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ABSTRACT 
 
A technique to form super-resolved 3D Synthetic Aperture Radar (SAR) images from a limited number of elevation 
passes is presented in this paper. This technique models the environment as containing a finite number of isotropically 
radiating, frequency independent point scatterers in Additive White Gaussian Noise (AWGN), and applies a hybrid 
super-resolution method that yields the Maximum Likelihood (ML) estimates of scatterer strengths and resolves their 
locations in the data deficient dimension well beyond the Fourier resolution limit. 
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1. INTRODUCTION 
 
In most Synthetic Aperture Radar (SAR) applications, the available radar bandwidth and azimuthal aperture are 
sufficient to form high resolution 2D SAR images. Resolution in the third dimension, however, can be severely 
impaired by operational considerations that limit the available number of target to platform orientations. Modeling the 
environment as containing a finite number of isotropically radiating, frequency independent point scatterers in Additive 
White Gaussian Noise (AWGN), a hybrid super-resolution method is applied that yields the Maximum Likelihood (ML) 
estimates of scatterer strengths and resolves their locations in the data deficient dimension well beyond the Fourier 
resolution limit. 
 
A series of 2D SAR images taken from different elevation passes is registered to yield samples of the limited frequency 
domain data at each 2D range/cross-range resolution cell. Processing is done on an individual 2D cell-by-cell basis to 
produce the super-resolved 3D SAR image. Using the above scattering model, a constrained gradient search is 
performed to minimize a mean square error (MSE) cost function to resolve scatterer locations and linearly estimate the 
scatterer strengths. In the case where the noise environment is accurately represented by AWGN, the linear estimator of 
scatterer strengths yields the ML estimates. 
 
This technique is demonstrated with a simple 1D example and 3D XPATCH data. 
 

2. THE DECOUPLED LEAST SQUARES TECHNIQUE 
 
Here, a technique to super-resolve scatterers at a particular range and cross-range location in height out of the slant 
plane is presented. First, the environmental model and assumptions are set forth, then the approach to the nonlinear 
problem of resolving an unknown number of scatterers of unknown strengths and locations is described. 

2.1 Environmental Model 
It is assumed that at a particular range and cross-range point there are a finite number of isotropically radiating, 
frequency independent point scatterers dispersed spatially in height out of the slant plane. With the range/cross-range 
notation suppressed, the frequency domain data model at a range/cross-range cell may be written as: 
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where z is the dimension of height out of the slant plane, ωz is spatial frequency in (rad/m), az is the complex scattering 
amplitude of the kth scatterer, zk is the location of the kth scatterer, “*” denotes scalar complex conjugation, and “H” 
denotes the vector Hermetian operator. 
 
The unknown parameters to estimate are the number of scatterers, K, the scatterer strengths a = {a1, …, aK}, and their 
locations z = {z1, …, zK}, such that the model matches the available data samples at ωz = {ωz1, ωz2, …, ωzM }, in a least 
squares sense. i.e.,  
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is minimized. 
 
A direct approach to solve this problem would be to jointly estimate these parameters using a gradient-based search 
method. But because the minimization of this multi-dimensional cost function is a highly nonlinear problem, these 
techniques can be very unstable and are prone to converging on incorrect solutions at local extremma of the cost 
function. 
 
More common approaches estimate the contributions from the individual scatterers one at a time and subtract them from 
the data in an iterative fashion. Examples of such deconvolution techniques are the CLEAN and RELAX algorithms. 
 
Although these techniques can yield useful results, they do not always perform well when the point spread function does 
not accurately represent the scattering phenomena taking place. The sensitivities of these methods to the choice of point 
spread function motivate the development of a more robust technique to estimate the scatterer amplitudes and locations. 
We attempt to simplify the problem by decoupling the scatterer strengths with their locations, and establishing a hybrid 
(linear and non-linear) formulation. 

2.2 Decoupled Least Squares Estimation 
In this section, a technique to super-resolve scatterers at a particular range and cross-range location in height out of the 
slant plane is described. Building on the model and previously stated assumptions, the nonlinear problem is simplified 
by decoupling the scatterer strengths from their locations to solve a simpler series of hybrid (linear and non-linear) 
problems. 
 
One approach to this problem is to assume a large number of scatterers, K, and use a finely spaced grid of allowable 
scatterer locations. This allows the vectors v(ωz1), v(ωz2), …v(ωzK) to be used as known quantities, and the estimation of 
scatterer amplitudes at these locations becomes a linear problem. 
 
Modeling the frequency domain data samples as: 
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where n is a zero-mean complex Gaussian random vector with uncorrelated components, the maximum likelihood 
estimate of the complex scatterer amplitudes is: 
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(4) 

The limitation of this approach is that for a grid of many finely spaced scatterers, the matrix VVH may not have full rank 
and be invertible. 
 



The Decoupled Non-Linear Least-Squares Estimation assumes that K is a small number (on the order of, say, 5) and 
assumes the locations of the K scatterers are confined to a finely spaced grid in z, with a specified minimum separation 
between them. For each possible combination of K unique scatterer locations, the amplitudes, MLa , are computed and 
the mean square error between the model and the available data is evaluated. After evaluating this exhaustive set of 
possible solutions, the scatterer configuration and respective amplitude estimates that yield the minimum mean square 
error are chosen as the final solution. 

ˆ

 
A block diagram of the decoupled non-linear least-squares estimation procedure is shown below in Figure 1. The 
implementation details are provided in Appendix A. 
 

 
Figure 1. Decoupled Least Squares Estimation Procedure 
 

3. NUMERICAL RESULTS 
 
The performance of the Decoupled Non-Linear Least Squares estimation procedure has been demonstrated with a 
simple 1D example and with 3D XPATCH data. 

 1D Example 
The technique is demonstrating using a simple 1D example with received data that matches the model exactly. 
 
Consider a case where a 5-meter region in z is to be imaged and 10 frequency samples spaced at ∆ωz = 2π/5 (rad/m) are 
given, yielding a Fourier spatial resolution of ∆z = 0.5m. The environment consists of 4 point scatterers in white 
Gaussian noise at locations z = {2.0m, 2.4m, 3.5m, 4.25m} and with corresponding amplitudes a = {10, 10, 0.5, 7}. The 
noise samples are zero-mean complex Gaussian and uncorrelated with variance σ2 = 1. The true scene is depicted in 
Figure 2. 
 
The data is processed assuming that the number of scatterers is K = 3. The Decoupled -Linear Least Squares estimation 
procedure is applied to the data according to the details provided in the Appendix. The scatterer locations were 
initialized to be the K Inverse Discrete Fourier Transform (IDFT) bins that contained the strongest amplitude estimates 
(bin sizes were chosen to be equal to the data’s 0.5-m spatial resolution): z0 = {2.0m, 2.5m, 4.5m}. A 64-point IDFT of 
the data is shown in Figure 3 for reference along with the initial scatterer location estimates. 
 
The minimum spacing of scatterers was chosen to be 0.125m which is one-quarter the Fourier resolution. As can be 
seen in the 64-point IDFT of Figure 3, the two closely spaced scatterers are indistinguishable from one another due to 
the lack of sample support. 
 
Figure 4 (top) shows the estimated scene as a result of an exhaustive search of the cost function. The scatterer location 
estimates are near their true values, but contain errors. This is due to the finite scatterer grid spacing of 0.125m of on 
which the search was performed. The MSE cost function is plotted versus scatterer configuration index in Figure 5, and 
the detected minimum is highlighted by the dashed line. When plotted against the single dimension of scatterer 
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configuration index, the cost function is multi-modal and nearly impossible to minimize using conventional gradient 
based search methods. When plotted against the K separate dimensions of the individual scatterer locations as in Figure 
6, we see the cost function has a clear global minimum without nearby extremma. Figure 7 depicts the cost function of 
Figure 6 with the minimum exposed. This cost function structure suggests we may be able to use a gradient descent 
algorithm to update the scatterer location estimates and reduce the number of cost function evaluations. 
 
Figure 4 (bottom) shows the scene estimate as a result of the gradient-based search of the cost function. In this particular 
example, the scatterer location estimates for the gradient search method also contain a small amount of error. Sources of 
error may include imperfect function minimization and overestimation of minimum scatterer separation. 
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Figure 2. True Scene 
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Figure 3. 64-Point IDFT Estimate of Scene 
 

 
Figure 4. Scene Estimates. (top) Exhaustive (bot) Gradient 
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Figure 5. MSE Cost Function vs. Scatterer Configuration 
Index. Dashed Line Represents Location of Minimum 
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Figure 6. MSE Cost Function vs. Individual Scatterer 
Locations 
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Figure 7. MSE Cost Function w/ Exposed Minimum 

3.2 Processing 3D XPATCH Data 
The Decoupled Least-Squares technique was tested on simulated SAR data of an M113 Troop Carrier generated using 
XPATCH and compared to the output of a 64-point IDFT. 
 
3.2.1 Data Collection 
The radar center frequency and bandwidth were 10.0 
GHz and 2.95 GHz, respectively. The video phase 
history was collected for 9 evenly spaced elevation 
passes between 28o and 30o at an azimuth of 20o and 
infinite standoff range, as depicted in Figure 8. Each 
elevation pass yields a 256x256-pixel SAR image 
sampled at twice the 2” (5.08cm) resolution in range 
and cross-range using HH polarization. 
 

 
Figure 8. Data Collection Geometry 
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3.2.2 Data Format & Pre-Processing 
In order to use the same processing in ωz that was employed in the previous example, the available frequency domain 
data needs to be put into the proper format. This is done by first transforming the collected data into the orthogonal 
dimensions of range, cross range and ωz, and then processing in ωz on range cell-by-cross range cell basis. 
 
The available frequency domain data falls onto a spherical raster as highlighted in Figure 9. The dimensions (x’, y’, z’) 
↔ (ωx’,ω y’,ω z’) represent a coordinate system rotated relative to the reference Cartesian system used in the data 
collection. For simplicity, we perform our processing in the rotated and shifted (x,y,z) ↔ (ωx,ω y,ω z) coordinate system, 
where (x,y,z) correspond to the dimensions of range, cross-range, and height out of slant plane, respectively. 
 
To transform the data into the dimensions of (x,y,ωz), a two-step process is followed: First we form a set of high-
resolution 2D SAR images from the data taken at each elevation pass1. We subsequently interpolate these images to 
points in the common (x,y,ωz) coordinate system as shown in Figure 10. The individual 2D SAR images are provided in 
the Appendix for reference. Note that sample spacing in ωz is a function of the range cell being processed, as well as the 
length of the region we may image in z and the Fourier resolution. These are given by: 

                                                           
1  Complex SAR Images were formed at individual elevation passes by interpolating the data from a polar to a Cartesian raster, 

applying a 2D Kaiser window for sidelobe reduction and performing an Inverse Fast Fourier Transform (IFFT). Kaiser windows 
with peak sidelobe levels of -40 dB were used and the images were (256x256) in size sampled at 2x the Nyquist Rate. 

 
Figure 9. Frequency Domain Data Format 
 

 
Figure 10. Data Interpolation Scheme 

( ) ( ) ( )( )
M

N
i

N
BWf

c
id oorangebins

rangebins
cz

maxmin tantan
2

122)(
φφφφ

πω
−−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+=  

(5) 

( ) ( )id
iL

z
z ω

π2
=  (6) 

( ) ( )
M

iL
iz z

Fourier =∆  
(7) 

where 
 
 i Index of the range bin being processed and increases with range from the radar, 0 ≤ i ≤ 

Nrangebins-1 
 Nrangebins Total number of range bins being processed 
 c Speed of light (m/s) 
 fc Radar center frequency (Hz) 
 BW Radar bandwidth (Hz) 
 M Number of elevation passes 
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 φo Mean elevation angle of passes (rad) 
 φmin Minimum elevation angle of passes (rad) 
 φmax Maximum elevation angle of passes (rad) 
 Lz(i) Length of the unambiguous region that may be imaged in z at the ith range bin (m) 
 ∆zFourier(i) Fourier resolution in z at the ith range bin (m) 
 
3.2.3 Data Processing 
Once the frequency domain data has been placed in the 
appropriate coordinate system as described above, we 
then use the gradient-based decoupled least squares 
technique at each range/cross-range index. 
Additionally, we incorporate scatterer location 
constraints as a function of range. The scatterer 
locations estimates are constrained to lie between the 
ground and a distance Lz(i) above the ground. Figure 11 
illustrates the change in ground plane location as a 
function of range. 

 
Figure 11. Ground Location as a Function of Range 

The minimum and maximum value for a scatterer 
location in z at the ith range bin may be expressed as: 
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where 
 
 I Index of the range bin being processed and increases with range from the radar, 0 ≤ i ≤ 

Nrangebins-1 
 Nrangebins Total number of range bins being processed 
 dRpix Range resolution per pixel (m) 
 φo Mean elevation angle of passes (rad) 
 Lz(i) Length of the unambiguous region that may be imaged in z at the ith range bin (m) 
 
In processing the XPATCH data, the number of scatterers was assumed to be K = 3, and we apply the Decoupled -
Linear Least Squares estimation processing according to the details provided in the Appendix. As before, the scatterer 
locations are initialized to be the K Inverse Discrete Fourier Transform (IDFT) bins that contained the strongest 
amplitude estimates. Bin sizes are chosen to be equal to the data’s Fourier resolution at the range cell being processed, 
∆zFourier(i). The minimum scatterer spacing constraint is set to be one-quarter the Fourier resolution. 
 
3.2.4 Results 
 
Figures 12-17 show the 3D SAR images of the DLS technique and direct Fourier inversion overlaid with the CAD 
model. The vertical smearing normally present in the Fourier-inversion image has been suppressed by picking the peak 
value of a 64-point IDFT at each range/cross-range cell. Points that capture 75% of the total energy in the images are 
displayed. 
 
The DLS image contains more spurious points than the (modified) Fourier-inversion image, but highlights the important 
features of the troop carrier, with more points concentrated around most scattering centers. 
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Figure 12. DLS Estimates w/ CAD Model, General View 

 
Figure 13. Fourier Estimates w/ CAD Model, General View 

 
Figure 14. DLS Estimates w/ CAD Model, Left Side View 

 
Figure 15. Fourier Estimates w/ CAD Model, Left Side View 
 

 
Figure 16. DLS Estimates w/ CAD Model, Right Side View 
 

 
Figure 17. Fourier Estimates w/ CAD Model, Right Side 
View 

 

 



SUMMARY 
 
High-quality 3D SAR image formation can be severely impaired by operational considerations that limit the available 
number of target to platform orientations. The Decoupled Least Squares (DLS) technique to form super-resolved 3D 
SAR images from a limited number of elevation passes has been presented in this paper. 
 
In the ideal case where there is no or little data and model mismatch, the DLS technique resolves point scatterers well 
beyond the Fourier resolution limit. In a more realistic environment, the DLS technique appears to highlight key object 
features better than (modified) Fourier-inversion, but in some cases yields spurious points as well. 
 
Topics for future consideration are comparison of the DLS technique to compare to CLEAN and RELAX algorithms, 
and incorporation of more accurate scattering models. 
 

APPENDIX A: IMPLEMENTATION DETAILS  
FOR DECOUPLED LEAST-SQUARES ESTIMATION 

 
The Decoupled Non-Linear Least Squares Estimation procedure has four main stages of processing, as shown in Figure 
1: i) Initialization of scatterer locations; ii) Scatterer strength estimation; iii) MSE computation; and iv) Update of 
scatterer location. The implementation of these stages for the examples presented in this document is described here. 
 
A.1 Scatterer Location Initialization 
The scatterer locations are initialized to be the bin centers (at the Fourier resolution) of the K largest IDFT values. For 
example, if we have N frequency domain samples of data with a known Fourier spatial resolution of dz meters, we 
choose the zb for the K largest values of: 
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where the bin center zb = zi + b⋅dz, b = 0,…,N-1, and {S(ωz,0), S(ωz,1), …, S(ωz,N-1)} are the N samples of frequency 
domain data. 
 
A.2 Scatterer Strength Estimation 
Building on the environmental model and notation defined in equations (1) and (3), we assume that the data may be 
modeled as: 

naVy += H  (A.2) 

where n is a zero-mean complex Gaussian random vector with uncorrelated components, and V is constructed from our 
known frequency sample points and our K estimated scatterer locations. We then use maximum likelihood estimator for 
the complex scatterer amplitudes: 
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ML  
(A.3) 

A.3 MSE Computation 
The MSE between our current model and the data is computed as: 
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where y is the frequency domain data, is constructed from our known frequency sample points and our K current 
estimated scatterer locations, and  contains our K current estimates of the complex scatterer amplitudes. 
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A.4 Scatterer Location Estimation 
The scatterer location estimates are updated using a constrained cost function minimization technique from 
MATLAB®’s Optimization Toolbox called fmincon. The technique uses a Sequential Quadratic Programming (SQP) 



method that forms a quadratic approximation to the Lagrangian function. Our constraints were chosen such that all 
scatterers lie within the region in z that we are imaging (of length Lz), and z1 + ε < z2, z2 + ε < z3, …, zK-1 + ε< zK, where 
ε is a minimum scatterer separation. Figure A-1 depicts the three major steps per iteration of the algorithm. 
 

 
Figure A-1. Cost Function Minimization 
 

APPENDIX B: ELEVATION PASS 2D SAR IMAGES 
 
The SAR images formed from data taken at the individual elevation passes are presented in Figures B-1 and B-2. The 
images shown represent the magnitude of the complex SAR data. 
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Figure B-1. 2D SAR Images from Elevation Passes φ = 28o-28.75o
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Figure B-2. 2D SAR Images from Elevation Passes φ = 29o-30o
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