor combination in each range band, determine the expected
number of targets (by target type) accurately identified and located. Use these input
parameters:

• Target resolution by target class

• Impact of weather on sortie rate

• Fraction of targets pausing (calculated from move and pause time)

4.1.2  Overview of Signals Intelligence Collection

Because of information sensitivity, all that can be said about modeling the SIGINT
collection process is that it follows these general steps:

1. For a given emitter, determine the probability that it is detectable, in terms of signal-
to-noise ratio.

2. If detectable, determine the probability that an antenna can be aimed at the emitter
frequently enough to collect signals.

3. If detectable and collectable, determine the probability that the sensor s radio
receivers are tunable through the full range of the emitter s spectrum.

4. If detectable, collectable, and tunable, determine the probability that the information
from the sensor s receiver can be transmitted to the processing station.

4.1.3  Modeling the Masking Due to Weather, Foliage, and Terrain

CAPE models use many tables of conditional probabilities to calculate intermediate or
final results (outputs) as unconditional probabilities or expectations. Such tables and
calculations are the staples of CAPE models, being the major part of every CAPE analysis.
An important case is modeling how the detection of a target by a sensor depends on the
weather, the foliage, and the terrain.

The detection issue can be posed as a question to answer, What is the probability the
target can be seen by the sensor, considering that the target may be masked by weather,
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foliage, or terrain?  To get at this question, CAPE modelers typically assume that the
masking effects of weather, foliage, and terrain are independent of one another, in this sense:

• The effects of weather do not depend on the foliage or terrain;

• The effects of foliage do not depend on the weather or the terrain; and

• The effects of terrain masking do not depend on the weather or the foliage.

Such assumptions allow one to treat weather, foliage, and terrain as if they were three
separate and independent masking factors that might obscure the target from the sensor.

Given the assumptions, one sets up a method to calculate an unconditional probability of
non-masking  for each of the three factors, multiplies the resulting three unconditional
probabilities together, and calls the result the probability that the target will not be masked,
considering all the possibilities of weather, foliage and terrain. The probability the target can
be seen despite weather, foliage, and terrain is just this calculated probability of non-
masking.

To develop one of the three unconditional probabilities, that for weather, one would
proceed as follows:

• Create a table of conditional probabilities of non-masking, specifying the probability
of non-masking for each type of weather.

• Set up another table of unconditional weather probabilities, specifying one
probability for each type of weather.

• Calculate the unconditional probability of non-masking by multiplying the weather-
conditioned probabilities of non-masking with the unconditional probabilities of
weather and adding up the products.

Here are examples of the two tables of probabilities and of the corresponding calculation
of the probability of non-masking for the weather factor:

Weather
Condition

Probability
of Masking

Probability
of Non-Masking

Clear Weather 0 1

Cloudy Weather 0.5 0.5

Rainy Weather 0.9 0.1
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Weather Event Probability
of Event

Clear Weather 0.5

Cloudy Weather 0.25

Rainy Weather 0.25

Pr( ) . . . . . . .Non Masking by Weather− = × + × + × =0 5 10 0 25 0 5 0 25 01 0 65

Suppose the probabilities of non-masking for foliage and terrain are calculated (by
similar combinations of conditional and unconditional probabilities) to be 0.70 and 0.75,
respectively. Then the unconditional probability that the target will not be masked by any of
the three factors (weather, foliage, or terrain) is the product of the non-masking probabilities
for the factors:

Pr( ) . . . .Non Masking− = × × =0 65 0 70 0 75 0 34

Looking at it the other way, in terms of masking, the probability that the target is masked
by at least one of the three factors is the complement of this probability:

Pr( ) . . .Masking = − =10 0 34 0 66

The foregoing illustration shows the typical CAPE use of conditional probabilities to
calculate unconditional probabilities. A related CAPE technique uses tables of expectations
(for instance, the expected number of targets in a range band) to calculate other expectations.
For instance, one might calculate a probability of 0.34 (as above) that a target is not masked
by weather, foliage, or terrain and then find in a table that the expected number of such
targets in a specific range band is 100. These two numbers would be multiplied to find the
expected number of non-masked targets in the range band, which is 34.

4.1.4  Accounting for Target Size — Using Thresholds for Target Resolution

Targets may be too small to reliably collect. So even though weather, foliage, and terrain
masking factors are absent, one may not be able to use a sensor to detect or identify a target.
This phenomenon is typically modeled in the CAPE methodology by identifying a threshold
resolution for the sensor, in the same dimension as target size (e.g., the dimensions of a
vehicle, or the power of a radio transmitter), and then comparing the threshold to the size of
any particular target. If the target is larger than the threshold, then one assumes that the
sensor data can be used to detect or identify the target. (In general, there would be different
threshold resolutions for detecting, classifying, and identifying targets.)

Because the CAPE methodology models targets in the aggregate, with target classes
instead of with individual targets, the threshold must be applied with all the sizes of targets in
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the class to determine the probability that a randomly selected target from the class will be
detected. In order to make such a determination, one typically specifies a probability density
function (PDF) for the size of targets in a target class. Then one uses the PDF to compute the
probability that a target from the class will be detected. This is the probability that a target
from the class is larger than the threshold resolution of the sensor.9

For imagery, the threshold resolution and target size are specified in terms of target
length.  Target length is considered to be a continuous random variable, and uncertainty in
target length is modeled by a PDF, typically a triangular distribution.

The triangular PDF for target length has three parameters:

• Min (no targets have a smaller size than Min),

• Mode (the most likely size), and

• Max (no targets are larger than Max).

All targets are detectable if the sensor s resolution threshold is smaller than Min. No
targets are detectable if the threshold is larger than Max. Some targets are detectable if the
threshold is between Min and Max.

Let s stand for the threshold resolution for a sensor. Then when a triangular PDF is used
to model uncertainty in target length, the formulas for the probability that a target is
detectable are as follows:

1. When the threshold s is less than Min or greater than Max,

( )Pr Target is detectable = 0

2. When s is less than or equal to Mode, but greater than Min,

( ) ( ) ( )( ( ))MinMaxMinModeMinsdetectable is Target −−−−= 21Pr

3. When s is greater than or equal to Mode, but less than Max,

( ) ( ) ( )( ( ))MinMaxModeMaxsMaxdetectable is Target −−−= 2Pr

A simpler representation of target length would be a uniform PDF, where all sizes fall
between a Min and a Max, and there is no most likely size — all sizes are equally likely. In
this case, the probability that the target is detectable is even easier to calculate:

                                                  

9 Mathematically, if G(x) is the cumulative distribution function for X, the size of the target, and if s is the
sensor s threshold for detecting targets, then the probability of detecting the target is taken to be
Pr(Detect) = 1 — G(s).
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Finally, the size may be expressed in units of time. For instance, if a target must move for
at least five minutes to be detected and located for targeting, then the move-time becomes the
size.  The move-time distribution might be either triangular or uniform, and treated as
above. It might also be modeled with an exponential distribution over times ranging from
zero to infinity. If so, and if µ is the average move-time, then the probability that the move-

time Tm is greater than a threshold s is calculated as

µsesTm
−=> )Pr(

4.2  Modeling the Delay in Sensor-to-Shooter Response

4.2.1  Background

After taking a reconnaissance photograph, it takes some time before the film can be
processed. It then takes additional time to get the film to someone to analyze. It takes more
time to analyze (exploit) the photograph to determine what information it contains. Finally, it
takes time to interpret that information, decide what it means (in the context of other
information), and act upon it. Thus it may take hours or days between the taking of a
photograph and the launch of a strike sortie against targets shown in the photograph. The
target may move in the meantime.

Many improvements in C4ISR systems are aimed at shortening the time between sensing
the target and striking the target. Therefore, to analyze such improvements, CAPE modelers
need a method for modeling the delay between sensing and shooting. To satisfy this need,
they have generally modeled the delay with (1) a probabilistic queue for the sense-to-
decision time, and (2) a deterministic fly-out time for the strike once it is launched.

A queue is a waiting line consisting of people or items awaiting service. Arrivals occur
when more people or items come for service. Those who arrive usually have to wait in the
queue for others to be served before they are served. The time they have to wait depends on
how many others are in line ahead of them and on how fast the others will be served.

4.2.2  Calculating the Delay

CAPE modelers generally work at such a high level of aggregation that they can estimate
only the arrival rate of work into a service center and the service rate of the center. They may
also estimate the variances of the rates. They will generally not know how work is divided or
processed within the service center. In particular, they will not know how many servers are
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working simultaneously. With this information, they model the service center and queue as a
single-server system, not because they know it is a single server system, but because they do
not know enough to say how many servers there might be. The result is that their calculations
of delay through the system will tend to systematically underestimate the delay that would be
calculated for more servers. However, so long as the system is well utilized (near capacity),
the error may not be great.10 In CAPE models, the systems used for analyzing imagery and
for planning strikes do tend to be working at or near capacity. That is because skilled
intelligence analysts during wartime are scarce in comparison to the volume of information
they are asked to analyze.

The CAPE model for delay is a first-in, first-out (FIFO) queue with general inter-arrival
times, general services times, and a single-server (G/G/1). Henry Neimeier identifies the
model as an approximate solution to the general inter-arrival and general service time
queue.11 With this model, the formula for the average delay at a node (service center with a
single server) is written as follows:

( )
( )Average Delay =

× +

× −
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Where

• U is the process utilization (see formula below)

• Ca is the coefficient of variation of the inter-arrival times12

• Cs is the coefficient of variation in service times

• Sr is the average service rate, i.e., the average number of services performed per unit
of time

                                                  

10 For two systems with equal average service times and arrival rates, but different numbers of servers, the
system with the most servers will have the longest service time per server. Hence it will have the longest
total delay (waiting time plus service time). The difference in total delay is magnified when the utilization
is low, causing service time to be the main component of total delay.

11 See Neimeier, H. A., Analytic Network Queuing,  International Systems Dynamics Conference
Proceedings, Stirling, Scotland, 1994.

12 A random variable s coefficient of variation is its standard deviation divided by its mean. Its standard
deviation is the square root of its variance.
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The process utilization (U) of the system is

U = =Average arrival rate

Average service rate

Average arrival rate

Sr

For the case where the inter-arrival times and service times can be modeled with an
exponential probability distribution, which is a typical assumption for modeling queues, the
coefficients of variation both equal 1.0, so the formula for average delay is simplified, as
follows:

AverageDelay =
−
1

Average service rate Average arrival rate

4.2.3  Correcting for Actual Delays

In general, the formulas for delay will underestimate the delay if the system has more
than one server (see footnote 10). A way of correcting for this underestimate, if more
information is available, would be to take information about the actual delay associated with
a given arrival rate and service rate, compare it to the delay calculated with the formula, and
develop a correction factor (actual/formula) to be applied to formula calculations. Such
correction would adjust the rates to fit the delay. So long as the correction is relatively small
compared to the formula s calculation, the estimate may be acceptable. In general, it is
difficult to predict the corrections needed for different rates without a detailed underlying
model.

4.2.4  Calculating the Throughput

If the utilization of the system is less than one, then the throughput (percentage of
arriving work that receives service) of the system is 100 percent. However, if the utilization
is greater than one, the throughput is the reciprocal of the utilization, and the average delay
formula presented above is not applicable. This situation has been (or can be) handled three
different ways in CAPE models:

1. Set 95 percent as the highest allowable utilization. In cases where the utilization
would be greater than 95 percent, assume that the excess over 95 percent is discarded
or diverted to another service system. In this case, the highest possible delay for work
performed at the service center is the delay associated with the 95 percent utilization.
This case is equivalent to setting a maximum length to the queue awaiting work at the
service center and rejecting work that would extend the line  awaiting work beyond
the maximum.

2. Set a constraint on delay. If there is more work, potentially causing a longer delay
than the constraint, either discard the work or divert it to another service system. This
approach is also equivalent to setting a maximum length to the queue.
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3. Keep a backlog. Using either of the approaches above, do not discard the excess
work, but store it for later service if the arrival rate should decrease.

4.3  Movement of the Target Beyond Strike Range
For many sensor-to-shooter (STS) systems, significant delay occurs between sensing a

mobile ground target and engaging it with a weapon system. One major purpose of new
investment in STS systems is to shorten the delay, so that the mobile target is more likely to
be found and engaged successfully.

A model of target movement is at the heart of many CAPE analyses of STS systems,
representing mobile ground targets in their race against the imagery-based STS system.
Target movement involves the interaction of complex probabilistic phenomena.

To enable CAPE analysis of investments in STS systems, a probabilistic model of target
movement has been derived from reasonable probabilistic assumptions using basic
probability calculus. The derived model includes related probability distributions (cumulative
distribution functions) for

• The length of the pause that remains after a mobile target is observed pausing;

• The distance the target may have moved at any specific time after it is observed; and

• The distance the target may have moved when a strike sortie arrives to attack it,
where the time of arrival is itself a random variable.

These probability distributions are calculated from more basic probabilistic models of
target movement time, pause time, and velocity, as well as from the revisit time used for
managing surveillance and reconnaissance of targets. The distributions are used to calculate
the probability that a target observed pausing will be within engagement range when a sortie,
launched on the basis of the observation, arrives to attack the target. This involves a model of
the sensor-to-shooter response time.

Appendix B contains details of the derived probability distributions. The derivations have
been implemented in software to make them available for incorporation in analyses. They
exist as Visual Basic code and as Analytica models.

4.4  Strike Engagement — Catching the Target Before it Moves Too Far
In accounting for target size and using thresholds for target resolution (above, p. 34), a

threshold is compared to a random variable. For instance, a sensor s threshold resolution of
10 meters is compared to target size, a random variable that might vary between one and 50
meters. The basic analytical question associated with thresholds is What is the probability
that the random variable is larger than the threshold?
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In more complex comparisons, the basic question remains the same, but two random
variables are compared to each other instead of one random variable being compared to a
threshold. Specifically, to model the success of a strike mission with the CAPE methodology,
two random variables are compared:

• Tm, the time from the moment a sensor collects data about a target until the target
moves a safe distance away and can no longer be found by a strike mission that is
sent to attack it; and

• Ts, the time from the moment a sensor collects data about a target until a strike
mission arrives to engage the target.

If Tm is greater than Ts, then the target can be successfully attacked. If Tm is smaller than
Ts, the target cannot be successfully attacked. As with the threshold method, the basic
analytical question associated with such comparisons is What is the probability that T m is
greater than Ts?  One may also ask, If Tm is greater than Ts, how much greater is it?

To answer the analytical questions, three approaches may be taken. The first is based on
the target-movement model reported in Appendix B. The second is based on the Fractile
Method (described below, p.49). The third is a heuristic method based on the threshold
approach for target resolution (described above, p.34).

4.4.1 Applying the Target-Movement Model

Appendix B presents an overview of equations that represent target movement in
connection with the strike mission. The last section of the Appendix presents two approaches
for calculating the answer to the analytical questions stated in this section. The first approach
depends upon the specification of a cumulative distribution function (CDF) for the time Ts. A
double numerical integration is performed using this CDF. The second approach depends
upon the specification of a mean and variance for Ts. The mean and variance are then used in
a single numerical integration to approximate an answer to the analytical question.

4.4.2  Applying the Fractile Method

If one has probability distributions or data sets for Tm (perhaps from Appendix B) and for
Ts, the answers to the analytical questions may be approximated to any degree of precision
by using the Fractile Method. The Fractile Method is a special technique of CAPE analysis
(see p. 49). It is applied as follows to answer the analytical questions:

1. To find the probability that Tm is greater than Ts, first approximate the continuous
random variables Tm and Ts by generating discrete random variables Tm  and Ts  (each with N
values). Then find the number M of combinations of Tm  and Ts  in which Tm  is greater than
or equal to Ts . Finally, divide M by the total number of combinations, N 2. The quotient
M÷N 2 is the probability that Tm is greater than Ts.
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2. To find the cumulative distribution function for Z = Tm — Ts for the case when Tm is
greater than Ts, first generate the variables Tm  and Ts  as defined above. Then find the
differences Z  = Tm  — Ts  for all combinations of Tm  and Ts . Finally, discard all negative
values of Z . The remaining values of Z  are equally probable. Collectively they approximate
the random variable Z when Z is known to be non-negative.

4.4.3  Applying Threshold Heuristics

CAPE modelers have used a heuristic approach based on threshold comparisons to model
the success of strike missions. The logic of the heuristic approach is as follows:

• Because the target s pause may be just ending or just beginning when the sensor finds
the target, one expects the distribution function for Tm to extend from zero to several
hours. Thus the standard deviation of Tm could be fairly large.

• For Ts, the complex process of imagery exploitation, target analysis, and initiation of
attack sorties is a sequence of tasks performed in serial order. Hence one expects
there to be a basic minimum time to accomplish all the tasks — the sum of the
minimum times it takes to perform each separate task. In an efficient system, one
might expect the standard deviation of the total time Ts to be small to moderate as
compared to the basic minimum time.

• If the standard deviation of Ts is small relative to its minimum, and if the standard
deviation of Tm is large compared to the minimum of Ts, then it is (heuristically)
reasonable to approximate the random variable Ts by a single value, Ts , and then
compare Ts  to Tm through use of a distribution function for Tm. CAPE modelers have
used the expected value of Ts as the representative value Ts . They have typically used
a triangular distribution function for Tm.

Following this logic, approximate answers to the analytical questions are developed as
follows:

1. Find the expected value of Ts, and call it µS.

2. Define a cumulative distribution function (e.g., triangular) for Tm, and call it G(tm).

3. Calculate the probability that Tm is greater than Ts:

(a) Use the threshold method (see p. 34) to calculate the probability that Tm is larger
than the expected value of Ts, µS. That is, calculate the probability

Pr(Tm > µS) = 1 — G(µS).

(b) Take the probability just calculated, and call it the probability that Tm is larger
than Ts. That is, assign the probability
Prob(Tm > Ts) = Prob(Tm > µS) = 1 — G(µS).
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Such an assignment does not follow from the axioms of probability calculus, but
it may, in conditions known to the analyst, be a good assignment as an
approximation.

4. Calculate the cumulative distribution function for Z = Tm — Ts for the case where Tm is
greater than Ts:

(a) Use G(tm) and the expected value µS to compute a conditional distribution

function for the size of Tm when it is bigger than µS. That is, calculate the

conditional distribution
G (tm | Tm > µS ) = G(tm)/(1 — G(µS)).

(b) Define Z = Tm — µS. Thus Z represents the amount of time remaining after

launching a sortie to attack the target until the target moves. The distribution
function for Z, a positive number by definition, is
G (z | Tm > µS) = G(z + µS)/(1 — G(µS)).

(c) Take the distribution just calculated and call it H(z | Tm > Ts), the conditional
distribution for Z when Tm is greater than Ts. That is,
H(z | Tm > Ts) = G (z | Tm > µS) = G(z + µS)/(1 — G(µS))

Such an assignment does not follow from the axioms of probability calculus, but
it may, in conditions known to the analyst, be a good assignment as an
approximation.

It is up to the analyst to assess the quality of the threshold heuristics in specific
applications. They are not necessarily close approximations. The smaller the standard
deviation of Ts, and the larger the standard deviation of Tm, the better the approximation.

4.5  Weapon-Target Pairing

4.5.1  Introduction

Targets are located by surveillance and reconnaissance and then attacked with weapons.
Improvements in surveillance and reconnaissance can pay off with increases in the number
of targets attacked and eliminated. To model this relationship between operational
intelligence and operational results, one must account for the assignment of strike sorties to
targets. In military operations, such assignment results from a complex process of target
analysis. A CAPE model must represent the function of target analysis in order to link
surveillance and reconnaissance to the operational results.

In Dynamic CAPE the strike sortie is the basis of target analysis. Target analysis is
modeled in terms of the sorties that could be launched in a given time period. The model
consists of the following procedure, called the weapon-target-pairing algorithm:
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• Rank all the kinds of individual strike sorties that could be flown in terms of their
desirability;

• Starting at the top of the list, fly as many of the first type of sortie as possible,
considering the numbers of targets left to strike, weapons left to allocate, and
platforms available to fly; and

• Continue down the list, flying as many sorties of each type as possible, considering
all the same factors.

While this procedure allocates all sorties for the time period at once, as if for a daily air
tasking order, it is meant to approximate the allocations that would be made when sorties are
allocated continuously throughout a time period.

The weapon-target-pairing algorithm is highly aggregate, not modeling any specific sub-
functions of target analysis. It is heuristic, not based on any mathematical programming
technique or on any target analysis technique. It is intuitively appealing because it is logical
and seems analogous to the way target analysis should take account of many factors.

The weapon-target pairing algorithm has three broad steps, explained below: (1)
Calculate pairing values; (2) Rank sorties by pairing value; and (3) Select sorties.

4.5.2  Calculate Pairing Values

Use a pairing value formula to calculate a value for each possible strike sortie that may
be flown, considering all possible combinations of platform types, munitions, target types,
and range bands. Various pairing formulas have been used. The basic formula is as follows:

COMCV PPEKSTValue Pairing ×××=

Where the parameters are

• Target value, TV (optional)13

• Expected kills per sortie (EKS), from a table of EKS indexed by platform type,
munition, and target type.

• PC, the probability that the sortie can reach the target s observed location before the
target moves out of the strike system s engagement range. Call PC the probability of
capture, with the connotation that the strike sortie s target acquisition system can find

                                                  

13 Seemingly the most important factor, it has been difficult to develop consensus on the relative values of the
various target types. In analyses with Dynamic CAPE, all target types in all range bands were treated as
equal in value because consensus could not be achieved.
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the target. Capture does not guarantee a successful attack, but it is a necessary
precondition for success. The probability is calculated for three different cases:

(a) For mobile targets that are located when they are stationary, and are not known to
have moved, PC is calculated from various parameters of the target movement
model (see Appendix B) and from a model of the sense-to-respond time for the
total sensor-to-shooter system. The probability varies by sensor platform type,
target type, range band, strike platform, and strike weapon.

(b) For mobile targets that are located when they are moving, PC is taken to be 1.0,
under the assumption that the target is being continuously tracked.

(c) For non-mobile targets, PC is taken to be 1.0, under the assumption that the
geolocation error of the sensor system is nil as compared to the requirements of
the weapon system. That is, if the sensor produces an adequate image to identify
the target, it will have a small geolocation error.

• PCOM, communications throughput, the probability that the exploited information for
a collected target is provided to target analysts. In practice, the same probability has
been assigned for all target classes and range bands in the same theater. It has differed
only with theater. It would affect the allocation of strike sorties across theaters.

The pairing-value formula may be interpreted as follows: The pairing value is a benefit
received for launching one sortie. The benefit comes from killing  the number EKS of
targets that have value TV. The benefit is discounted  by the factors PC and PCOM.

4.5.3  Rank Sorties by Pairing Value

Sort, in decreasing order of the pairing value, all the possible sorties made up of
combinations of platform type, weapon type, target type, and range band.

4.5.4  Select Sorties

Beginning with the sortie at the top of the list, and continuing down the list until as many
platforms, weapons, or targets are allocated as possible (without duplication), do these steps:

1. Determine the number of sorties to fly:

(a) Determine the theoretical number of sorties it would take to eliminate all the N
targets requiring service during the time period, given one could eliminate EKS
targets certainly with each sortie. (If, for example, the EKS is 0.67, then it
theoretically takes (1÷EKS) or 1.5 sorties to eliminate one target.) The number of

sorties it would take to eliminate N targets is N ÷EKS. (In the CAPE

methodology, N is calculated as an expected value elsewhere in the model, and
then it is used to calculate N ÷EKS.)
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(b) Determine the number of sorties that could be flown with the number of weapons
available to be allocated. This number is just the total number of weapons
available divided by the loadout  (number of weapons per sortie).

(c) Determine the number of sorties that could be flown with the number of strike
platforms available, using the potential sorties that could be flown per day ( sortie
rate,  p. 24).

(d) The number of sorties to fly is the minimum of the numbers calculated in (a), (b),
and (c) above, rounded down to the nearest whole number.

2. Subtract the numbers of weapons and platforms allocated to the number of sorties just
chosen above from the numbers available for allocation to targets.

3. Subtract the number of targets attacked by the sorties from the total of targets
requiring service.

4. Pick the next sortie on the sorted list, and return to Step 1.

4.6  Calculating Dynamic Results — Setting Up Time-Step Simulations

4.6.1  The Basic Approach for CAPE Simulations

Following CAPE Principle 3 (p. 10), all simulations with CAPE are deterministic and
time-step. That is, no random-number generation is done, no statistics of such random
numbers are calculated, and the output state descriptions of one time period are used as
inputs to compute the output state descriptions of the next time period.

In practice, many CAPE inputs are probabilistic, and therefore the output state
descriptions for any given time period are necessarily probabilistic, not deterministic.
Nevertheless, in the CAPE approach to simulation (e.g., as exemplified in Dynamic CAPE),
one uses the expected values of the probabilistic outputs from one time period as if they were
the deterministic inputs for the next time period. This is a heuristic approximation, and its
validity needs to be assessed by the analyst for each specific model. Its results are indicative
of patterns that might be seen over time, but the results are not definitive for those patterns. It
is the best that can be done without increasing the computations many fold by using random
number generation and statistical methods.

4.6.2  A Method for Verifying CAPE Simulations

Though it has not been done yet, one could use a probabilistic approach to test the
accuracy of Principle 3 s heuristic approximations. The objective of such testing would be to
confirm, for a limited set of scenarios, that the expected values calculated with Principle 3 s
heuristic approximation are comparable to those that would be found through probabilistic
methods. The calculations internal to each time period would be the same, but the outputs of
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the time periods would be randomly generated samples instead of expected values. These
random samples would feed the next time period as inputs. The only difference in calculation
would be in generating the random samples instead of the expected values.

Consider the calculations in the Dynamic CAPE model. The time-varying input variables
for simulation are numbers of targets (by target class and range band), numbers of strike
platforms available to be flown (by platform type), and numbers of weapons available for
sorties (by weapon type). In each time period, these numbers change to model the effects of
attacking the targets with the platforms and weapons. They also change to model the
deployment of new resources and to model the doctrine followed in different phases of the
war. Figure 1-1 illustrates the changes (∆ s) for the first three time periods. The changes for a

time period are a function of the targets, weapons, and platforms available at the start of the
period. The same CAPE model is used to calculate the changes in the different time periods.
It produces different outputs for the periods because it has different inputs for each period.

Figure 1-1.  Time-Step Simulation
The original numbers of targets, weapons, and platforms are successively

reduced or increased in the time periods. The model for each time period is
the same, but the inputs differ and so the outputs differ, too.

4.6.3  Generating Random Samples to Verify CAPE Simulations

Currently, the Dynamic CAPE analysis generates probabilities at each time period that
various targets will be destroyed and that strike aircraft will be lost in combat. It uses these
probabilities to calculate the expected numbers of targets destroyed and aircraft lost. If one
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attacks N targets of a specific type in a range band, and if the probability of destroying one
such target is P, then the expected number of targets destroyed is P × N.14

A statistical approach for verifying the Dynamic CAPE calculations would use the same
probabilities (P)at each time period to generate random samples instead of to calculate
expected values for the numbers of targets destroyed and aircraft lost. The random variables
would be the inputs for the next time period. They would substitute for the expected numbers
used as inputs in the CAPE heuristic approximation.

For instance, one may generate a random sample M of the number of targets destroyed
when N targets are attacked and when the probability of destroying a single target is P. One
generates this random sample as follows: First generate N independent uniform random
variates,15 and then count how many of them are less than or equal to P. The count is the
sample that was to be generated, M.

In each place where CAPE s heuristic simulation calculates P × N to get the expected

number of targets destroyed, one generates the random sample M instead. This requires more
calculation than merely multiplying P × N to get the expected number. However, it is not an

impossible amount of calculation.16

4.7  Special Techniques — Calculation of Probability Distributions

4.7.1  Introduction

The purpose of CAPE modeling is to support exploratory studies of future C4ISR
systems. For such use, the typical probabilistic information available to modelers is notional,
intuitive, or based on professional judgment. In some cases, however, CAPE modelers have
access to high quality statistical information that they wish to use in their models. The

                                                  

14 P must be derived from the number of targets attacked, the number of weapons used in the attack, and the
probability of destroying the target with a single weapon. The factors described in the section on weapon
target pairing would be involved: EKS, PC, and PCOM.

15 A standard uniform random variate is a real number selected from the closed interval (0 to 1.0). It is a
uniform random variable because the probability that a random sample is within any arbitrary sub-interval
of (0 to 1.0) is equal to the size of the sub-interval. For example, the probability that the variable turns out
to fall in the sub-interval (0.2 to 0.5) is 0.3.

16 Assuming that it takes one multiplication and one addition to generate a random sample, and assuming that
multiplication takes much more time than the addition, one could argue that it takes N multiplications to
calculate M and only one multiplication to calculate P × N. So the increase in calculation to generate a

random sample instead of an expected value is proportional to N.
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information may be in the form of historical data or of statistics (the mean and variance) for
historical data. This section of the paper describes how CAPE modelers incorporate such
probabilistic information.

4.7.1.1  Functions of Random Variables

When high quality statistical information is available, it can be used to improve the
validity of CAPE models. This is done primarily by more careful calculation of the results
when two or more random variables interact to create another (dependent) random variable.
In such cases, one is using higher quality information to calculate better information about a
function of random variables.

4.7.1.2  Pairwise Decomposition of Functions

When more than two random variables combine in a complex function to form another
random variable, a basic strategy for developing probabilistic information about the function
is to decompose the function into sub-functions that combine two random variables at a time.
Then one develops the probabilistic information for the full function by successively
combining information about only two random variables at a time. For instance, the function
Z = ((X - Y)/S) + T  can be decomposed so that information is developed in the following
sequence, developing probabilistic information first about Z1, then Z2, and finally Z itself:

Z1 = X — Y

Z2 = Z1 ÷ S

Z = Z2 + T

4.7.1.3  Overview of CAPE s Fractile and Beta Methods

MITRE s CAPE modelers have used two methods to calculate improved information
about functions of random variables.17 They are the Fractile Method and the Beta Method.
Both methods use the pairwise decomposition strategy just described. Consistent with the
second principle of CAPE modeling, both methods also use analytic approximations that
achieve improved results while minimizing the calculations required. The Beta Method is
especially appropriate when one has the statistics of historical data: mean, variance,
maximum, minimum. The Fractile Method is especially appropriate when one has the
historical data itself, not just the statistics that represent the data.

                                                  

17 See Henry Neimeier, Nonlinear Multiattribute Risk Simulation,  unpublished paper, ca. January 1996,
where both methods are defined and described.
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With the Fractile Method, one uses discrete random variables to approximate continuous
random variables, selecting values for each discrete variable that match equally-probable
intervals in the continuous variable s domain. While a continuous random variable can take
on an infinite number of possible values, its approximation, a discrete random variable, is
constructed to take on only a few values. This makes it feasible to compute the function of
two variables for all possible (discrete) combinations of the variables. For instance, two
discrete variables with five equally-probable values each for miles traveled and fuel
consumed can easily be used to compute 25 separate, equally probable values for miles per
gallon. The resulting 25 values can be used to find the average miles per gallon, or they can
be used in other probabilistic calculations.

The Beta Method is somewhat simpler to implement than the Fractile Method. It applies
when the function of the random variables is arithmetical, involving only addition,
subtraction, multiplication, and division. Instead of approximating the random variables with
distributions, CAPE modelers use standard probability formulas to combine the means and
variances of the random variables to approximate the mean and variance of the arithmetical
function of the variables. They also keep track of the two bounds of the arithmetical function,
which are its greatest value and its least value. Then they fit the bounds and the approximate
mean and variance to a beta probability density function for the function.

The Beta Method, unlike the Fractile Method, requires that the domains of the random
variables and of the function of the variables be bounded finitely. That is, one must be able to
reasonably approximate each distribution with a finite domain, specifying a maximum value
and a minimum value.

With both the Fractile Method and Beta Method, one ends up with a probability
distribution or density function for the function of the random variables. This result may then
be used to calculate better information about yet another function of random variables, to
implement the threshold method (p. 34), or to find the mean of the function of the random
variables.

4.7.2  The Fractile Method

4.7.2.1  Introduction

Let us say that two independent continuous random variables, X and Y are to be
combined by the function f(X,Y) into a third random variable Z. So, Z = f(X,Y). Let us also
say that X, Y, and Z may take on values within bounded or unbounded sets of the real
numbers (for instance, from zero to twenty, or from minus infinity to twenty). Finally, let us
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say that a continuous, monotonically increasing cumulative distribution function G(x) is
defined for X, and another H(y) is defined for Y.18

In the Fractile Method, a discrete random variable, X , with equally probable values of
X , is selected to approximate the random variable X . Another, Y , is selected to approximate
the random variable Y. All combinations of X  and Y  are combined with the function f(X,Y).
From the result, a set of equally probable Z  values is selected to represent the random
variable Z.

4.7.2.2  Constructing discrete approximations to the random variables

The possible values of X  are selected from the domain of X . Likewise the possible values
of Y  are selected from the domain of Y. For instance, if X (or Y) is defined as a real number
varying between 15 and 35, then the possible values of X  (or Y ) might be chosen to be 17,
21, 25, 29, and 33. The method for selecting values of X  is described next in terms of X  and
G(x). The same method is used to select values of Y  using H(y) instead of G(X). The method
has been called the Bracket Median  method. 19

To select the values of X , we imagine that the domain of X  is divided into a number
(e.g., 3, 5, 7, 9) of equally probable intervals. The intervals are not equal in terms of X itself,
but in terms of G(x). For instance, if xa and xb divide the domain of X into three equally
probable intervals, where xa < xb, then G(xa) = 1/3 and G(xb) = 2/3. So the interval (-∞, xa)

has probability 1/3, the interval (xa, xb) has probability 1/3, and the interval (xb, ∞) has

probability 1/3.

After the domain of X is divided into equally probable intervals, we find one value of X
to represent each interval. We could select X  to be the average value of X within the interval,
or — if the interval is bounded — the midpoint of the interval. Instead, we select X  as the
median of X in the interval. Thus X  is the value of X such that the conditional probability
that X is greater than X , given X is in the interval, is 0.5.

                                                  

18 The cumulative distribution function (CDF) for an independent random variable X is a function G(x) that
gives at any value x of X the probability that X is less than or equal to x, i.e., G(x) = Prob(X ≤ x). The

derivative of G(x) with respect to x is the probability density function for X, g(x). The fractiles of the
random variable X are defined in terms of the CDF. The p  fractile  is defined as the value of X, xp, for
which G(xp) = p. For instance, the 0.8 fractile  is the value of x for which G(x) = 0.8.

19 The Bracket Median method for approximating a continuous probability distribution is described in Robert
T. Clemen, Making Hard Decisions; An Introduction to Decision Analysis (Boston, PWS-Kent Publishing
Company, 1991), p. 220.
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When considered from the standpoint of G(x), not from the standpoint of X, the medians
defining the possible values of X  occur at the midpoints of the equally probable intervals.
Suppose, as described above, that xa and xb divide the domain of X into three equally
probable intervals, so that G(xa) = 1/3 and G(xb) = 2/3. Let us call the medians of X in these
three intervals x1, x2, and x3. The medians are the values of X that make G(x1) = 1/6, G(x2)
=1/2, and G(x3) = 5/6. These are the midpoints of the three intervals (0 to 1/3), (1/3 to 2/3),
and (2/3 to 1).

Expressed in a formula, the medians xi for N equally probable intervals are chosen at the
points where G(xi) = (i - 0.5)/N, for i ranging from 1 to N. The selected values for N equally-
probable intervals are all considered equally probable, with probability 1/N.

4.7.2.3  Constructing an approximation of the function of the random variables

To select values of Z  to represent Z, first we use the Bracket Median method to construct
X  and Y . We construct X  and Y  both to have the same number of possible values, N, and
we make sure the number of possible values is odd (e.g., 3, 5, 7, 9). Then we calculate N 2

candidate values of Z  by finding values of Z  =  f(X ,Y ) for all N 2 possible combinations of
X  and Y . The candidate values are all equally probable; each has probability 1/ N 2.

These N 2 values of Z  make a fine discrete approximation of Z , except that there are too
many of them if Z  is going to be combined in a pairwise decomposition process with more
random variables. Accordingly, the N 2 values of Z  are condensed  to N values, as follows.
First the values are sorted in order from least to greatest. Then, beginning at position
(N+1)/2, every Nth value is selected. (The start at position (N+1)/2 discards an equal number
of values at the start and end of the sorted set of values.) The resulting N values are all
considered equally probable, with probability 1÷N. They are the Fractile Method s discrete

approximation of random variable Z.

The reason for condensing the N 2 values back to N values is to keep the calculations at a
manageable level when several other functions of random variables will be computed. For
instance, if we are interested in a function of four different random variables, and we
approximate each with a 9-element discrete variable, we would in principle have to compute
9×9×9×9 = 6,561 combinations of the discrete variables. But if we decompose the problem

into operations on two variables at a time, and condense back to nine elements after each
operation, then we have to compute only 9×9 + 9×9 + 9×9 = 243 combinations. In general, to

generate a discrete function of M independent random variables with the Fractile Method,
condensing at each stage, one computes the values of only (M-1)N 2 combinations. Otherwise
one would compute the values of N M combinations.
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The quality of the Fractile Method s results increases with N. That is, nine equally
probable intervals give more accuracy than three intervals. Henry Neimeier has compared the
accuracy of the results when various values of N are used with various functions f(X,Y).20

4.7.2.4  Procedural Summary of the Fractile Method

The Fractile Method has the following steps for calculating N equally probable
representative values of Z = f(X,Y):

1. Choose an odd number, N (e.g., 3, 5, 7, or 9).

2. Calculate values x1, x2, , xN-1, xN to represent X in using f(X,Y); calculate them as
values of x (i.e., fractiles) corresponding to

xi = G -1(Fi)  for i = 1 to N
where Fi = (i - 0.5)/N and
where inverse function G -1(u) gives the value of x for which G(x) = u

3. Calculate values y1, y2, , yN-1, yN to represent Y in using f(X,Y); calculate them as
values of Y (i.e., fractiles) corresponding to

yi = H -1(Fi)  for i = 1 to N
where Fi = (i - 0.5)/N and
where inverse function H -1(u) gives the value of y for which H(y) = u

4. Using Z = f(X,Y), calculate values of Z for all N 2 combinations of the representative
values of X and Y. (These N 2 values are all equally probable since they represent
equally probable combinations of X and Y.)

5. Sort the N 2 values of Z in increasing order.

6. Select N of the N 2 values of Z as follows: Start with the value in position (N+1)/2
down the list; then select every N th item down the list from there. Discard the rest of
the N 2-N values of Z.

The values of Z selected in Step 6 are the N points for a discrete random variable Z  that
approximates the random variable Z. The N points are equally probable, with probability
equal to 1÷N.

4.7.2.5  Using the Fractile Method with Dependent Variables

The Fractile Method s procedure, as described above, applies only to functions of
independent random variables. However, the method can be extended easily for functions of

                                                  

20 Henry Neimeier, Nonlinear Multiattribute Risk Simulation,  unpublished paper, ca. January 1996.
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two dependent variables. Letting X and Y be dependent random variables, we now define
G(x) to be the marginal distribution function for X, and we define H(y|x) to be the distribution
function for Y conditioned on knowing that the value of X is x.21 As before, we use G(x) to
calculate N representative values of X. Then we use H(y|x) to calculate N equally probable
representative values of Y for each of the representative values of X. That is, for each
representative X value, calculate a different set of N representative Y values. A total of N+N 2

fractiles must be calculated. The reason is that Y now depends probabilistically on X, so that
there is a different distribution function of Y for each value of X.

Though the two random variables are dependent, there are still only N 2 combinations of
X and Y to consider for computing the Z values with f(X,Y). It is just that the representative Y
values have to be recalculated for each different representative value of X. Otherwise, the
calculation for Y  proceeds as described in the basic and Bracket-Median processes above.

The Fractile Method for dependent variables is easy to apply when there are only two
random variables. However, the process is more complex for more than two variables, and
the amount of calculation increases exponentially with the number of variables. The increase
in calculation for dependent variables comes in the number of fractiles computed, not in the
number of combinations of x and y. Whether the variables are dependent or not, one has to
compute only (M-1)N 2 combinations. In general, however, for M dependent variables, one
has to calculate N(N M-1)/(N-1) fractiles. For instance, using N = 9 and M = 4, one would
have to calculate 7,380 fractiles to find a function of four dependent random variables. By
contrast, for M independent variables, one has to compute only M × N fractiles, or 4×9 = 36

fractiles in the example.

4.7.3  The Beta Method

4.7.3.1  Introduction

The most typical functions of random variables in CAPE models are addition,
subtraction, multiplication, and division. For instance,

• One adds the number of targets in each range band to find the total number of targets
in the theater.

                                                  

21 Let us define G(x,y) to be the joint distribution function for X and Y, where G(x,y) is the joint probability
that X is less than or equal to x and that Y is less than or equal to y. Then the marginal distribution function
for X is simply G(x) = G(x,∞). The conditional distribution for Y, H(y|x), is the ratio of the partial

derivatives of G(x,y) and G(x), both derivatives taken with respect to X:  H(y|x) = Gx(x,y)/Gx(x). (Be careful
in calculating H(y|x) if G(x,y) is not continuously differentiable for all combinations of x and y.)
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• One divides the number of images awaiting exploitation by an exploitation rate to
find the time needed to exploit all the images.

• One multiplies a sensor s collection rate by the number of hours it collects images to
find the total number of images collected.

For such arithmetic functions of random variables there exist standard formulas for
calculating the mean and variance of the function from the means and variances of the
random variables. These formulas for arithmetic functions are often easier to use than the
Fractile Method since one does not need to calculate the fractiles for each random variable.

However, the mean and variance alone for a function of random variables may be
insufficient for our needs in CAPE modeling. We may also need a complete probability
density function (PDF) or cumulative distribution function (CDF) for the function of the
random variables. How does one generate a PDF for the arithmetic functions?

The beta distribution is known to be a robust PDF that one can apply, using its four
parameters, to approximate the shapes of many different PDFs. The four parameters of the
beta PDF can be calculated from four statistics: the maximum, minimum, mean, and variance
of its random variate. Hence, if we calculate the mean and variance for a function of two
random variables with the standard formulas, and if we simultaneously calculate the
maximum and minimum of the function, we can use the beta distribution to approximate the
PDF for the function of random variables.22

In the Beta Method, the independent random variables are represented by only four
statistics — the mean, variance, maximum, and minimum — instead of by the N fractiles of the
Fractile Method. Using the decomposition strategy, whenever two variables are combined
into a subfunction, the eight (2×4) statistics for the two independent variables are used to

generate the corresponding four statistics for the function of the random variables. Only after
all the subfunctions are processed, so that one has the four statistics for the complete
function, does one use the final four statistics to calculate the parameters for the
corresponding beta distribution. While the Beta Method s name comes from the fitting of a
beta probability distribution, most of the work is in the calculation of the four statistics,
which do not involve the beta distribution at all.

                                                  

22 If either of the two random variables is unbounded (can become infinitely large), then the beta
distribution s maximum and minimum probably cannot be calculated. Instead, to use the beta distribution,
it is necessary to say that for all practical purposes  the random variables are bounded and to specify the
bounds.
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4.7.3.2  Calculating the Four Statistics

For two random variables, X and Y, and one arithmetic function, Z = f(X,Y), formulas are
provided below to calculate the statistics of Z in terms of the statistics of X and Y. In the
formulas, the mean, variance, maximum, and minimum, are represented by the symbols µ, V,

Max, and Min, respectively, with appropriate subscripts to designate X, Y, and Z. All the
formulas assume that X and Y are independent random variables. The formulas for Min and
Max assume that both X and Y are non-negative real numbers, which is typical for CAPE
analyses. (Other formulas, more complex, are needed if either X or Y can be negative or if
they are dependent random variables.)

Table 1-1. Arithmetic Functions of Two Independent Variables

Sum,  Z = X + Y

µz = µx + µy   and   Vz = Vx + Vy (exact, not approximate)

Minz = Minx + Miny

Maxz = Maxx + Maxy

Difference,  Z = X — Y

µz = µx - µy   and   Vz = Vx + Vy (exact, not approximate)

Minz = Minx - Maxy

Maxz = Maxx - Miny

Product,  Z = XY

µz = µxµy   and   Vz = VxVy + Vxµy
2 + Vyµx

2 (exact, not approximate)

Minz = MinxMiny

Maxz = MaxxMaxy

Division,  Z = X÷Y

µz = (µx÷µy)[1 + (Vy÷µy
2)]    (approximate)
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Vz = (µx÷µy)
2[(Vx÷µx

2) + (Vy÷µy
2)] (approximate)

Minz = Minx÷Maxy

Maxz = Maxx÷Miny

4.7.3.3  Defining the Beta Distribution

CAPE modelers use the beta distribution to approximate other PDFs because it can
represent a skewed  mono-modal distribution for which the mean and variance can be
selected separately.23 The normal distribution is less preferred because it cannot represent a
skewed distribution, though the mean and variance can be chosen separately. A triangular
distribution can be skewed, but its variance cannot be selected separately from its mode.

The beta distribution is most naturally applied to random variables that are uncertain
proportions: What fraction of American registered voters will vote this year? What fraction
of customers will return for a second visit to the restaurant? Zero at the bottom and 1.0 at the
top bound such random variables. In CAPE analyses, many of the random variables are also
bounded by practical considerations, though they are not proportions between zero and 1.0.
Typical bounded random variables for CAPE analyses are sorties per aircraft per day and
images exploited per day per analyst.

The formula for the beta probability density function b(w) for random variable W, where
W must be between a minimum of 0.0 and a maximum of 1.0, is as follows:

b(w) = k w r-1(1-w)n-r-1

Where
n, r, and w are real numbers (not necessarily integers);
n > r > 0;  1 ≥ w ≥ 0; and

k is a normalizing constant.

In the formula, note that when  n = 2r,  b(w) is symmetric about the value w = 0.5.
Therefore the ratio  n/2r governs the skew of the distribution to the left or right of 0.5.

The mean value of W is µW = r/n, and the variance is  VW = r(n-r)/n2(n+1). One may also

calculate the variance as VW = µW(1-µW)/(1+n). Therefore, for a given mean value µW, the

value of n determines the variance of the distribution.

                                                  

23 The skew of the distribution is determined practically by the relative position assigned to the mean between
the maximum and minimum.  Suppose the minimum and maximum estimated for an uncertain random
variable are 100 and 200. Someone might also estimate a mean of 120. This causes a skew to the left.
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4.7.3.4  Fitting the Beta Distribution to the Four Statistics

For an arbitrary bounded random variable Z, if we are given the four statistics of
minimum, maximum, mean, and variance, we fit them to a beta distribution as follows:

1. Let the linear function W = (Z — Minz)/(Maxz — Minz) transform the random variable Z
to the range of a beta variate W, namely 0.0 to 1.0. Likewise the inverse function
Z = W × (Maxz - Minz) + Minz converts beta variates to the domain of Z.

2. Given the linear function, calculate the mean and variance of W from the four
parameters of Z as follows:

µW = (µz — Minz)/(Maxz — Minz)

VW = Vz /(Maxz — Minz)
2

3. Calculate the beta parameters, n and r, as follows:

n = [µW(1-µW)/VW] — 1

r = µW n.

Caveat. The beta distribution with parameters n and r will have the same mean and
variance, appropriately transformed, as the random variable Z. The shape of the beta
distribution will usually be a good match to the shape of the random variable s distribution.
However, there are cases where it is not a good match, such as when Z s distribution function
is lognormal. Though it is usually a good approximation, it is up to the analyst to judge the
suitability of the approximation in each case.
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Appendices and Glossary

Appendix A

Justification of the CAPE Principles

The three principles of the CAPE methodology produce C4ISR models that differ greatly
from many existing models used for military operations research. Such existing models are
used to statistically estimate the performance of systems by repeated next-event simulations
of the systems  operation. MITRE staff believe that the simplifications of the CAPE
methodology, which avoids statistical sampling, are more appropriate to the class of
problems they address than the other models. There are several reasons, as follow:

First, the class of problems to which CAPE models are applied stretch the imagination
into areas of C4ISR not previously modeled and for which definitive information for
modeling often does not exist. The CAPE methodology supports an experimental
development of conceptualizations of the study problem throughout the course of the study,
using sensitivity analysis to discover major effects. Generally, a discrete-event simulation is
a poor vehicle for trying out new broad conceptualizations or for conducting sensitivity
analyses:

• A discrete-event simulation takes much time and computational resources to produce
statistically valid results. This inhibits broad reformulation of the models, and it
inhibits sensitivity analysis. Often, only a few iterations of the simulation can be
generated, when hundreds are required for statistically significant results.

• In discrete-event simulation, the causal chain  linking random variables to the
MOEs is obscured through the use of random number generation and statistical
sampling. That is, the sampling process introduces noise that makes it hard to
measure the sensitivity of MOEs to changes in model parameters. In CAPE models,
where there is no sampling, the sensitivity effects are easy to measure precisely.

Second, the class of studies to which CAPE models are applied involves the quick
exploration of a large, complex C4ISR system, the identification of key factors affecting
performance, and the comparison of alternative hypothetical combinations of new ISR
capabilities in terms of mission effectiveness. Discrete-event simulation models are generally
unsatisfactory for such work. They take too much time for model-building, data-collection,
verification, and validation.

Third, discrete-event simulation models have higher fidelity  than CAPE models,
because they represent individual events that actually occur in life, and they model a time-
line with state histories. However, such higher fidelity does not of itself guarantee higher
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accuracy or validity. In fact, it may guarantee the opposite. If a phenomenon is well
understood at the aggregate level, for instance, but is poorly understood at the event level,
then an analysis based on an event-driven simulation model will lead to less certain results
than one based on an aggregate model. In the class of studies to which CAPE is applied, the
C4ISR phenomena generally are not understood well at either the aggregate level or the
event level, and the questions under study are framed at the aggregate level. Therefore
MITRE s strategy is to model and analyze questions at the aggregate level with the CAPE
methodology.

Fourth, since there is so much unknown in the C4ISR field, it is very difficult to validate
the parametric inputs to any model. To develop high fidelity, event-level models, one must
generally specify much more parametric input than one would specify for use in aggregate
CAPE models. Event-level models therefore increase the task of validation. If time and
knowledge are short, an aggregate CAPE model with validated inputs can be more believable
than a complex event-driven model that has too many inputs to be well validated.
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Appendix B

Deriving a Model of Target Movement

by Kenneth P. Kuskey, Ph.D.
with contributions by Brian K. Schmidt, Ph.D.24

March 2000

B.1  Introduction
For many sensor-to-shooter (STS) systems, significant delay occurs between sensing a

mobile ground target and engaging it with a weapon system. Such delay is typical for STS
systems based on still-image sensors such as electro-optical, infrared, and radar. (They are
less typical of continuous-coverage systems such as real-time video and moving-target
sensors.) During the delay, the target may move so far that it cannot be found again and
successfully engaged by the weapon system sent to look for it. One major purpose of new
investment in such still-image STS systems is to shorten the delay, so that the mobile target
is more likely to be found and engaged successfully.

Target movement involves the interaction of complex probabilistic phenomena. Because
of the limited time available for completing MITRE s initial CAPE analyses of STS systems
in the C4ISR Mission Assessment of 1997, MITRE staff modeled target movement quickly
with heuristic methods instead of deriving models from fundamental considerations.25 Later,
during 1998 and 1999, a probabilistic model of target movement was derived with basic
probability calculus from explicit assumptions. An overview of the new target movement
model follows, describing its assumptions and derivations.

B.2  General Assumptions
In CAPE analyses, target-movement models represent broad target classes instead of

individual targets. Each target class may include several different kinds of actual targets.

                                                  

24 The author gratefully acknowledges MITRE staff member Dr. Brian K. Schmidt s contributions to this
work. Brian pointed out the bias one experiences in observing target movement. This stimulated the author
to model uncertainty in pause time as a function of sensor revisit time. Brian developed alternatives, often
shorter and deeper, for many derivations the author reports here. He provided key equations (see Section
B.8) to provide an exact analytic solution where the author had been content with an approximation.

25 CAPE is an acronym for C4ISR Analytic Performance Evaluation. C4ISR is an acronym for Command,
Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance.
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Typical target classes are short mobile column  and large long-dwell target.  The CAPE
modeler s basic assumptions about the movements of such targets are as follows:

• Mobile ground targets alternate between moving and pausing.

• A target s alternating move times Tm and pause times Tp are independent random
variables. (Actual values of the random variables are signified by tm and tp.)

• A target s location is considered to be a geometric point, even though some targets,
such as a mobile column, may be large.

• A target s velocity V in its moves is a random variable, independent of move times
and pause times. (Actual values of the velocity are symbolized by v.)

• During move times, the target moves a distance X = Tm × V. The distance is a

function of the two random variables Tm and V. (Actual values of distance are
symbolized by x.)

• The uncertainties in Tm, Tp , and V for each target class are represented by triangular
probability density functions (PDFs):  fm(tm),  fp(tp), and  fv(v). These PDFs typically
are conditional PDFs, differing for each combination of range band and phase of the
war. The PDFs average over  all possible reasons for pauses and moves of the target
class in the various range bands and phases of the war.

B.3  Pausing-Target Model
For imagery-based STS systems, the image may be recorded when the target is moving

or when it is pausing. Arguably, the most important case to analyze is the image made of a
target that one can tell was pausing. There is potential to strike the target before it moves. By
contrast, the moving target is certain to move from its observed location, and it is likely to
move too far to be found by a strike sortie (assuming that a pilot cannot find a target that has
moved more than about 5 km).

For the target observed pausing, one generally will not know exactly when the pause
began nor when it will end. One only knows when the observation was made. The pause may
have begun just before the observation, or it may have ended just after the observation. To
represent this state of knowledge, the CAPE modeler makes the following assumptions:

• Surveillance and reconnaisance, which are activities to observe targets, occur on a
regular cycle. The time between attempted observations is the revisit time, tr.

• One can tell whether a target was pausing at the time it was observed, but the
collected information does not indicate when the pause began, nor does it indicate
when the pause will end.
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• One can determine from past records of observations whether a currently observed
target was pausing in the same location at the previous observation. This assumption
simplifies the analysis of situations where the revisit time is shorter than the
maximum length of time a target pauses. It is not necessary when the revisit time is
longer than the maximum pause time.

• For our purposes, the only observations of interest are those in which a target is
observed pausing that was not observed pausing in the same location at the previous
observation. We assume the decision to attack a target is based on its initial
observation. Later observations might locate the target more precisely, or help to call
off a strike if the target should move. However, these are taken to be second order
considerations as compared to the main action of planning and launching the strike.

Given the assumptions, the modeler s first question about the pausing target is How
long will the pause continue after the target is observed?  The following derivation produces
a cumulative distribution function (CDF) Frp(trp|tr) for the target s remaining pause time,
Trp, given the revisit time, tr. The results match the statistics of simulated observations of
remaining pause times, where the simulations are based on the assumptions above.

B.3.1  Summary Derivation of the CDF for Remaining Pause Time

1. Consider the current observation and the most immediate prior observation. Let us
say that a pause began at some time after the prior observation. That pause may still
be in progress at the current observation, or it may have already completed.

2. Let Ts stand for how long it was before the current observation that the pause started,
a random variable. (So ts = 1 means the pause started 1 hour before the observation.)

3. Represent uncertainty in Ts as a uniform PDF  fs(ts) over the domain (0, tr), where tr is
the deterministic time between revisits of the sensor system. Ts cannot be greater than
tr, since we postulated that the pause began after the prior observation. We are also
assuming, by use of the uniform distribution, that pauses will start with equal
likelihood at all times between observations.

4. Define the remaining pause time Trp to be a function of the two random variables, Tp

and Ts, namely Trp = Tp — Ts. Note that Tp may be smaller than Ts, so that Trp may be
negative. It is negative in those cases where the pause ends before the current
observation. Though unobserved, such pauses are important for this derivation.

5. Derive a CDF Grp(trp|tr) for Trp using fs(ts) and fp(tp), assuming that Tp and Ts are
probabilistically independent. In general, the CDF for Trp will include both positive
and negative values of Trp, corresponding to observed and unobserved pauses.

6. Only the non-negative values of Trp apply in our situation, since we know that the
pause was in fact observed. Therefore,
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7. Using the CDF just derived, Grp(trp|tr), derive a new conditional CDF for Trp given Trp

is non-negative. Call this CDF Frp(trp|tr).

The derived CDF, Frp(trp|tr), answers the modeler s first question, How long will the
pause continue after a target is observed?  Interestingly, the answer depends on the revisit
time tr. The shorter the revisit time, the more likely one is to observe the target near the
beginning of its pause. Therefore, the shorter the revisit time, the longer one can expect to
see the target pause after it is observed. The equations will be developed below.

B.3.2  Detailed Derivation of the CDF for Remaining Pause Time

Steps 5, 6, and 7 of the summary derivation are illustrated here so that readers may
understand the basis of the final equations for Frp(trp|tr). A derivation from first principles is
used to illustrate the relationship between Trp, Tp, and Ts.

B.3.2.1  Framing the Situation

Figure B-1.  Calculating the Probability that Trp ≤≤≤≤ trp

Consider the graph in Figure B-1. In the graph, the possible values of Ts range from 0 to
tr. The possible values of Tp are shown ranging from zero upward without limit. The three
45¡ lines represent the parametric equation trp = tp — ts for three different representative
values of trp, which are a, 0, and —b. There is one line for each different value of trp. Note that
the higher the 45¡ line is on the graph, the larger its value of trp. Also note that the line for trp

trp = a = tp - ts

trp = 0 = tp - ts

trp = -b = tp - ts
a

b tr0
0

Ts

Tp

a + tr
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= 0 runs through the origin of the graph. Any 45¡ line below the one running through the
origin represents a negative value of trp.

For any specific value of trp, the line representing it divides the graph into two parts.
Below the line, in the shaded region, are all combinations of Tp and Ts for which Trp is less
than trp. Above the line are all combinations of Tp and Ts for which Trp is greater than trp.

B.3.2.2  The Mathematical Problem

The probability that Trp is less than or equal to a specific value trp is equal to the
probability that a random combination of Ts and Tp is in the shaded region of the graph that
falls below the line corresponding to the value trp. Because we assume Ts and Tp are
probabilistically independent, the calculation amounts to integrating fp(tp) and fs(ts) over the
region below the line to find the joint probability that both Ts and Tp are in the region.

To carry out the integration there are two cases to consider: trp > 0 and trp ≤ 0. The

integration result differs somewhat in the two cases. However, as it turns out, the more
complex result for the case for trp > 0 can be applied in the second case as well. Certain terms
in the complex result are always zero in the second case. Consequently, we will document
only the first case.

In the figure, consider the line intersecting the Tp axis at a. The region for which Trp ≤ a

is the trapezoid shown shaded on the graph. It is bounded on the right by tr since Ts can be no
larger than tr. It is bounded on the top by tp = a + tr since that is the largest possible value of
tp consistent with keeping Tr less than or equal to tr and having trp = a. We want to calculate
the probability that random samples of Tp and Tr will both be in the trapezoid.

B.3.2.3  The Mathematical Solution

The shaded trapezoid may be divided into two non-overlapping parts as shown in Figure
B-2: (1) a rectangle in which all values of Tr are equally likely, regardless of the value of Tp;
and (2) a triangle in which the value of Tp constrains the range for Ts. Because the rectangle
and triangle do not overlap, the probability that a joint sample (Ts, Tp) is in the trapezoid may
be calculated as the sum of the two probabilities that the sample is in the two parts of the
trapezoid:

( ) ( ) ( )riangleTTTRectangleTTTrapezoidTT pspsps ⊂+⊂=⊂ ),(Pr),(Pr),(Pr

We first consider the rectangle, which has values of Tp that are less than or equal to a. In
the rectangle, all values of Ts are equally likely for any value of Tp. The probability that a
random pair (Tp, Ts) is in the rectangle is calculated by integrating the joint density function
fp(tp) × fs(ts) over the rectangular region, as follows:
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Because all values of Tr are equally likely for all the values of Tp in the rectangle, this
equation may be written simply as

Figure B-2.  Two Regions for Calculating Probabilities

Second we treat values of Tp that are greater than a. The region where Tp is greater than a
is the triangle that sits on top of the rectangle. In the triangle, only some values of Ts are
within the trapezoid, not all possible values. As shown on the graph, with the dashed lines,
the allowable range of Ts for a given value of tp is the interval from  tp—a  to tr. The
probability that a random pair (Tp, Ts) is in the triangle is calculated by integrating the joint
density function fp(tp) × fs(ts) over the triangular region, as follows:
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Because fs(ts) is a uniform distribution on the domain (0, tr), the inner integral may be
simplified as follows:

This equation may be separated into two integrals:

The first integral can be written simply in terms of  Fp(a + tr) − Fp(a). The second

integral is more interesting. Let us define a CDF for experienced pause time,  Tep, to be
Fep(tep), calculated from fp(tp) in the following manner:26

where the denominator is the average pause time with respect to fp(tp), calculated as

Let us now introduce Fp(tp) and Fep(tep) into the probability we were calculating for the
triangle:

                                                  

26 For an interpretation of experienced pause time, please see the end of this subsection, after the derivation.
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Adding the two probabilities that (Tp, Ts) is either in the triangle or the rectangle, we
obtain the probability that (Tp, Ts) is in the trapezoid:

This equation has been derived with the understanding that a is greater than or equal to
zero. In fact, if one derives the probability that (Tp, Ts) is within the trapezoid when a is
negative, then the above equation applies, but it is simplified: When a is less than zero, the
two terms Fp(a) and Fep(a) are both zero and drop out because the terms are only defined for
non-negative values. From the simplified equation, we may note that whenever a is less than
-tr, both Fp(a + tr) and Fep(a + tr) are zero. So the probability (Tp, Ts) is within the trapezoid is
zero. This means that the smallest allowable value of a, without knowing anything further
about the possible limits of Fp(tp), is -tr.

Now we are in a position to complete step 5 of the summary derivation, writing the CDF
Grp(trp|tr) for Trp, as follows, where trp has been substituted for a in the equation above:

This equation may be simplified in form through the use of an interesting auxiliary
function, which we will label FFp(tp).27 It is based on fp(tp), as follows:

In terms of the auxiliary function, we may write the equation for Grp(trp|tr) as follows:

                                                  

27 Brian Schmidt brought this auxiliary function to the author s attention.
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Finally, given Grp(trp|tr), we complete step 7 of the summary derivation by calculating
Frp(trp|tr) as the conditional CDF for Trp when Trp is known to be greater than zero:

Note that Grp(0|tr) has the following form and is easy to evaluate:

When fp(tp) is a triangular, uniform, or exponential probability density function, the
calculation of Frp(trp|tr) is purely analytical, involving no numerical integration or table-
lookup procedures.

B.3.2.4  Special Cases: Constant and Once-Only Target Observation

Two special cases of Frp(trp|tr) merit consideration. In one case, the revisit time, tr, gets
very small and approaches zero, corresponding to constant observation of the target. In the
other case, the revisit time gets very large and approaches infinity, corresponding to once-
only observation.

To consider the two cases, we assume that fp(tp) is a triangular PDF with three
parameters: min, mode, and max.28 Then fp(tp) is zero for values of tp less than min and also
for values of tp greater than max. It is positive at mode and at all other values of tp between
min and max. Similarly, Fp(tp) and Fep(tp) are zero for values of tp less than min, and 1.0 for
values of tp greater than max. In what follows, let us assume without true loss of generality
that min is greater than zero.

When tr is smaller than min, the factor Grp(0|tr) becomes zero. That is, interpreting the
meaning of Grp(0|tr), it is impossible for a pause to both start and end between two
                                                  

28 Brian Schmidt has provided the author a more general analysis of the two cases in which he assumes only
that fp(tp) = 0 for all tp greater than some value max. He does not need to assume, as the author does, that
fp(tp) has any particular form, such as the triangular PDF, to obtain the same results developed here.
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successive observations when the time between observations is smaller than min. So every
pause will be observed if tr is smaller than min. In this situation, Frp(trp|tr) = Grp(trp|tr), and it
may be written as follows:

From this formula, it may be shown with L H spital s rule that when tr is zero, so that
the target is constantly observed, then Frp(trp|tr = 0) = Fp(trp). That is, the PDF of the target s
observed pause times is the basic pause time distribution, fp(tp).

Now consider the second case, when tr becomes large. If tr is larger than max, then the
formula for Grp(0|tr) is simplified as follows:

When this is substituted into the formula for Frp(trp|tr), and when we recognize that the
two terms Fp(trp+ tr) and Fep(trp+ tr) both equal 1.0 when tr is greater than max, then all the
terms with tr fall away, leaving the following result that is no longer a function of tr:

Consequently, if tr exceeds max, even approaching infinity, the CDF Frp(trp|tr) no longer
changes when tr increases. It is constant with respect to tr.

B.3.2.5  Interpretation of Experienced Pause Time

The PDF Fep(tep) represents the distribution of actual pause times (not just the remaining
pause times, but the full pause times) one would experience by observation if

• the pauses are generated from a target-movement process based on fp(tp);

• observations are made regularly at a fixed time interval (the revisit time tr); and

• tr is greater, for practical purposes, than the maximum pause time allowed by fp(tp).

The form of Fep(tep) accounts for an observational bias  that occurs with large revisit
times. With such revisit times, long pause times will cumulatively take up a larger fraction of
time in a long history of pauses than will short pauses, as compared to the fraction of long
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pauses that are generated. Even if short pauses are just as likely to occur when pauses are
generated, the process of observation biases  the observer toward seeing more of the long
pauses than the short pauses.

While Fep(tep) describes the CDF for experienced pause when the revisit time is longer
than the maximum pause time, there is a complementary situation in which the revisit time is
shorter than the minimum pause time. In that situation, every pause is experienced, short or
long, and the appropriate CDF for the experienced pause is Fp(tep), which is the CDF based
on fp(tp).

B.4  Moving-Target Model
The next question a modeler asks about the mobile ground target is Given it was

observed pausing, how far might it have moved from its observed location if we attack it  t
hours after the observation?  To answer the question, we derive a CDF  FX(x|t,tr) for the
distance  X  the target may have moved in the time  t  since it was observed, given the revisit
time for observations, tr.

To simplify the derivation of FX(x|t,tr), the CAPE modeler makes the following moving-
target assumptions:

• During a move, the target moves strictly away from the location of its last pause. This
may not always be true, but it simplifies analysis.

• The target starts moving no more than once after it is observed; it may have finished
moving and be pausing again at time t. This assumption represents an understanding
that the first full move after the observed pause will usually move the target such a
large distance that it cannot be found and engaged if a strike should arrive after the
move is over. If it does not move the target out of range, we are assuming the target
will be pausing (for the second time) when the strike arrives.29

Given the additional assumptions, it takes two steps to answer the movement question.
First, FX(x|t,tr) is expanded  over target velocity v and expressed as the weighted average
over velocity of another CDF for X, one that is conditioned on specific values of both t and
velocity v. We call the conditional CDF FX(x|v,t,tr) and calculate FX(x|t,tr) with it as follows:

                                                  

29 Brian Schmidt has sketched a procedure for calculating target movement probabilities in the general case
where several moves and pauses are possible during the time t.
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Second, FX(x|v,t,tr) is derived from Frp(trp|tr) and fm(tm). This derivation requires a bit of
backward thinking. The CDF FX(x|v,t,tr)  is the probability that the distance moved (X) is
smaller than or equal to x at time t given velocity v. We will approach this by deriving the
complementary CDF, 1 — FX(x|v,t,tr), which is the probability that the distance moved is
larger than or equal to x at time t given velocity v.

The complementary CDF is derived through the following line of thinking:

1. For the distance moved to be larger than or equal to x at time t, two events must have
occurred:

− Event #1: The pause ended before t, leaving enough time (x/v) for the target to
move at least as far as x. That is, the pause time Trp was less than or equal to  t -
x/v; and

− Event #2: The move starting when the pause ended was at least long enough (x/v)
for the target to move the distance x before beginning another pause. That is, the
move time Tm was greater than or equal to x/v.

2. The two events are probabilistically independent since pause times and move times
are probabilistically independent.

3. The probability that both events occur, so that the distance moved at time t must be
larger than or equal to x, is the product of the probabilities of the two independent
events.

4. The probability for the first event comes from the cumulative distribution function for
remaining pause time, as follows:

P(Event #1) = 
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5. The probability of the second event may be expressed in terms of the complement of
the CDF for move time, Fm(tm ), which is based on  fm(tm), as follows:
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6. The product of the two probabilities yields the complementary cumulative probability
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8. Finally, substituting this result into the equation that expanded FX(x|t,tr) over velocity,
we obtain the CDF for the distance X the target may have moved at time t,
conditioned on revisit time tr.

This equation answers the movement question, Given the target was observed pausing,
how far might it have moved from its observed location if we attack it t hours after the
observation?  Again, as for the first question, the answer depends on the revisit time, tr. The
shorter the revisit time, the smaller the distance the target will tend to move, because the
remaining pause will tend to be longer. In practice, MITRE staff members have used
numerical integration to implement the equation.

B.5  Response-Time Model
The next question the modeler asks about a mobile ground target is Given it was

observed pausing, how far might it move from its observed location by the time we can get a
strike there to attack it?  This question brings the response time of the sensor-to-shooter
system into our consideration. The analysis expands to include the arrival of the strike, and
its time of arrival is another random variable. The arrival occurs an uncertain length of time
T after the observation. We will call T the response time  of the sensor-to-shooter system. It
is the time that occurs between the observation and the arrival of the strike at the target s
observed location. We will assume that T is probabilistically independent of when the target
moves. As the PDF for T, we write fT(t).

Previously, CAPE modelers have represented the uncertainty in response time with a
simple two-part approach: Define the time from observation to launch of the strike as a
random variable with a triangular PDF; add to that time a deterministic time that it takes to
reach the target after launch. In Dynamic CAPE, for instance, they estimated the mode for
the observation-to-launch time. Then they set the maximum to be 50 percent greater than the
mode; and they set the minimum to be 50 percent less. Then they added the flyout time to
each of these three PDF parameters. The resultant PDF represented their uncertainty about
the length of time it takes to perform all the separate tasks of processing, exploitation,
dissemination, target analysis, mission planning, mission preparation, and flyout of the strike.
In Dynamic CAPE, the parameters for this PDF differ by type of sensor and intelligence/C2
system supporting the sensor, strike platform, range band, and theater.
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Given the PDF for response time (the triangular PDF that CAPE modelers have used
previously, or another), it may be combined with FX(x|t,tr) to produce a CDF for the distance
X the target may have moved between its observation and the arrival of the strike:

This equation essentially averages FX(x|t,tr) over all possible response times.

When the previous equation for FX(x|t,tr) is substituted into this integral, we obtain the
following equation:

Mathematically, this equation answers the response-time question. However, the equation
leads to a practical problem. How does one calculate the integrals? To do a double integral
numerically requires a great amount of calculation, on the order of N 2, where N is the
number of intervals used for each integral.

One approach is to calculate the inner integral over response time as an analytic result,
under the assumption that both fp(tp) and fT(t) are triangular PDFs. That reduces the amount
of numerical integration by a factor of N. MITRE staff member Brian Schmidt has derived
equations to do such calculation. His results are sophisticated, elegant, and too complex to
describe in detail. They are attached as an addendum at the end of this Appendix.

Another approach, requiring a little less computation, is to approximate Frp(t-x/v|tr) with
the first three terms of a Taylor Series so that the integral can be approximated analytically in
terms of the mean and variance of the response time. This simplified approach is sketched
here. It produces results similar to those of the analytic equations in many cases. However, it
makes large errors in other cases, especially when the standard deviation of the response time
is large relative to the mean.

The mean and variance of the response time T are calculated as follows:

The first three terms of the Taylor Series expansion, written in terms of the mean and
variance of response time, are as follows:
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Integrated over response time t, the second term always integrates to zero. The third term
integrates to one half the variance of the response time multiplied by the second derivative
shown. The second derivative, readily calculated from the equation for Grp(trp|tr), has a
simple form:

When the approximation for the integral over response time is substituted into the basic
equation for FX(x|tr), we obtain the following equation, which involves just one numerical
integration. It is an approximation to the answer to the modeler s third question, Given the
target was observed pausing, how far might it move from its observed location by the time
we can get a strike there to attack it?  While the equation may appear formidable, it is
straightforward to compute:

As cautioned above, MITRE staff should analyze the accuracy of this approximation,
using the analytic approach, prior to using it in specific analyses. It will tend to be most
accurate when the standard deviation of the response time is small relative to the mean. That
may not be a typical situation.

B.6  Capture Model
The modeler s response-time question has a corollary: Will the target be within the

engagement envelope  or acquisition basket  of the strike sortie we send, as it arrives?  In
other words, what is the probability that the target is captured by the strike sortie s
acquisition system at the time the sortie arrives?

In the simplified concept of target engagement that is part of MITRE s existing high-
level STS analyses, it is assumed that if the target is still within some specific distance s of
its reported first-observed location then it is vulnerable to attack when a sortie arrives, with
some probability of success. However, if the target is outside the required distance, it cannot
be successfully attacked.
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The capture question involves not only the distance the target might have moved, but also
the geolocation error of the reported location. That is, the strike will be sent to the
coordinates determined from the observation, but they might have been in error to some
extent.

To date MITRE staff have not modeled the combination of distance moved and
geolocation error to determine the probability that the target is within the distance s.
Accordingly, we can currently answer the question only as if there is no geolocation error.

Let us define the engagement envelope for a specific strike platform/weapon combination
as the distance s. Let us also say that if the target has moved any distance less than or equal
to s then it is within the engagement envelope and will be captured by the strike sortie. Then
in the special case where there is no geolocation error, the probability PC that the target is
captured is written as follows:

Note that this probability is dependent on tr. The smaller tr, the higher the probability will
be, in general.

B.7  Summary
For many sensor-to-shooter (STS) systems, significant delay occurs between sensing a

mobile ground target and engaging it with a weapon system. One major purpose of new
investment in STS systems is to shorten the delay, so that the mobile target is more likely to
be found and engaged successfully.

To enable analysis of such investments, MITRE has derived a model of target movement.
The model represents mobile ground targets in their race against the imagery-based STS
system.

Target movement involves the interaction of complex probabilistic phenomena.
Accordingly the target movement model has been derived from explicit probabilistic
assumptions using basic probability calculus.

The derived model provides the analyst with probability distributions for

• The pause that remains after a mobile target is observed pausing;

• The distance the target may have moved at any specific time after it is observed; and

• The distance the target may have moved when a strike sortie arrives to attack it,
where the time of arrival is itself a random variable.

These probability distributions are calculated from more basic probabilistic models of
target movement time, pause time, and velocity, as well as from the revisit time used for

)|( rXC tsFP =
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managing the surveillance and reconnaissance of targets. The distributions are used to
calculate the probability that a target observed pausing will be within engagement range
when a sortie, launched on the basis of the observation, arrives to attack the target. This
involves a model of the sensor-to-shooter response time.

The derived probability distributions have been implemented in software. They exist as
Visual Basic code and as Analytica models.

B.8  Addendum from Brian Schmidt
Analytic Approach to Computing the Probability of Target Escape
by Brian K. Schmidt
6 October 1999

This note presents an analytic approach for taking into account the sense and respond
time  distribution in the CAPE target movement model. The formulas presented here allow
one to compute the probability of target escape exactly in the case where the sense and
respond time  distribution is triangular.

B.8.1  Notation

Given any probability density function f(t), we denote the cumulative distribution
function (CDF) by F(t). Iterated cumulative distributions may then by defined as follows:

( ) ( )∫
∞

−=
t

-

nn dx xF      tF )1()(

where F 
(1)(t) = F(t).

B.8.2  Properties of the Triangle Distribution

A triangle distribution is specified by giving three parameters:

a = minimum value

m = mode

b = maximum value

From these values, all the properties of the distribution may be calculated. It is useful to
define the quantities below:

h = height of the triangle

= ab −
2
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A = m — a = left side of base of triangle

B = b — m = right side of base of triangle

α = h/A

β = h/B

µ = mean value of the random variable

=
3

bma ++

k2 = ( )( )2B  AB  A ++2
36
1

k3 = ( )( )( )22B  5AB  ABA ++− 2
1620

1 2

The quantities k2 and k3 can be understood by relating them to the central moments:

µn = nth central moment

= ∫
∞

∞−

− dt )t(f)t( nµ

µ2 =    22k  (variance)

µ3 = 36k− (related to skewness)

Using these quantities, we can give formulas for the density and iterated cumulative
distribution functions.

Interval f(t) F(t) F 
(2)(t)

-∞ < t < a 0 0 0

a < t < m α (t — a) ( )2
2
1 at −α ( )3

6
1 at −α

m < t < b β (b — t) ( )2
2
11 tb  -  −β ( ) ( )36

1 tb     t −+− βµ

b < t < ∞ 0 1 ( ) t µ−
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Interval F 
(3)(t) F 

(4)(t)

-∞ < t < a 0 0

a < t < m ( )4

24
1 at −α ( )5

120
1 at −α

m < t < b ( ) ( )4

24
1

2
1

2 tb  -   t  k 2 −−+ βµ ( ) ( ) ( )5120
1

6
1

23 tb     t  tk  k 3 −+−+−+ βµµ

b < t < ∞ ( )2 t  k µ−+ 2
1

2 ( ) ( )   t  tk  k 3µµ −+−+ 6
1

23

B.8.3  Remaining Pause Time

In the CAPE target movement model, we are given a probability distribution for the
target pause time. The remaining pause time  is defined to be the amount of pause time that
remains after the target has been detected by the sensor.

Define:

tr = sensor revisit time

fp = density function for pause time

frp = density function for remaining pause time

The properties of frp can be derived from those of fp. (The basic formulas are derived in
the writeup of the CAPE target movement model.) To summarize the results, it is convenient
to introduce the following constants:

cn = )()(
r

n
p tF

γ =
2

1
ctr −

Then the iterated cumulative distribution functions for remaining pause time are written as
follows, for two cases:

Case 1: When  t > 0:

)(tFrp = ( )2prp c - tF  -  ttF )()( )2()2( +γ

)()2( tFrp = ( )tc - c - tF  -  ttF 23prp )()( )3()3( +γ

)()3( tFrp = ( )2
2
1)4()4( )()( tc - tc - c - tF  -  ttF 234prp +γ
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Case 2: When  t ≤ 0:

)()( tF n
rp = 0

B.8.4  Probability of Escape

After a target is detected by the sensor, a certain amount of time goes by before a weapon
arrives to engage the target. We call this the sense and respond time.  If this time is too
long, the target may start moving before the weapon arrives and may get far enough away
from its initial position that the weapon cannot find it. We call this escape.  (This is not the
same thing as survival ; the target has a chance of surviving even if it does not escape,
because the weapon may engage the target yet fail to destroy it.)

Define:

fs = density function for sense and respond time

x = distance target must move in order to escape

v = target speed

In these calculations, we assume that x and v are given constants and that, in effect, the
target does not pause a second time after it begins moving. (These assumptions can easily be
relaxed, as is shown in the complete writeup of the target movement model.) It follows that:

Pesc = probability of escape

= ∫
∞

−
0

dt )v/xt(F )t(f rps

We will now analyze the case where the sense and respond time is given by a triangle
distribution. In this case:

Pesc = ∫
∞

−
0

dt )v/xt(F )t(f rps

= ( ) ( )∫∫ −−+−
s

s

s

s

b

m
rpss

m

a
rpss dt )v/xt(F tb    dt )v/xt(F a-t βα

To evaluate these integrals, note that, for any constant k:
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( )∫ − dt )v/xt(F k-t rp

= ( ) parts)by  ng(integrati         dt )v/xt(F   -   )v/xt(F k-t (2)
rp

(2)
rp ∫ −−

= ( ) )v/xt(F   -   )v/xt(F k-t (3)
rp

(2)
rp −−

For notational convenience, define:

h(t,k) = ( ) )v/xt(F   -   )v/xt(F k-t (3)
rp

(2)
rp −−

Then:

Pesc = [ ] [ ] s

s

s

s

b

mss

m

ass )b,t(h   -  )a,t(h βα

= ( ) ( ))b,m(h-)b,b(h   -  )a,a(h-)a,m(h ssssssssss βα

This expression may be easily evaluated using the formulas developed in the previous
sections. In particular, this expression goes up as high as the third cumulative distribution for
the remaining pause time; this may be computed using distributions going up to the fourth
cumulative distribution of the pause time. If the pause time also satisfies a triangle
distribution, these distributions are given by the formulas presented earlier in this note.
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Glossary

Analytic This term denotes that answers to questions about C4ISR systems are developed
through the use of algebra and calculus and, with few exceptions, without the use
of random number generation and statistical sampling methods. Mathematical
equations and tables represent the characteristics (or properties) of the C4ISR
system; they make up a model of the system.

CAPE An acronym for C4ISR analytic performance evaluation.

C4ISR Denotes an integrated system of command, control, communications, computers,
intelligence, surveillance, and reconnaissance. It connotes a set of questions to
answer about the total system, not merely about one component of the system.
However, in our studies we sometimes focus on a single component of the system
(e.g., communications) to determine its effects on the total system s performance.

Dynamic system
A system that is modeled and analyzed in terms of how it changes with time. For
a dynamic probabilistic system  the modeling and analysis involve the use of
probabilities.

Measure of effectiveness (MOE)
Denotes the quantification of a military outcome. The MOE is used to estimate
day-to-day or ultimate success in conducting military operations. The outcome
could be objective (percentage of enemy targets destroyed) or subjective (strength
of the enemy commander s will to fight).

Measure of performance (MOP)
Denotes the quantification of the outcomes of intermediate processes, such as
surveillance and targeting, that combine to produce military outcomes. The
intermediate outcomes could be objective (photographs taken per hour) or
subjective (strength of the enemy s morale).

Model A set of propositions or equations describing in simplified form some aspects of
our experience. 30

Performance evaluation
Connotes that the main questions posed in studies that use CAPE models are
questions concerning the performance of C4ISR systems: how the systems
interact, what affects their performance, how the systems can be improved, and
how different systems would perform against the same criteria.

                                                  

30 Web Dictionary of Cybernetics and Systems
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Probabilistic analysis
An analysis that is based in part on probabilities. Such analysis may be wholly in
terms of probability calculus, or it may involve the use of random numbers and
statistical sampling (e.g., Monte Carlo analysis). A probability is a number used
to quantify and communicate one’s confidence (belief) that a specific result is or
will be true for an uncertain event, or that a specific decision outcome will result
from a decision. Low numbers express low confidence, and high numbers express
high confidence.

Simulation
An analytical process that constructs a system s state history in chronological
order. Like a movie, a state history describes the condition of the system,
including the condition of its subsystems, at each of a chronological succession
of instants. 31

                                                  

31 G. W. Evans, II, G. F. Wallace, G. L. Sutherland, Simulation Using Digital Computers (Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1967), p. 5.


