
PATHMON, A Methodology for Determining
Available Bandwidth over an Unknown Network

D. Kiwior, J. Kingston and A. Spratt

The MITRE Corporation
202 Burlington Road

Bedford, MA 01730-1420

Abstract-Interest in measuring available bandwidth has

increased in response to the need for fast, accurate, non-intrusive
estimation of current network conditions. Several methods have
been proposed in recent years with varying degrees of success.
This paper presents the details of the algorithm and
implementation of PathMon, an active probe method which
requires no prior knowledge of the network and no management
control over the network to provide an end-to-end measurement
of available bandwidth. In comparison to other available
bandwidth methods, experiments show that PathMon is more
accurate, and converges more quickly with less overhead.

I. INTRODUCTION

In recent years, interest in estimating the available
bandwidth of a network path has been motivated by many
network applications including QoS, overlay networks,
adaptive and grid applications. QoS functions of admission
control [1] and validation of service level agreements need a
fast, minimally complex method to evaluate network
performance [2, 3]. Routing decisions to support QoS and
overlay networks are optimized by knowledge of resource
availability in the network. Adaptive applications need to
know current network conditions in order to modify their
output and maximize network use [4]. For optimal
performance, applications for grid computing and distributed
computing must consider available bandwidth when selecting
hardware resources [5, 6]. Since available bandwidth is a
dynamic quantity, these applications require a fast, accurate
measurement of available bandwidth. In addition, the
measurement must be lightweight and non-intrusive to prevent
additional network load. To address these needs, a variety of
available bandwidth estimation tools, including pathload [7],
pathChirp [8], and Initial Gap Increasing (IGI) [9] have been
developed.

This paper presents PathMon, a new, more efficient method
of estimating available bandwidth. Similarly to the tools listed
above, PathMon uses a packet train of probe packets. In
contrast to these tools, PathMon uses a single train with a
simple statistical evaluation that eliminates insignificant data.

In comparison to the existing tools listed above, PathMon
has been show in experiments to converge to an estimate of
available bandwidth with less than 12% relative error. The
PathMon algorithm also requires less overhead than the other

methods, with 41 Kbytes of traffic and an average latency of
0.19 seconds. PathMon satisfies the need for a
computationally simple method to provide a fast, accurate
available bandwidth measurement that can be used for critical
short-term decisions.

II. RELATED WORK

The term bandwidth has traditionally referred to a static
measure of capacity, the maximum amount of data that can be
transmitted over a link or path. Available bandwidth is a more
difficult quantity to measure since it is a dynamic quantity, the
amount of traffic that can be transmitted over a link or path,
given current traffic conditions. For an end-to-end path
composed of multiple links, the path’s bandwidth is limited by
the link with the least capacity, referred to as the bottleneck or
narrow link [7]. While the narrow link provides an upper
bound of the available bandwidth of the path, it may not
correspond to the tight link, i.e. the link that has the least
available bandwidth under current conditions.

Available bandwidth has been successfully measured with
packet train probes. As the probe packets pass through
congested links, they are delayed by cross traffic. In theory,
when the probe train’s transmission rate exceeds available
bandwidth, a queue builds up in the network devices. This
results in increased interpacket intervals at the receiver in
comparison to the interpacket intervals at the source. In reality,
due to bursty traffic and network devices, queuing delays may
be seen even without congestion and may not increase
monotonically in the presence of congestion. Analysis of the
interpacket intervals at the receiver must take this queuing
variation into account to identify the true point of congestion,
from which available bandwidth can be calculated.

Pathload sends multiple trains (fleets), each train consisting
of 1200 same-size packets, with the same interpacket time
gaps. After each fleet is sent, statistical evaluation of the
interpacket time gaps at the destination compared to the
interpacket time gaps at the sender determines whether the
trend of the interpacket time gaps in that fleet has been
increasing, non-increasing, or undeterminable. The
transmission rate for the next fleet is adjusted based on the
trend of the current fleet until the results converge. Pathload’s
use of a large number of packets allows statistical analysis to

SBORG
Text Box
Approved for Public Release; Distribution Unlimited
Case #04-0110

eliminate insignificant queuing delays but increases the
network load.

Several tools that avoid the high costs of multiple fleets have
followed pathload. The method proposed in [10] transmits a
single packet train of ICMP probe packets with decreasing
time delays between each packet so that each packet requires a
higher bandwidth than the previous. The algorithm presented
in [10] compares the sending curve (transmission time of the
probe packet vs. packet number) to the receiving curve
(reception time of the probe acknowledgement vs. packet
number). Using trend lines to compensate for fluctuations in
the receiving curve, the point where the receiving curve
diverges from the sending curve marks the congestion point,
from which available bandwidth can be calculated. The
pathChirp and Initial Gap Increasing (IGI) algorithms
incorporate a statistical evaluation of the destination
interpacket gaps to determine the true point of divergence. In
addition, pathChirp and IGI use UDP probe packets rather than
ICMP packets, which may be dropped or rate-limited at
network devices. PathChirp measures the destination’s
interarrival times and identifies regions where the time
intervals show an increasing trend for an extended period of
time. The regions are statistically evaluated to determine the
available bandwidth. IGI assumes that the bottleneck
bandwidth of the path is known and further assumes that the
bottleneck link is also the tight link, with ambiguous results
when this is not the case. The IGI algorithm first measures
competing traffic by calculating the difference between source
interpacket gaps and destination interpacket gaps. Available
bandwidth is then calculated by subtracting competing traffic
from the bottleneck bandwidth.

Each method has disadvantages in satisfying the
requirements of fast, accurate and non-intrusive. Pathload has
high overhead in terms of convergence time and probing
traffic. PathChirp’s traffic overhead is less intrusive than
pathload’s but still substantial. In addition, pathChirp’s
computationally complex algorithm does not converge quickly.
IGI’s assumptions that bottleneck bandwidth is known and that
the bottleneck bandwidth corresponds to the narrow link limits
its usefulness.

III. PATHMON’S BANDWIDTH MEASUREMENT ALGORITHM

To measure available bandwidth we use an active
measurement method where a series of time stamped UDP
packets are injected into the network from the monitor
application and received at the agent application. The
intermediary network nodes between the monitor and agent
applications are considered to be a “black box” for the purpose
of bandwidth measurement. Thus the available bandwidth
measurement is a measure of aggregate bandwidth available to
the application from “end to end”.

The PathMon algorithm measures one-way delay from the
monitor application to the agent application. In general, if
there is no congestion in the network, the interpacket intervals
seen at the agent should be the same as those at the monitor.

However, in a congested network each packet received at the
agent will show increasing delay. By varying the bandwidth
requirements of the packets sent, the algorithm uses this
property to identify a bandwidth requirement that causes
congestion in the network.

This model, however, is too simplistic for real networks
where processing overhead and device characteristics can
cause variations in delay. This “jitter” will necessarily lead to
inaccuracy in the measurement. To counteract this inaccuracy
our algorithm uses a two step measurement. The first step
measures jitter and allows for statistical analysis of network
delay. The second step calculates the delay measurement using
cumulative packet delay intervals.

A. Jitter Measurement
During the jitter measurement stage, the monitor application

sends a series of NJ equally spaced, same size packets. The
rate at which this “train” of packets is sent should be equal to
the lower bound of the bandwidth measurement range. The
number of packets sent (NJ) is application dependent and
should be large enough to provide a good statistical sample.
However, if NJ is too large, the network’s traffic load will
increase as will the total measurement time. The agent
application records the interarrival time gap of each of the NJ
packets. This information is then used to calculate the mean
interarrival jitter and the standard deviation.

B. Bandwidth Measurement
The available bandwidth is measured by sending NB time

stamped packets of equal size and decreasing time interval
from the monitor application to the agent application. The
decreasing interpacket interval corresponds to increasing
instantaneous bandwidth requirement for each packet. This
creates a train of packets of increasing bandwidth requirements
evenly spaced between a lower and upper bound. The value of
NB is application specific and should be chosen such that it
provides sufficient intermediary bandwidth steps to reach the
desired resolution. The instantaneous bandwidth requirement
(B) for a packet can be calculated from its size (s) divided by
the time until the next packet is sent (tNP), as

B = s / tNP.

It should be noted that the monitor application could have also
been implemented by varying the packet size and leaving the
interpacket interval constant without changing the result.

The algorithm is based on identifying the point of
divergence between the interpacket delays measured at the
agent with those of the monitor. Fig. 1 illustrates the difficulty
in determining the point of divergence when small delay
variations result from context switches or queuing delays
unrelated to congestion. To detect significant interpacket
interval variations more easily, PathMon records all time
values for packets in the train in terms of cumulative time,
shown in Fig. 2.

Figure 1. Interpacket Delay Intervals

Figure 2. Cumulative Interpacket Delay Intervals

C. Measurement Results Analysis
The first step in analyzing the results is to check the

endpoints to make sure they are correct. Specifically the lower
bound endpoints must not be congested, while the upper bound
endpoints must be congested. If both of these conditions are
not met then the actual available bandwidth point falls outside
the measurement range.

If the lower bound endpoints are congested, then the actual
available bandwidth point is below the lower bound of the
measurement and can not be determined from the measurement
data. To check this, the algorithm examines the timestamps
for the packets that were sent in the jitter measurement stage.
If the delay of these packets is increasing over the whole
measurement, then the lower bound is congested.

To check the upper bound end points, we use the jitter
statistics that were calculated in the jitter measurement stage.
The algorithm first checks that the delay for the last packet in
the train is greater than the average jitter plus 2 standard
deviations. If this is true the last M packets of the train are
checked to make sure the delay is increasing over their range.
If these conditions aren’t met then the actual available

bandwidth point is greater than the upper bound of the
measurement.

If all the end point conditions are met, then the available
bandwidth point lies within the measurement range. If not, the
measurement should be repeated with a new set of boundary
conditions. Once the end point conditions are met, the
algorithm identifies the congestion point by starting at the
upper bound endpoint and traversing backwards over the
timestamp information for each packet in the train comparing
the measured delay to the measured jitter statistics. The
congestion point corresponds to the packet that has a time
difference greater than the average jitter but is preceded by a
packet with a time difference less than the average jitter. The
instantaneous bandwidth requirement of the packet preceding
the congestion point is the available bandwidth.

IV. COMPARISON TO OTHER AVAILABLE BANDWIDTH TOOLS

Lab experiments to compare the performance of PathMon to
existing tools, including pathload, pathChirp and IGI, were
carried out in an isolated subnet shown in Fig. 3. Cross traffic
was generated by a SmartBits 600 so that the true available
bandwidth was known. Each tool’s accuracy and efficiency in
terms of time required and number of bytes used was
evaluated. In addition, the accuracy of each method was
evaluated by calculating the average error of the measurements
relative to the true available bandwidth.

PathMon was configured with the jitter train consisting of 10
packets and the measurement train consisting of 30 packets.
The size of each packet was 1 KB and the measurement range
was 1 MB to 15 MB.

The metrics recorded for each experiment include overhead
bandwidth, the amount of traffic in kilobytes used by the tool
in determining the estimate; latency, the time in seconds for the
tool to report an available bandwidth estimate; and the
measured available bandwidth. Each tool was tested by
injecting different amounts of SmartBits 600 traffic into the
shared link, thus creating known available bandwidths of 2.44,
4.88, 7.26, 8.78, and 9.77 Mbps. Results of the experiments
are presented in Fig. 4 with overhead bandwidth shown in Fig.
4(a) and average latencies in Fig. 4(b). Accuracy of the tools
in terms of the average relative error is shown in Fig. 4(c).

Monitor

10 Mbps

SmartBits600 Traffic Generator

AgentMonitor

10 Mbps

SmartBits600 Traffic Generator

AgentMonitor

10 Mbps

SmartBits600 Traffic Generator

Agent

Figure 3. Testbed Configuration

Figure 4. Comparison of Available Bandwidth Measurement Tools

V. RESULTS AND CONCLUSIONS

PathMon was clearly shown to be accurate and efficient in
reporting path characteristics. It requires less than 41 kilobytes
of probe traffic and less than .25 second to report available
bandwidth. All tested measurement tools demonstrated
accuracy within 30% of the true available bandwidth with least
accuracy in measurements of the 2.44 Mbps true available
bandwidth, where relatively small variations result in a
significant relative error. With the exception of the 2.44 Mbps
bandwidth, PathMon’s measurements were within 8% of the
true available bandwidth for the range of bandwidths tested.
Of the other tools, IGI’s performance was closest to PathMon’s
with accuracy within 12% (without the 2.44 Mbps bandwidth)

of the true available bandwidth, minimal overhead and a short
convergence time. However, due to the nature of the IGI
software, the values measured for overhead and convergence
of the IGI algorithm do not include the packet overhead and
time required to determine the bottleneck bandwidth, which the
IGI algorithm assumes to be known. Furthermore, IGI
presumes that the bottleneck bandwidth corresponds to the
tight link, i.e. the link in a path with the least available
bandwidth. PathMon makes no such assumptions and does not
require a priori knowledge of the network. When compared to
other probe train algorithms, PathMon requires considerably
less traffic, resolves the measurement in the least time and
provides accurate measurement across a range of bandwidths.

REFERENCES
[1] L. Breslau, E. W. Knightly, S. Shenker, I. Stoica, and H. Zhang,

“Endpoint Admission Control: Architectural Issues and Performance,”
In Proceedings of the ACM SIGCOMM, 2000.

[2] V. Elek, G. Karlsson, and R. Ronngren, “Admission Control Based on
End-to-End Measurements,” In Proceedings of the IEEE INFOCOM
2000.

[3] V. Firou, J. Le Boudec, D. Towsley, and Z. Zhang, “Theories and Models
for Internet Quality of Service”, In Proceedings of the IEEE, Special
Issue on Internet Technology, August 2002.

[4] M. Stemm, R.Katz, and S. Seshan, “A Network Measurement
Architecture for Adaptive Applications,” In Proceedings of the IEEE
INFOCOM 2000.

[5] C. A. Lee, J. Stepanek, C. Kesselman, R. Wolski, and I. Foster, “A
Network Performance Tool for Grid Environments,” Supercomputing
’99, 1999.

[6] B. B. Lowekamp, “Combining Active and Passive Network
Measurements to Build Scalable Monitoring Systems on the Grid,” ACM
Performance Evaluation Review, 30(4):19-26, March 2003.

[7] M. Jain and C. Dovrolis, “Pathload: A Measurement Tool for End-to-end
Available Bandwidth,” In Proceedings of the 3rd Passive and Active
Measurements Workshop, March 2002, Fort Collins CO.

[8] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: Efficient Available Bandwidth Estimation for Network
Paths,” In Proceedings of the 4th Passive and Active Measurements
Workshop, April 2003, La Jolla, CA.

[9] N. Hu and P. Steenkiste, “Evaluation and Characterization of Available
Bandwidth Probing Techniques,” IEEE Journal on Selected Areas in
Communications, August 2003.

[10] J. He, Y. Lu, C. Chow, and T. Chujo, “Available Bandwidth
Measurement, Implementation, and Experimentation,” ICC 2002.

Approved for Public Release; Distribution Unlimited.

