
1

Time/Utility Function Decomposition in

Soft RealTime Distributed Systems

Abstract

We consider RealTime CORBA 2.0 (Dynamic Scheduling) distributable threads, whose time

constraints are specified using time/utility functions (TUFs), operating in legacy environments. In

legacy environments, system node resources—both physical (processor, disk, I/O, etc.) and logical

(locks, etc.)—are shared among timecritical distributable threads and local applications that may

or may not be timecritical. Thus, in such environments, distributable threads that are scheduled

using their propagated TUFs and scheduling parameters, as mandated by RealTime CORBA

2.0’s Case 2 approach, may suffer performance degradation, if a node scheduler can achieve higher

local accrued utility by giving higher eligibility to local threads than to distributable threads.

To alleviate this, we consider decomposing TUFs of distributable threads into “subTUFs” that

are used for scheduling segments of distributable threads. We present methods for decomposing

TUFs. Furthermore, we identify conditions under which TUF decomposition can alleviate perfor

mance degradation. Our experimental results reveal that the most important factors that affect

the performance of TUF decomposition include the properties of node scheduling algorithms,

TUF shapes, task load, Global Slack F actor, local threads and resource dependencies, and that

these factors interact.

Index Terms

realtime distributed systems, time/utility functions, realtime scheduling, soft realtime sys

tems, time constraint decomposition, realtime CORBA

I. Introduction

The Object Management Group’s recently adopted RealTime CORBA 2.0 (Dynamic

Scheduling) standard [1] (abbreviated here as RTC21) specifies distributable threads (or

DT s) as a programming and scheduling abstraction for systemwide, endtoend scheduling

1RealTime CORBA 2.0 has been recently renamed as RealTime CORBA 1.2.

SBORG
Text Box
Approved for Public Release; Distribution UnlimitedCase #04-00411

Ojbect A Ojbect DOjbect B

DT1

Ojbect C

DT2

DT3

1-Way

Invocation

2

in realtime distributed systems. A DT is a single thread of execution with a globally unique

identifier that transparently extends and retracts through an arbitrary number of local

and remote objects. A DT is thus an endtoend control flow abstraction, with a logically

distinct locus of control flow movement within/among objects and nodes. Concurrency is

at the DTlevel. Thus, a DT always has a single execution point that will execute at a

node when it becomes “most eligible” as deemed by the node scheduler. A DT carries its

execution context as it transits node boundaries, including information such as the thread’s

scheduling parameters (e.g., time constraints, execution time, importance), identity, and

security credentials. Hence, DTs require that RealTime CORBA’s Client Propagated model

be used, not the Server Declared model. Figure 1 cited from [1] shows the execution of DTs.

The propagated parameters are used by the schedulers on

each of the nodes the DT transits, for resolving all nodelocal

resource contentions among DTs and for scheduling DTs on

nodes to satisfy the system’s timeliness optimality. Using the

same optimality criterion with the same parameters on each

node that a DT transits results in approximate, systemwide
Fig. 1. Distributable Threads

timeliness optimality. This distributed scheduling approach,

called Distributed Scheduling: Case 2 in the RTC2 specification, is explicitly supported in

RTC2 due to its simplicity and capability for coherent endtoend scheduling.2

In this paper, we focus on complex, dynamic, adaptive realtime systems at any level(s)

of an enterprize—e.g., in the defense domain, from devices such as multimode phased

array radars [2] to battle management [3]. Such systems include “soft” as well as hard time

constraints in the sense that completing a timeconstrained activity at any time will result

in some utility to the system, which depends on the activity’s completion time. Such soft

realtime constraints may be as important or missioncritical as hard deadlines.

Jensen’s time/utility functions [4] (or TUFs) allow the semantics of soft time constraints

to be precisely specified. A TUF specifies the utility to the system that results from the com

2RTC2 also describes Cases 1, 3, and 4, which describe non realtime, global, and multilevel distributed scheduling,

respectively [1]. However, RTC2 does not support Cases 3 and 4.

3

pletion of an activity as a function of its completion time. Figure 2 shows the conventional

deadline (downward step) and several soft time constraints specified using TUFs.

Utility 6
maxU

-

Utility 6 Utility 6 Utility 6 Utility 6
maxU maxU Q maxU

Q
Q

Q

-
 -QQ- -

il dl Time il tc dl Time il dl Time il tc dl Time Time

(a) Step (b) SoftStep (c) Linear (d) Parabolic (e) Multimodal

Fig. 2. Deadline and Example Soft Timing Constraints Specified Using Jensen’s Time/Utility Functions

When time constraints are expressed with TUFs, the scheduling optimality criteria are

based on factors that are in terms of maximizing accrued utility from those activities—e.g.,

maximizing the sum, or the expected sum, of the activities’ attained utilities. Such criteria

are called Utility Accrual (UA) criteria, and sequencing (scheduling, dispatching) algorithms

that consider UA criteria are called UA sequencing algorithms. In general, other factors may

also be included in the optimality criteria, such as resource dependencies and precedence

constraints. Several UA scheduling algorithms are presented in the literature [5]–[11]. RTC2

has IDL interfaces for the UA scheduling discipline, besides others such as fixedpriority,

earliest deadline first, and least laxity first.

Thus, according to RTC2’s Case 2 approach, DTs whose time constraints are expressed

using TUFs can be scheduled using their propagated TUFs and scheduling parameters.

The propagated TUFs can be used by nodelocal UA scheduling algorithms to resolve local

resource contentions and to construct local schedules that maximize locally accrued utility

and approximate global accrued utility.

We consider integrating RTC2 applications, whose DT time constraints are specified using

TUFs, into “legacy” environments. In such cases, a system node’s physical (processor, disk,

I/O, etc.) and logical (locks, etc.) resources are shared between one or more RTC2 appli

cations and other nonRTC2 applications, some of which include threads having TUF time

constraints. We refer to such threads as “local threads.” RealTime CORBA 1.0 (RTC1) [12]

has an analogous legacy issue, in that any nodes may be shared by both RTC1 applications

and nonCORBA applications. RTC1 priorities are mapped into each node’s local priority

4

space, which is shared by RTC1 and nonCORBA applications.

In legacy environments, resourcecontention resolution and scheduling of DTs using their

propagated TUFs may not always be the best approach. For example, local threads in an

application on a node may always be favored by that node UA scheduler, at the expense

of the DTs of RTC2 applications, because the node scheduler may find that favoring the

local threads leads to higher locally accrued utility (due to the particular shape of the TUFs

of local threads). However, higher local utility does not necessarily imply higher system

wide utility in terms of the sum of utilities attained by all DTs, which is our optimization

objective. Thus, DTs of an RTC2 application can suffer interference from local threads,

causing them to perform poorly.

Besides the shape of TUFs, a number of other factors may also affect the performance

of DTs in legacy environments. Example factors include the mixture of local threads and

DTs, laxity of those local threads with deadlines, execution times of DTs and local threads,

and the UA scheduling algorithms employed at all the nodes.

To help DTs properly compete with local threads and improve their performance in legacy

environments, their TUFs can be decomposed. We hypothesize that it may be possible to

decompose the TUF of a DT into “subTUFs” for each segment of the DT, so that the

subTUFs can be used for nodelocal resourcecontention resolution and UA scheduling.

This hypothesis raises fundamental questions such as “how to decompose TUFs, both step

downward shaped and nonstep shaped?” Furthermore, “under what conditions can TUF

decomposition help DTs improve their performance in legacy environments?”

In this paper, we answer these questions. We identify the conditions under which RTC2

DTs suffer performance degradation in an legacy environment. Furthermore, we present

methods for decomposing TUFs and identify conditions under which TUF decomposition

can improve DT performance. Through extensive simulations, we show that although TUFs

of DTs can be decomposed to improve their performance in legacy environments, the perfor

mance of TUF decomposition is affected by many factors, among which the most important

ones include the properties of nodelocal schedulers, TUF shapes, system load, and local

threads. These factors interact with each other, and their effects on the performance of

5

TUF decomposition and working conditions are summarized at the end of this paper. We

are not aware of any other efforts that have studied TUF decomposition (though deadline

decomposition has been studied).

TUF decomposition is analogous to the problem of deadline decomposition in distributed

realtime systems whose time constraints are deadlines, and to the problem of priority

mapping in RTC1. In all three cases, there are endtoend timeliness requirements that must

be decomposed into timeliness requirements on each node involved in a multinode com

putation. On those nodes, these decomposed timeliness requirements contend for resources

with the timeliness requirements of strictly nodelocal computations. The challenge is for

the scheduler to resolve this contention in a manner that is optimal according to application

specific criteria for both the distributed computations and the local computations. A multi

node computation with an endtoend deadline has local subcomputations with pernode

deadlines derived from the endtoend deadline; these deadlines contend with the nodelocal

computation deadlines—the prior work on this topic is summarized in Section VII. In RTC1

systems, an RTC1 thread has a 15bit CORBA (“global”) priority; when a client invokes

a servant, the client CORBA priority is mapped into the servant node’s local operating

system (much smaller) priority space using an application or systemspecific mapping; these

priorities contend with the nodelocal computation priorities. (The mapping is reversed when

an invocation returns; care must be taken in defining the mappings so as to retain priority

fidelity endtoend.)

The rest of the paper is organized as follows: In Section II, we provide motivation for

our TUF and UA model by summarizing two significant demonstration applications that

were successfully implemented using that model. In Section III we describe the thread

and system model to study the TUF decomposition problem. Section IV and Section V

lists the possible factors affecting TUF decomposition and the decomposition strategies we

proposed for this problem, respectively. In Section VI, we describe our experimental setup,

experimental evaluation, and analyze the results. In Section VII, we overview past research

on time constraint decomposition in realtime distributed systems and contrast with our

work. Finally, the paper concludes and identifies future work in Section VIII.

6

II. Motivating Application Examples for TUFs

As example realtime systems requiring the expressiveness and adaptability of TUF time

constraints, we summarize TUFs of two applications. These include: (1) AWACS (Airborne

WArning and Control System) surveillance mode tracker system [13] built by The MITRE

Corporation and The Open Group (TOG); and (2) a coastal air defense system [14] built by

General Dynamics (GD) and Carnegie Mellon University (CMU). We only summarize some

of the application time constraints here; other details can be found in [13], [14], respectively.

A. TUFs in AWACS

The AWACS is an airborne radar system with many missions, including air surveillance.

Surveillance missions generate aircraft tracks for command and control (C2) and battle

management (BM). The surveillance tracker consists of several different activities. Its most

demanding computation, called association, associates sensor reports to aircraft tracks. The

tracker employs two sensors that sweep 180 degrees out of phase with a ten second period.

Thus, association has a “critical time” at the period length. If the computation can process

a sensor report for a track in under five seconds (half the sweep), that will provide better

data for the corresponding report from the outofphase sensor. Thus, prior to critical time,

utility of association decreases as critical time nears.

After the critical time, the utility of association is zero, because newer sensor data has

probably arrived. Thus, if the processing load in one sensor sweep period is so heavy that

it cannot be completed, probably the load will be about the same in the next period. So

there will not be any resources to also process sensor data from the previous sweep.

This timeliness behavior, which requires the expressiveness and adaptability of soft yet

missioncritical time constraints, would be difficult to describe using priorities. An effective

solution is to describe it using TUFs.

The described semantics establish association’s TUF shape:
Utility 6

a critical time tc at the sweep period; utility that decreases U1aaaaaafrom a value U1 to a value U2 until tc; and an utility value U2

U3 after tc. U1, U2, and U3 are determined using Application U3 -
tc Time

Fig. 3. Track Association TUF

0

2

4

6

8

10

12

>11 10 9 8 7 6 5 4 3 2 1
Association Capacity

Avg. # Dropped Tracks

more important

less important

0

2

4

6

8

10

12

>11 10 9 8 7 6 5 4 3 2 1
Association Capacity

Avg. # Dropped Tracks

more important

less important

Avg. # Dropped Tracks

>11 10 9 8 7 6 5 4 3 2 1
Association Capacity

0

2

4

6

8

10

12
more important

less important

7

QoS (AQoS) metrics such as: (1) track quality, which is a

measure of the amount of sensor data incorporated in a track

record; (2) track accuracy, which is a measure of the uncertainty in the estimate of a track’s

position and velocity; and (3) track importance, which is measure of track attributes such

as its threat. Figure 3 shows the association thread’s TUF.

The tracker creates threads for each airborne object that it tracks. The threads perform

a sequence of activities, including association. The TUFs of all threads have the same basic

shape shown in Figure 3, but use different values for U1, U2, and U3. The system’s UA

scheduling algorithm resolves the resource contention among all the association (and other)

threads and schedules system resources to maximize the total summed utility.

(a) FIFO (b) Fixed Priority (c) UA

Fig. 4. Average Number of Dropped Tracks vs. Association Capacity

The AWACS surveillance tracker implementation was done using TOG’s MK7 operating

system [15], [16]. MK7 contains the UA scheduling algorithm described in [6]. To understand

how well MK7’s UA algorithm is able to schedule system resources in a missionoriented way,

significant performance measurements were made. Different scheduling algorithms, including

FIFO and fixed priority, were compared with [6]. Figure 4 shows the average number of

dropped tracks for the three scheduling policies under decreasing association capacity. The

figure illustrates that the UA algorithm minimizes the number of dropped tracks, thereby

illustrating the adaptivity of the TUF/UA paradigm.

B. TUFs in Coastal Air Defense System

The coastal air defense system defends the coastline from incoming cruise missiles and

bombers, using a variety of assets including guided interceptor missiles. Time constraints

8

of three activities in the GD/CMU coastal air defense system, called plot correlation, track

maintenance, and missile control are shown in Figures 5(a), 5(b), and 5(c), respectively.

Utility 6

U c
max S

Utility 6 Utility

6
6

Utility

6
Intercept

Midcourse
S

S
SS -

U m
max HHHH -Time �

3

1

2
��	

-

Launch

-
0 tf 2tf Time 0 tf 2tf tc Time Time

(a) Plot Correlation (b) Track Maintenance (c) Missile Control (d) Missile Ctrl. Shapes

Fig. 5. TUFs of Three Activities in GD/CMU Coastal Air Defense

AQoS metrics such as track quality and weapon spherical error probable are used to define

how each service’s timeliness contributes to its utility to the current state of the mission.

Note that the TUF’s for sending guidance updates to the interceptor missiles have shapes

that evolve during the course of each missile’s engagement with its incoming target. This

adaptive effect is extremely difficult to achieve with priorities. Performance evaluation of

the system proves the effectiveness of TUF/UA. For brevity, here we skip the details of

TUF, application implementation and experimental characterizations measuring adaptive

timeliness; these can be found in [14]. (The application architecture that uses DTs is shown

in Figure 6.)

III. The Application, Timeliness, and System Models

A. The Thread Model

We assume that the application consists of a set of DTs and local threads. A DT can

execute in objects that are distributed across computing nodes by locationindependent

invocations and returns. Within each node, the flow of control is equivalent to normal local

thread execution. One possible implementation is to map a DT to a local thread while it is

executing in each node. We will refer to each nodelocal segment of a DT as an objectlevel

thread (or simply as OLT) hereafter. Therefore, a DT can be assumed to consist of a series

of OLTs that the DT is mapped to along its execution path.

For achieving faulttolerance, it is possible that application objects may be replicated.

9

Thus, when a DT invokes a method on a replicated object, multiple OLTs will execute as

part of the method executions on the object replicas. When an OLT in a replicated object

completes its execution, control is transferred to a synchronization point, which is usually

the next object method in the invocation chain of the DT.

We denote the set of DTs by T = {DTk : 1 ≤ k ≤ n}. As a shorthand, we use the

notation DTk = {OLT k
i,j : 1 ≤ i ≤ mk , j ≥ 1} to represent the kth DT that consists of mk

OLTs, where OLT k means the jth replica of the DT’s ith segment. The variable mk is also i,j

called the number of segments of DTk .

We assume that the locus of control flow movement of the DTs are known. Thus, the chain

of method invocations of each DT is assumed to be apriori known. For many applications,

it is possible to obtain this knowledge by static code analysis [17]. Of course, for some

applications, such static code analysis will be difficult and hence it will be difficult to a

priori know the DT chain of method invocations.

The GD/CMU air defense system described in [14] is an example application that is

implemented with DTs. Figure 6 illustrates the control flows of DTs which must be scheduled

in this system, and different nodes representing the BM/C2 functions.

B. The System Model

We consider a system model, where a set of processing components, generically referred to

as nodes, are interconnected via a communication network. Each node in the system executes

OLTs of DTs as well as local threads generated at the node. The order of executing the

threads—OLTs and local threads—on a node is determined by the scheduler that resides

at the node. We assume that the node schedulers are completely independent of each other

and do not collaborate, as described in RTC2’s Case 2 approach. Thus, thread scheduling

decisions made by a node scheduler are completely independent of other node schedulers.

Scheduling decisions made by the node schedulers are determined by the thread scheduling

parameters, which typically include thread time constraints such as a deadline or TUF,

importance, and the remaining execution time.

Nodes are assumed to be homogeneous in the sense that they have identical hardware

10

Plot
CorrelatorSensors

Track
Hdlr

Track
DB

ID
Data

Threat
Assessor

Track
ID

Stores
Mgr

Weapon
Ctlrs

Threat
Data

Plot
CorrelatorSensors

Track
Hdlr

Track
DB

ID
Data

Threat
Assessor

Track
ID

Stores
Mgr

Weapon
Ctlrs

Threat
Data

Communication Network

......

......

Local scheduler

Node

Local thread

DT

Node

Local thread

DT

Node

Local thread

DT

Fig. 6. DTs in GD/CMU Coastal Air Defense Fig. 7. The Distributed System Architecture

configurations in terms of processing speed, instruction pipeline, and primary memory/cache

resources. Furthermore, all nodes are assumed to be running the same scheduling algorithm

as the node scheduler. Figure 7 shows the distributed system architecture model.

C. Timeliness Model

We use TUF to specify the time constraint of a DT, an OLT, or a local thread, generically

referred to as T , and denote the TUF of a thread T as U (T). Thus, the completion of T at a

time t will yield a timeliness utility U (T, t). DTs propagate their TUFs as they transit nodes,

and we decompose the propagated TUF of a DT into subTUFs for nodelocal scheduling.

TUFs can be classified into unimodal and multimodal functions. Unimodal TUFs are

those TUFs for which any decrease in utility cannot be followed by an increase in utility.

TUFs which are not unimodal are multimodal.

Example unimodal TUFs are shown in Figures 2(a), 2(b), 2(c) and 2(d). Note that the

traditional soft deadline time constraint can be expressed as a “step downward” function,

such as the one shown in Figure 2(a), where the completion of a thread at anytime before a

certain time will result in uniform utility; completion of the thread after that time will result

in zero utility. Example multimodal TUF is shown in Figure 2(e). We focus on unimodal

TUFs in this paper, since they are used to specify a broad range of time constraints,.

Each TUF U (T) is assumed to have an initial time il(T) and a deadline time dl(T). Initial

time is the earliest time for which the function is defined, while deadline time is the latest

11

time at which the function drops to a zero utility value. Within this paper, we simply assume

that U (T) is defined from il(T) until the future indefinitely. Thus, the term “deadline time”

(or “deadline” in abbreviation) is used to denote the last point that a TUF crosses the taxis.

For a step downward TUF, the deadline time is its discontinuity point. Furthermore, we

also assume that U (T, t) � 0, ∀t ∈ [il(T), dl(T)] and U (T, t) = 0, ∀t ≥ dl(T).

We denote the arrival time of a thread T as ar(T). The arrival time is simply the time

at which the thread becomes ready for execution. The arrival time of a DT is the arrival

time of the first OLT of the DT. We assume that ar(T) = il(T). Hereafter, we use ar(T)

to represent both ar(T) and il(T).

The execution time of a DT/OLT/local thread T is denoted as ex(T). The execution

time of a DT is the sum of the execution times of all OLTs and transmission delays of

all interOLT messages of the DT. Thus, a DT’s execution time simply denotes the total

workload of the DT.

IV. Factors Affecting TUF Decomposition

We list the factors that can influence TUF decomposition, potentially affecting perfor

mance of DTs, as follows:

1) Scheduling algorithm. The type of the scheduling algorithm employed at a node

can impact TUF decomposition and thus DT performance. We consider UA scheduling

algorithms such as GUS [5], DASA [7], LBESA [6] and Dover [8], and nonUA algorithms

such as EDF [18] and LLF [19]. These algorithms make scheduling decisions that are based

on different metrics. For example, the key concept for gaining accrued utility in GUS is a

metric called Potential Utility Density (PUD) that was originally presented in [7]. LBESA

and DASA uses PUD as a key decisionmetric, but they also consider thread deadlines in

computing their scheduling decisions. Furthermore, Dover is a timerbased UA algorithm.

GUS, DASA and LBESA have the best performance among existing UA algorithms while

Dover is optimal for some cases. The different characteristics of the scheduling algorithms

will very likely affect the effects of TUF decomposition on DT performance.

2) TUF shape. The shapes of TUFs can affect TUF decomposition and thread schedul

12

ing. For example, it would be beneficial to schedule a thread with a decreasing TUF as early

as possible to accrue more utility, but for a thread with a strictly concave TUF, the scheduler

may need to postpone its execution so as to complete it at the time corresponding to the

optimum value of its TUF. In this paper, we only consider unimodal TUFs such as step

downward TUFs, linearshaped TUFs, and parabolicshaped TUFs. Furthermore, different

scheduling algorithms focus on TUFs with different shapes.

3) Task load. We define task load (or load, for short) as the ratio of the rate of work

generated to the total processing capacity of the system. The analytical expression for load

is given in Section VIA starting from Page 18. Different scheduling algorithms produce

different behaviors under different load. For example, The EDF algorithm is optimal during

underload situations in terms of satisfying all deadlines [18], but suffers domino effects

during overload situations. Some overload scheduling algorithms such DASA, mimics EDF

to reap its optimality during underloads, but provides much better performance during over

loads than EDF. However, GUS does not mimic the deadlinebased scheduling algorithm

such as EDF during underloads, and it yields different timeliness utility during overloads

from EDF and DASA. Thus, load can affect TUF decomposition and DT performance.

4) Global Slack Factor (GSF). We define the Global Slack F actor of a DT as the

ratio of the DT’s execution time to its TUF’s definition period, which is the sum of the

DT’s execution time and its slack. As an example, Figure 8 shows the slack and deadline

time of a DT with number of segments m = 4. Therefore, the DT’s GSF which describes its

ex(T)global stack is GSF (T) =
dl(T)−ar(T) . Intuitively, the larger GSF (T), the less global slack

of T , which means more stringent time constraint is imposed on T , and it is more prone to

complete after its deadline and accrue zero utility. Thus, in the TUF decomposition process,

the GSF of a DT should be considered to change the relative importance of an OLT to

compete with local threads.

5) Homogenous/heterogeneous TUFs. Each DT’s endtoend time constraint could

possibly be specified using different TUFs. This can lead to DTs having homogenous or

heterogenous TUFs. As different TUF shapes can affect the performance of decomposition,

it is possible that a decomposition strategy can achieve improvement on one kind of TUFs

13

while deteriate the performance of another kind of TUFs at the same time. Thus, the TUF

homogeneity/heterogenity can affect TUF decomposition and DT performance and should

be studied.

6) Dependencies. It is possible for OLTs of DTs and local threads to have dependen

cies. Dependencies include resource access constraints such as mutual exclusion constraints

and interthread precedence relationships. Some scheduling algorithms allow dependencies

(e.g., [5], [7]), while others do not (e.g., [6], [8]). Dependencies bring more interference to

the contentions among OLTs and local threads, with which a thread T is more likely to miss

its deadline. Thus, TUF decomposition with such interference is more difficult to improve

the DTs’ performance.

7) Local threads. On each node, the OLTs of DTs compete with each other, and they

also compete with the local threads. In addition, there also exists the contention among

local threads. The three types of contentions, which we describe as globalglobal, global

local, and locallocal, should be resolved by the nodelocal schedulers. Even though we do not

decompose the TUFs of local threads, their properties will affect two types of contention,

i.e., globallocal and locallocal, which can in turn affect the performance of DTs whose

TUFs are decomposed and allocated to their OLTs.

V. TUF Decomposition Methods

A. Ultimate TUF

Without any specific knowledge on the execution times of the OLTs, the only available

measure of their time requirement is the deadline and shape of their DT’s TUF. Thus, a

simple strategy would be to set the deadline time of an OLT to be equal to the deadline time

i,j) = dl(DTk), 1 ≤ i ≤ mk , j ≥ 1}, and to set U(OLT kof its DT, i.e., dl(OLT k
i,j) = U(DTk).

We call this strategy as Ultimate TUF (UT).

Thus, the UT strategy does not decompose a DT’s TUF. The propagated (ultimate) TUF

is used by all node schedulers for scheduling OLTs of a DT.

B. Slicing based on EQF

ex(T) t

U

Optimal Value

dl(T)-ar(T)

Slack

OLT1 OLT2 OLT3 OLT4

dl(T)

ar(T)

T (m=4)

14

A problem with U T is that the time for the execution of a

later OLT of a DT is considered slack to an earlier OLT. This

may give the scheduler incorrect information about how much

time an OLT can be delayed in its execution.

Thus, it is possible to “slice” the TUF of a DT by changing

(only) the deadline time for each OLT of the DT. Such a slicing Fig. 8. The Global Slack of TUF

of the TUF based on the deadline time can be done using the

Equal Flexibility (or EQF) strategy presented in [20]. EQF decomposes the endtoend

deadline of a global task (a DT in our case) into deadlines for subtasks (OLTs in our case),

by dividing the total remaining slack among the OLTs in proportion to their execution

times. The decomposition is done such that higher the execution time of a subtask, longer

is its deadline. Thus, we can use EQF to decompose the deadline time of the TUF of a

DT into nonoverlapping thread execution windows (slices). We call this strategy Slice on

EQF (SLEQF), and it is illustrated in Figure 9 with an example DT of 3 segments.

SLEQF first derives the deadlines of the OLTs of a DT from the DT’s TUF using EQF.

The TUF of an OLT is then defined as the segment of the TUF of the DT between the

OLT’s arrival time and its deadline.

C. Slicing based on TUF Shape

It is also possible to slice the TUF of a DT based on the TUF shape. We define the

time at which the TUF reaches its extremum as Opt (for unimodal TUFs that we consider

here, the extremum is the maximum). The utility value that corresponds to the Opt time is

denoted OptV alue. One intuition that we adopt in TUF decomposition is that, a DT should

complete near its Opt to accrue as much utility as possible. Thus, we modify SLEQF so

i,j) + ex(OLT k
i,j) by EQF. Otherwise, that only when ar(OLT k

i,j) > Opt, we derive dl(OLT k

we set dl(OLT k
i,j) = Opt. We call this method, the SLALL method.

tOpt Time

U

100%

dl(DT)-ar(DT)

dl(1)-ar(1) tdl(2)-ar(2)

U(OLT3)U(OLT2)U(OLT1)

dl(3)-ar(3)

DT (n=3)

t t

Opt Time
t

U

100%

dl(DT)-ar(DT)

dl(1)-ar(1) t

U(OLT3)U(OLT2)U(OLT1)

dl(2)-ar(2) dl(3)-ar(3)

DT (n=3)

t t

15

D. Scaling based on EQF

A problem common to both SLEQF and SLALL is that the height of a TUF is not

changed, which may convey inaccurate information to the nodelocal scheduler with the

subTUF. Thus, we derive methods to change the height of a TUF based on its deadline

slicing. Similar to SLEQF , we can first derive the deadline of an OLT using EQF. Then,

to obtain the TUF of the OLT, the height of the DT’s TUF can be scaled by the factor:

i,j)−ar(OLT kdl(OLT k
i,j) . We call this method Scale on EQF (SCEQF). Figure 10 illustrates

dl(DTk)−ar(DTk)

the method with an example DT whose segment number m is 3.

Fig. 9. The SLEQF Technique Fig. 10. The SCEQF Technique

E. Scaling based on TUF shape

Some algorithms compute scheduling decisions that are mainly based on the potential

value density (or PUD) of the threads. Thus, we can change the shape and height of the

TUF assigned to an OLT such that the OLT’s PUD is positively influenced. This will result

in the OLT being favored by the scheduling algorithm over others.

Considering Opt in the TUF of a DT, and making the similar modification to SCEQF

as we have done in the process from SLEQF to SLALL, we can derive the strategy of

SCALL from SCEQF .

16

F. Decomposing into LinearConstant TUF

We can also change the PUD of an OLT by decomposing the DT’s TUF into a linear

constant TUF. Unlike SLEQF , SLALL, SCEQF and SCALL, we don’t slice the deadline

of a DT to allocate to its OLTs in this strategy. This method, which is called OptValue and

Constant Value Function (OPTCON), is illustrated in Figure 11. The terms Opt and

OptV alue have the same meanings as before. As shown in the figure, for DTk and OLT k
i,j ,

we first set dl(OLT k = dl(DTk). The times t1 and t2 are defined as t1 = ar(OLT k and i,j) i,j)

t2 = ar(OLT k
i,j). i,j) + ex(OLT k

OP T CON decomposes the TUF of a DT to allocate subTUFs to OLTs with the following

steps (the steps are also illustrated in Figure 11):

A Let the OLT k obtain its highest utility at its expected finish time t2, which means i,j

U (OLT k

i,j , t2) = OptV alue.

B We then increase the TUF of the OLT from time t1 with utility value U (OLT k
i,j , t1)

linearly until the utility value OptV alue at time t2, after which we keep the TUF constant

at OptV alue until its deadline time dl(OLT k
i,j).

C The TUF of the OLT k
i,j is then scaled by a factor f ctr so that the expected PUD of the �

P U Dlocal

�
OLT is increased. The factor is determined as: f ctr = max , 1 , where

P eakP U D
OLTk

i,j
OptV alue P eakP U DOLT k =
ex(OLT k , and P U Dlocal is the PUD of local threads. Therefore, f ctr

i,j i,j)

is chosen in such a way that an OLT’s TUF is not scaled if its peak PUD is larger than

the PUD of local threads, otherwise it is scaled up by the ratio of PUDs of local threads

and the OLT. But the OLT’s TUF will never be scaled down.

G. Decomposing into Linear TUF

To respect the shape of the propagated TUF in the process of decomposition, it is desirable

to slightly modify the OP T CON strategy as follows: For DTk with mk segments, let OLT k
i,j

denote the ith OLT. Then, we can set dl(OLT k = dl(DTk), and still define t1 = ar(OLT k
i,j) i,j)

and t2 = ar(OLT k
i,j). i,j) + ex(OLT k

We call this method OptValue and Linear Function (OPTLNR) and it is illustrated

in Figure 12. The steps followed by the method include:

�

17

t2-t1

t

U

U'

U'

t tt2-t1

t1 t2 Opt

OptValue

dl

dl dl t2-t1

t

U

U

U

t tt2-t1

SubSlack

SubSlack

t1 t2 Opt

OptValue

dl

dl dl

Fig. 11. The OPTCON Technique Fig. 12. The OPTLNR Technique

A Let OLT k
i,j obtain its highest utility at its expected finish time t2, which means

U (OLT k

i,j , t2) = OptV alue.

B We then increase the TUF of the OLT from time t1 with utility value U (OLT k
i,j , t1)

linearly until the utility value OptV alue at time t2, after which the TUF is kept constant

at OptV alue for some period of time, denoted as SubSlack.

C After the SubSlack period, we decrease the TUF from OptV alue linearly until it reaches

zero utility at it deadline time dl(OLT k
i,j).

D The SubSlack is decided by comparing the expected finish time of the DT with the Opt

time of DTk . That is, we consider slack = Opt − ar(OLT k ex(OLT k
l,j). If slack i,j)−

�mk
l=i

is less than zero, we then set SubSlack to be zero; otherwise, we compute SubSlack

using a method similar to that of EQF. The formula to calculate SubSlack is described

as follows:
mk

i,j)−
�

ex(OLT k

� �
ex(OLT k

SubSlack =

�

Opt − ar(OLT k i,j)
(1) l,j) × �mk ex(OLT k

l=i l,j)l=i

E Finally, we scale the whole TUF of the OLT by a factor f ctr to obtain the decomposed �
P U Dlocal

�
TUF of the OLT. The factor f ctr is defined as: f ctr = max , 1 , where

P eakP U D
OLTk

i,j
OptV alue P eakP U DOLT k =
ex(OLT k . We calculate f ctr here in the same manner as OP T CON .

i,j i,j)

H. Scaling the TUF

In stead of the complicated decomposition methods described before, we also tried a simple

decomposition strategy to improve the OLT’s PUD that is seen by the local scheduler. This

18

is realized by: (1) using the DT’s deadline as the OLT’s deadline; and (2) scaling the DT’s

propagated TUF and assigning the scaled TUF as the OLT’s TUF. The scaling of the

DT’s TUF can be done by using an fctr factor that is determined exactly the same as in

the OP T CON and OP T LNR techniques. We call this strategy Time/Utility Function

Scaling (TUFS).

I. Scaling into Rectangular TUF

Finally, we consider the extreme case of improving the OLT’s PUD. The DT’s deadline is

kept the same as the OLT’s deadline. However, the shape of the DT’s TUF is changed into

a step downward TUF and is scaled by a “large” factor fctr. In our experiment, this fctr is

selected such that the height of scaled TUF is larger than OptV alue of original TUF by an

order of magnitude. The resulting TUF is then assigned to the OLT. Thus, irrespective of

shape of the DT’s TUF, the OLTs are assigned a step downward TUF with a large height.

We call this method Step Downward Function Scaling (STEPS).

In contrast to the strategies discussed previously, ST EP S assigns the same TUF to

each OLT of a DT, and may radically change the globalglobal and globallocal contention.

Although it is not a systematic method for decomposing TUF’s, it may still help us to

understand the conditions under which TUF decomposition can improve DT performance.

VI. Experiment Evaluation

We experimentally study the TUF decomposition strategies by conducting simulation

experiments. We believe that simulation is an appropriate tool for this study as that would

allow us to evaluate a number of different decomposition techniques under a broad range

of system conditions.

We first present the simulation model, and then discuss the experimental results.

A. Simulation Model

Our simulator is written with the simulation tool OMNET++ [21], which provides a

discrete event simulation environment. Each simulation experiment (generating a single

19

data point) consists of three simulation runs with different random seeds, each lasting 200

sec (at least 10,000 events are generated per run; many more for high load experiments).

Since the basic time unit in OMNET++ is a second, we will refer to a time unit as a second

hereafter. The structure of our simulation model follows the conceptual model described in

Section III, with the following characteristics:

• Nodes. There are k homogeneous nodes in the system. Each node services their threads

(OLTs of DTs and local threads) according to a given realtime scheduling algorithm. We

consider both UA and nonUA scheduling algorithms such as GUS, DASA, LBESA, Dover ,

EDF and LLF for our experiments.

• Local threads. Local threads are generated at each node according to a Poisson distri

bution with mean interarrival time 1/λlocal seconds. (Poisson distributions are typically

used in analytical studies like ours because of their simplicity and because they yield

useful insights.) Since there are k nodes, the total average arrival rate is k/λlocal per

second. Execution times of local threads are exponentially distributed with mean in 1/µlocal

seconds. The rate of work due to local threads is thus kλlocal/µlocal.

• DTs. Similar to local threads, DTs are generated as n streams of Poisson processes with

mean interarrival 1/λDT time. For simplicity, we assume that DTs are homogeneous. In

particular, we assume that all DTs consist of the same number of segments, and the

execution times of all the segments (OLTs) follow the same exponential distribution with

a mean 1/µOLT seconds. We assume that the number of OLTs contained in a DT is m, i.e.,

mk = m, ∀k ∈ {1, 2, ..., n}. The total execution times of DTs thus follow an mstage Erlang

distribution with mean m/µOLT . The rate of work due to DTs is therefore mλDT /µOLT .

The execution node of an OLT is selected randomly and uniformly from the k nodes.

• System Load. We define the normalized load (or load, for short) as the ratio of the rate

of work generated to the total processing capacity of the system. That is,
�

n m λDT k λlocal
� �

load =
· ·

+
·

k (2)
µOLT µlocal

For a stable system, we have 0 ≤ load ≤ 1. We also define f rac local as the least fraction

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Load

U
ti
lit

y
 R

a
ti
o

UT

SLEQF

SLALL

SCEQF

SCALL

OPTCON

OPTLNR

TUFS

STEPS

20

of PUD that can possibly be contributed by local threads in nodelocal scheduling, i.e.,

PUDlocal
frac local = (3)

PUDlocal + PeakPUDOLT

• TUFs. Different threads have different TUFs. Each DT has a propagated TUF, and we

define five classes of TUFs to evaluate our methods. The parameter setting of our baseline

experiment is summarized in Table I. In Table I, TUF1 and TUF2 are nonincreasing, TUF3

is a step downward function, TUF4 is strictly concave, and TUF5 is the combination of

different TUFs. In particular, TUF1 is the right half of a quadratic function in the first

quadrant, TUF2 is a linear function, and TUF4 is a complete quadratic function in the first

quadrant. The TUFs of local threads are step downward functions with variable heights.

TABLE I

Baseline Settings

Overload Mgmt. Policy Abort threads later than deadlines

Local Scheduler GUS, DASA, LBESA, Dover , EDF, LLF

µOLT 1.0 (When load varies)
µlocal 1.0 (When load varies)
λDT 1/8.33 (When GSF varies)

λlocal 1/8.33 (When GSF varies)

k (#of nodes) 8

m (# of OLTs in a DT) 4

n (# of DT streams) 3

f rac local 0.80 (When load or GSF varies) �

T U F1 f1(t) =
−0.025t2 + 10, when 0 ≤ t ≤ 20

0, otherwise �

T U F2 f2(t) =
−0.5t + 10, when 0 ≤ t ≤ 20

0, otherwise �

T U F3 f3(t) =
10, when 0 ≤ t ≤ 20

0, otherwise �

T U F4 f4(t) =
−0.1t2 + 2t, when 0 ≤ t ≤ 20

0, otherwise

T U F5 combination of T U F1∼T U F4

Local threads Step Downward Functions Fig. 13. Legend

B. Experimental Results

The primary performance metric that we use to evaluate the TUF decomposition methods

is utility accrual ratio (or UR), which is defined as the ratio of the accrued utility to the

maximum possible total utility. The maximum possible total utility is the sum of each DT’s

maximum utility.

21

We use the notation URB
A (C) to denote the utility ratio obtained under a scheduling

algorithm A ∈ {GUS,DASA,LBESA,Dover , EDF, LLF}, a decomposition technique B ∈

{UT, SLEQF, SLALL, SCEQF, SCALL, OPTCON, OPTLNR, TUFS, STEPS}, and a

TUF C ∈ {TUF1, TUF2, TUF3, TUF4, TUF5}. Thus, for example, URSLEQF (TUF4) deGUS

notes the utility ratio that DTs can accrue under the GUS scheduler, SLEQF decomposition

technique, and TUF4.

In Section IV, we evaluate the effects of all factors presented on system performance

in a collective way, so all simulations are performed with variation of several parameters

describing the factors. The legends for curves derived from simulation with nine different

decomposition strategies are shown in Figure 13.

1) Effect of Schedulers on Performance: We first study the impact of scheduling algo

rithms on TUF decomposition methods. We consider step downward functions (i.e., TUF3)

for the DTs, as all the algorithms, with the exception of GUS and LBESA, cannot deal with

arbitrarilyshaped TUFs. Further, we do not consider resource dependencies, as LBESA,

Dover , EDF and LLF cannot directly address resource dependencies.

The TUFs of local threads are set to step downward functions with heights of 40, and the

maximum heights of DT TUFs are bounded at 10. Thus, the frac local in these experiments

A (TUF3) as URBis 0.8. Since we only focus on TUF3 here, for simplicity, we denote URB
A .

URs of different methods are recorded as the load and GSF varies from 0 to 1. As shown in

Table I, when load varies, we keep the execution time µOLT = µlocal = 1.0, but change the

mean interarrival time 1/λDT and 1/λlocal; when GSF varies, we keep λDT = λlocal = 1/8.33,

but change µOLT and µlocal.

Figures 14(a) and 14(b) show URGUS of various decomposition strategies as load and GSF

varies. In Figure 14, we do not show the nine curves of decomposition strategies because

similar results are combined.

GUS , URSLALL and URSCALL URUT are identical because the three strategies perform the GUS GUS

same operations with step downward functions, so we only show URUT to represent them. GU S

For the same reason URSLEQF and GUS URSCEQF are identical so we keep the former. InGUS

, UROP T LNR and URT UF S
addition, UROP T CON are identical, so we only keep UROP T CON .GUS GUS GUS GUS

22

“≈
Line1 ≈ Line2 or Line1 = Line2 Line1

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

Hereafter, we will use ” to describe very similar curves, and use “=” to describe identical

curves. Thus, if , then we only show in the figure to

represent both of them. This is the same with multiple similar or identical curves.

(a) UR vs. load (b) UR vs. GSF

Fig. 14. Utility Ratio with GUS under T UF3

From Figures 14(a) and 14(b), we observe that the curves in both figures indicate similar

trends. For example, in Figure 14(a), when load increases, URGUS of all decomposition

strategies decreases. This is reasonable, because more threads miss their deadlines and

thus less utilities are accrued. But GUS under different decomposition strategies accrues

and URSCEQF different utilities, even when the load is very light. URSLEQF have the worst GUS GUS

and URSCALL performance among all strategies. URSLALL are better than the former two, GUS GUS

but perform as well as URUT . The methods OPTCON , OPTLNR and TUFS perform GUS

better than UT , but worse than STEPS, which is the best among all methods.

0.6, URSCEQF and URSLEQF ≈ 42%, URSCALL , URSLALL For example, at load = and GUS GUS GUS GUS

Ulti Sclg URUT ≈ 56%, UROP T CON , UROP T LNR and URGUS ≈ 73%, and URST EP S is 78%. GUS GUS GUS GUS

The performance results of the decomposition strategies under the LBESA algorithm are

URSCEQF shown in Figures 15(a) and 15(b). In both figures, URSLEQF = LBESA ; so we only show LBESA

URSLEQF
LBESA. Furthermore, the other seven strategies produce almost identical results; so we

only show URUT
LBESA. With LBESA, the SLEQF and SLALL strategies perform better

than others, especially at high load and GSF .

Figures 16(a) and 16(b) show the corresponding performance under the DASA algorithm.

URSCEQF , URUT = URSLALL = URSCALL In Figure 16, we note that URSLEQF = , and DASA DASA DASA DASA DASA

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

23

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

(a) U R vs. load (b) U R vs. GSF

Fig. 15. Utility Ratio with LBESA under T U F3

UROP T CON = UROP T LNR = URT UF S
DASA. Observe that under DASA, as load and GSF varies, DASA DASA

STEPS always performs better than all the others. OPTCON , OPTLNR, and TUFS

perform better than UT and SLEQF . Furthermore, SCEQF shows the worst performance.

(a) U R vs. load (b) U R vs. GSF

Fig. 16. Utility Ratio with DASA

The performance of the LLF and EDF algorithms under the different decomposition

strategies are shown in Figures 17 and 18. The results of LLF and EDF show similar

trends. Under both LLF and EDF, we observe that the results of SLEQF and SCEQF

are identical to each other. Thus, we only show URSLEQF
LLF/EDF . The results of SLALL and

SCALL are the same. So we show URSLALL
LLF/EDF . All the other decomposition methods have

exactly the same performance and therefore are represented by URUT
LLF/EDF .

Under the LLF algorithm, SLEQF and SCEQF perform better than the others, except

that at very high load and GSF , the curves converge. Under EDF, SLEQF and SCEQF

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load

UR

0.1

0.3

0.5

0.7

0.9

1.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

24

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load

UR

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

(a) U R vs. load (b) U R vs. GSF

Fig. 17. Utility Ratio with LLF

perform better than the others when load or GSF is less than 0.5.

LLF and EDF are not UA schedulers, but the primary performance measure used by them,

i.e., deadline miss ratio, can be converted to utility ratio. Intuitively, the more deadlines

are met by DTs, the more utilities are accrued. Thus, the deadline miss ratio performance

metric of LLF and EDF can be a reasonable metric for UA scheduling.

The results under EDF shown in Figure 18 is consistent with Kao’s experimental results

presented in [20], where the deadline miss ratio of EQF is lower than the ultimate deadline

(U D) strategy as load varies from 0.1 to 0.5.

(a) U R vs. load (b) U R vs. GSF

Fig. 18. Utility Ratio with EDF

Figures 19 shows the performance of decomposition strategies under the Dover algorithm.

We observe that all the curves are very close to each other. This indicates that the different

decomposition strategies have little effect on Dover ’s scheduling decisions.

25

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

(a) UR vs. load (b) UR vs. GSF

Fig. 19. Utility Ratio with Dover

Different scheduling algorithms compute scheduling decisions using different metrics.

Thus, they differ in their resulting behaviors. For example, EDF exclusively considers a

thread’s deadline, and suffers significant domino effects during overloads. DASA, on the

other hand, considers both deadlines and PUDs, and exhibits good performance during over

load situations. Thus, the performance of a given decomposition method will be differently

influenced by different underlying scheduling algorithms. For this reason, large performance

gaps, in terms of URs, are particularly interesting to us.

To understand such differences, we consider three types of resource competition among

threads. These include locallocal, localglobal, and globalglobal. A scheduling algorithm

resolves the contention mainly by its scheduling metric. Scheduling metrics include deadline

(for EDF), laxity (for LLF), PUD (for GUS and DASA), a timer value (for Dover) and

combination of some metrics (for LBESA and DASA). Thus, we can loosely categorize

schedulers into deadlinebased, laxitybased, PUDbased and timerbased.

The TUF decomposition methods that we consider here can also be loosely categorized

into three classes: (1) those that change no properties (UT), (2) those that change an

OLT’s deadline time (SLEQF , SLALL, SCEQF and SCALL), and (3) those that change

an OLT’s PUD (OPTCON , OPTLNR, TUFS, STEPS). Different TUF decomposition

strategies alter the OLTs’ metrics used by the schedulers, so they only impact localglobal

and globalglobal contention. DTs are subject to localglobal and globalglobal contention.

Thus, the choice of a decomposition strategy significantly affects them, affecting the UR.

26

GUS resolves resource contention mainly by comparing the PUDs of threads. Our sim

ulation reveals that, under GUS, the performance of those decomposition strategies that

increase OLTs’ PUDs are better than that of others, for various parameter settings.

As an extreme case, the unsystematic strategy, STEPS, always performs the best because

it seeks to increase each OLT’s PUD so that it is much larger than those of local threads.

We may notice that slicing the deadline of a DT and allocating sub deadlines to its OLTs

can also increase the OLTs’ PUDs. But even with such deadline slicing techniques, DTs

still perform poorly. The reason is that a DT consists of a series of OLTs, and if any OLT

in the DT misses its sub deadline and is aborted by the scheduler, the parent DT fails.

Thus, deadline slicing techniques sometimes can be detrimental to DTs, if we too “tight”

sub deadline constraints are assigned to their OLTs.

It is interesting to observe that Dover , as a timer based scheduling algorithm, is almost

not affected by TUF decomposition. The decomposition strategies with deadline slicing

perform well under EDF and LLF, because deadline slicing gives OLTs shorter deadline

times, which in turn gives them higher priorities for accessing resources under EDF and

LLF. Both LBESA and DASA compare deadlines and PUDs for scheduling, but in different

ways. From their performance under different TUF decomposition methods, we can infer

that DASA is more “PUDbased” and LBESA is more “deadlinebased.”

2) Effect of TUF shape on Performance: Different shapes of TUFs can be decomposed

differently. This can potentially yield different performance under different decomposition

strategies. Thus, in this section, we study the effect of decomposing TUFs with different

shapes. Our study focuses on the GUS and LBESA algorithms, since they can deal with

arbitrarilyshaped TUFs.

Besides step downward TUF (TUF3), we also conducted experiments with nonincreasing

TUFs (TUF1 and TUF2), and strictly concave TUF (TUF4). To obtain an average perfor

mance of the decomposition methods on various TUFs, we also considered TUF5, which is

a combination of different TUFs.

Figures 20 and 32 show the URs under the GUS algorithm for TUF1 and TUF2, re

spectively. We show some of the results in Appendix A. From Figure 20, we observe that

27

(1) = (1) ≈ (1) =

(1

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
GSF

UR

vs.

1

4

or ,

, ,

0

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0

0.2

0.4

0.6

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

when load and GSF varies, URSLEQF
GUS TUF URSLALL

GUS TUF URSCEQF
GUS TUF

TUF).

(a) UR vs. load (b) UR GSF

Utility Ratio with GUS under T UF

Figure 21 shows the results of GUS under TUF . In contrast to the results under non

increasing and step downward TUFs, different TUF decomposition strategies show different

performance, respectively, with strictly concave TUFs. But at any load GSF STEPS

performs the best, while SLEQF SLALL SCEQF and SCALL performs worse than

others. The average performance of the decomposition methods under the combination of

different TUFs is shown in Figure 33 of Appendix A.

URSCALL
GUS

Fig. 20.

(a) UR vs. load (b) UR vs. GSF

Fig. 21. Utility Ratio with GUS under T UF4

We show the corresponding results of the LBESA with TUF1 and TUF4 in Figures 22

and 23, respectively. In Appendix A, we show the results with TUF2 and TUF5.

We observe in Figure 22 that, URSLEQF
LBESA(TUF1) ≈ URSCEQF

LBESA(TUF1) ≈ URSLALL
LBESA (TUF1)

28

≈ (1

.

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load

UR

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
GSF

UR

vs.

1

(4) ≈ (4

of no

0

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0

0.2

0.4

0.6

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

URSCALL
LBESA TUF). All other results are close to each other. With LBESA and increasing

TUFs, the four strategies of SLEQF/ALL and SCEQF/ALL perform better than others,

especially at higher load and GSF

(a) UR vs. load (b) UR GSF

Utility Ratio with LBESA under TUF

However, with strictly concave TUFs, we obtain different results. As shown in Figure 23,

where URSLEQF
GUS TUF URSCEQF

GUS TUF), and the other results are similar, the strategies

SLEQF and SCEQF are performing better than others. Even when we vary load

and GSF , their performance is worse than the others.

Fig. 22.

(a) UR vs. load (b) UR vs. GSF

Fig. 23. Utility Ratio with LBESA under TUF4

Among the three shapes of TUFs considered in our experiments, strictly concave TUFs

have the most apparent impact on TUF decomposition. From our experiments, we ob

serve that, with GUS and TUF4, the performance of OPTCON and OPTLNR is better

than others, except with the unsystematic method STEPS. Further, the performance of

29

OPTCON is very close to that of OPTLNR over a wide range of parameter settings.

But in case when they differ, OPTLNR is usually superior. With large load and GSF ,

OPTLNR is performing better than OPTCON . This is not surprising because OPTLNR

more accurately reflects the shape of the original TUF of a DT than OPTCON . Thus, the

technique improves the OLT’s chances for accessing the resources as well as conveys more

accurate information to GUS.

Although the LBESA algorithm uses the PUD metric, it is not the deciding metric in

its scheduling decisions. The algorithm’s deadlineordering of threads also impacts the final

scheduling order. Thus, for OPTCON and OPTLNR, which seek to improve OLTs’ PUDs

while respecting the TUF shapes, their effects cannot be observed with LBESA and TUF4.

3) Effect of Local Threads on Performance: Comparing the URs of the different decom

position strategies, we infer that as the load and GSF increases, the performance of all

strategies deteriorate. However, all of our previously reported experiments are carried out

with frac local = 0.80.

We had hypothesized that by changing the deadlines or PUDs of OLTs, various TUF de

composition strategies can help DTs to “grab” resources (including CPU) from local threads,

since deadlines or PUDs are key scheduling metrics used by the scheduling algorithms. For

example, the likelihood of DTs to obtain resources can be improved by reducing the deadlines

of OLTs (under EDF and LLF algorithms) or by increasing the PUDs of OLTs (under GUS

and DASA algorithms).

To verify this hypothesis, in this section, we vary the relative proportion of the two kinds

of threads, i.e., we vary frac local from 0.3 to 0.88 and study the UR(TUF3) of the different

algorithms. In these experiments, we keep µOLT = µlocal = 1.0 and λDT = λlocal = 1/8.33.

For simplicity in notation, we still use URB to represent URB
A (TUF3). A

Figures 24 and 25 show the performance of GUS and DASA with different TUF decom

position strategies. We observe that GUS and DASA produce similar performance. In both

= URSLALL = URSCALL = URSCEQF figures, URU T
GU S/DASA GU S/DASA GU S/DASA, URSLEQF

GU S/DASA GU S/DASA, and

UROP T CON = UROP T LN R = URT U F S
GU S/DASA GU S/DASA GU S/DASA.

From Figures 24 and 25, we observe that as frac local increases (i.e., more PUD is

30

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.3 0.5 0.67 0.75 0.8 0.83 0.88
frac_local

UR

0.6

0.7

0.8

0.9

1

0.3 0.5 0.67 0.75 0.8 0.83 0.88
frac_local

UR

Fig. 24. UR vs. frac local with GUS under T UF3 Fig. 25. UR vs. frac local with DASA under T UF3

contributed by local threads), URUT drops dramatically. When frac local is less GUS/DASA

than or equal to 0.5, and when GUS and DASA are used for scheduling OLTs and local

threads, the two classes of threads have almost equal PUDs and thus almost equal chances

to be selected to execute.

Intuitively, UT should perform similarly as other decomposition techniques that increase

PUDs of DTs, but better than deadline slicing techniques. This is correctly reflected in the

plots. But when frac local is large than 0.5, OLTs with subTUFs allocated by UT will

be at a disadvantage in the PUDbased scheduling process of GUS and DASA. Thus, we

observe that higher the frac local, the worse UT performs. Furthermore, the performance of

OPTCON , OPTLNR, and TUFS are almost a constant as frac local increases, because

these decomposition methods always keep PUDs of OLTs comparable with PUDs of local

threads. Note that STEPS always performs the best independent of frac local, because it

“unfairly” increases PUDs of OLTs.

Figures 26 and 27 show the performance of LBESA and Dover algorithms under different

= URSLALL = URSCALL decomposition strategies. In Figure 26, URUT
LBESA, URSLEQF = LBESA LBESA LBESA

URSCEQF
LBESA , and UROP T CON = UROP T LNR = URT UF S = URST EP S

LBESA LBESA LBESA LBESA.

In Figure 27, we observe that all curves converge in a narrow zone between 0.24 and

0.29. In Figure 26, we observe that OPTCON , OPTLNR and TUFS are almost constant

as frac local increases, but only slightly outperform UT . This is reasonable, because the

31

0.7

0.75

0.8

0.3 0.5 0.67 0.75 0.8 0.83 0.88

frac_local

UR

0.22

0.24

0.26

0.28

0.3

0.3 0.5 0.67 0.75 0.8 0.83 0.88

frac_local

UR

Fig. 26. UR vs. frac local with LBESA under T UF3 Fig. 27. UR vs. frac local with Dover under T UF3

scheduling decisions made by LBESA are only partially dependent on PUDs. On the other

hand, Dover does not consider PUDs. Thus, the results of Dover do not exhibit any regular

pattern in Figure 27.

The performance of various decomposition strategies under the LLF and EDF algorithms

is not affected by frac local. This is because, varying frac local only changes the PUD

contributed by the local threads. This does not affect the scheduling decisions made by

LLF and EDF.

4) Effect of Dependencies on Performance: There are no resource dependencies among

OLTs in the experiments that we have conducted so far. In this section, we study how

resource dependencies among OLTs affect the performance of TUF decomposition strategies.

We impose resource dependencies among OLTs of different DTs. We then study the

performance of the decomposition strategies under the GUS and DASA algorithms, as only

these two algorithms can deal with resource dependencies. For OLTs within a single DT,

there are no resource dependencies, but only precedence dependencies.

We first consider the step downward function, TUF3, for these experiments. Subsequently,

we study other TUF shapes.

Figures 28 and 29 show URGU S and URDASA, respectively. GUS and DASA also bear

similar trends with resource dependencies among OLTs. From both Figures 28 and 29, we

= URSLALL = URSCALL = URSCEQF
GU S/DASA GU S/DASA GU S/DASA, URSLEQF can infer that URU T

GU S/DASA GU S/DASA,

32

0

0.01

0.02

0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load

UR

0

0.01

0.02

0.03

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

vs.

3

= = .

0

0.01

0.02

0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0

0.01

0.02

0.03

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

(a) UR vs. load (b) UR GSF

Utility Ratio with GUS and Resource Dependencies under T UF

and UROP T CON
GUS/DASA UROP T LNR

GUS/DASA URT UF S
GUS/DASA

Fig. 28.

(a) UR vs. load (b) UR vs. GSF

Fig. 29. Utility Ratio with DASA and Resource Dependencies

We also vary frac local to study the impact of resource dependencies on performance.

Figures 30 and 31 show the URs of GUS and DASA with dependencies, as frac local varies,

= URSCEQF respectively. From both figures, we infer that URSLEQF
GUS/DASA = GUS/DASA GUS/DASA, URUT

URSLALL = URSCALL = UROP T LNR = URT UF S
GUS/DASA, and UROP T CON

GUS/DASA GUS/DASA GUS/DASA GUS/DASA.

From the figures, we observe that performance drops when there are resource dependen

cies; URs of GUS and DASA under different decomposition strategies all decrease to less

than 1%. Furthermore, we cannot see any regular pattern in the results when varying load,

GSF , and frac local. This is reasonable because TUF decomposition for OLTs in a DT

cannot accommodate significant interference from other OLTs. But resource dependencies

and resource access operations among OLTs can cause unexpected, sometimes extremely

33

0

0.01

0.02

0.03

0.3 0.5 0.67 0.75 0.8 0.83 0.88
frac_local

UR

0

0.01

0.02

0.03

0.3 0.5 0.67 0.75 0.8 0.83 0.88
frac_local

UR

Fig. 30. UR vs. frac local with GUS and Resource Fig. 31. UR vs. frac local with DASA and Resource

Dependencies under T UF3 Dependencies

large, interference to the decomposition strategies, which results in their poor performance.

We observed similar results for GUS with other TUF shapes, so they are not listed here.

These plots are shown in Appendix B.

C. Summary of Experiments and Conclusions

In summary, our experiments analyze the possible factors that can affect the performance

of TUF decomposition strategies in terms of utility accrued by DTs. We summarize our

results and make conclusions with tables shown in this section.

In this section, we loosely categorize the decomposition strategies into four classes. UT ,

which changes no properties of a DT’s TUF at all, is the baseline method. The strategies of

SLEQF , SLALL, SCEQF and SCALL decide the deadlines of a DT’s OLTs by slicing the

DT’s deadline in the decomposition process, so they are categorized in the class of Deadline

Slicing. Instead, OP T CON , OP TLNR and T UF S don’t slice a DT’s deadline but scale up

its TUF and allocate it to the OLTs. Thus, they are classified as Shape Scaling strategies.

Finally, the decomposition results of a DT’s TUF by STEP S are step downward subTUFs

whose heights are larger than OptV alue of the original TUF by an order of magnitude. We

refer to it as the Extreme method.

The performance comparison (in terms of UR) of TUF decomposition strategies on step

downward TUFs with different nodelocal schedulers is summarized in Table II. As shown

in the table, URs of all decomposition methods drop when load or GSF increases. But

34

for different schedulers, the methods show various performance, in terms of how URs are

dropping, compared to the baseline method, UT . Such difference is described by the cell

contents of Table II, which show “same”, “better”, “worse”, etc.. For example, Shape Scaling

strategies perform better for GUS and DASA than UT , but work as well as UT for other

schedulers; Deadline Slicing strategies perform better for deadlinebased schedulers such as

LLF and EDF, but are not suitable for PUDbased ones such as GUS and DASA.

TABLE II

TUF Decomposition Summary I—Increasing load and GSF with Step Downward TUFs

frac local Baseline Deadline Slicing Shape Scaling Extreme

= 0.8 UT SLEQF SLALL SCEQF SCALL OPTCON OPTLNR TUFS STEPS

GUS drops worse same worse same better best

DASA drops worse same worse same better best

LBESA drops better same same same

LLF drops better similar better similar same same

EDF drops better when

load ≤ 0.5

similar better when

load ≤ 0.5

similar same same

Dover drops All strategies show little difference

Table III shows the URs of different decomposition methods on various shapes of TUFs

under GUS and LBESA. With all shapes of TUFs, Shape Scaling strategies have better

performance under GUS, but can provide no improvement under LBESA. Deadline Slicing

strategies perform worse with all shapes of TUFs under GUS and only T UF4 (strictly

concave TUF) under LBESA, but perform better with the other shapes under LBESA.

TABLE III

TUF Decomposition Summary II—Changing TUF shapes While Increasing load

frac local Baseline Deadline Slicing Shape Scaling Extreme

= 0.8 UT SLEQF SLALL SCEQF SCALL OPTCON OPTLNR TUFS STEPS

G

U

S

TUF1 drops worse better best

TUF2 drops worse better best

TUF3 drops worse same worse same better best

TUF4 drops worse better much better best

TUF4 drops worse better much better best

L

B

E

S

A

TUF1 drops better same same

TUF2 drops better same same

TUF3 drops better same same same

TUF4 drops worse same worse same same same

TUF5 drops similar better similar better same same

The effects to decomposition of step downward TUFs of increasing frac local are shown

in Table IV. LLF, EDF and Dover are not affected by frac local. But under GUS, DASA

35

and LBESA, the increase of frac local causes quick drops on URs of the baseline method

UT . Shape Scaling strategies perform better while Deadline Slicing strategies perform worse

than UT , because the former methods can improve the OLTs’ PUDs seen by the nodelocal

scheduler when frac local increases.

TABLE IV

TUF Decomposition Summary III—Increasing f rac local with Step Downward TUFs

load Baseline Deadline Slicing Shape Scaling Extreme

= 0.3 UT SLEQF SLALL SCEQF SCALL OPTCON OPTLNR TUFS STEPS

GUS drops quickly worse same worse same better (not affected by f rac local) best

DASA drops quickly worse same worse same better (not affected by f rac local) best

LBESA not affected worse same worse same slightly better

LLF Results are not affected by f rac local.

EDF Results are not affected by f rac local.

Dover The results exhibit no regular patterns.

With resource dependencies among OLTs of different DTs, all TUF decomposition strate

gies show very poor performance because of the unexpected and large interference caused

by and resource access operations. Thus, these results are not shown with tables.

VII. Past Work

There are relatively few studies on the TUF decomposition problem. Most of the past

efforts on time constraint decomposition in realtime distributed systems focus on the

deadline constraint. We summarize these efforts and contrast them with our work.

Bettati and Liu [22], [23] present an approach for scheduling preallocated flowshop

(sequential) tasks in a hard realtime distributed environment. In their model, global tasks

consist of (same) set of subtasks to be executed on nodes in the same order. The goal is to

devise efficient offline algorithms for computing a schedule for the subtasks such that all

deadlines are met (if such a schedule exists). In their work, local deadlines are assigned by

distributing endtoend deadlines evenly over tasks, and then tasks are nonpreemptively

scheduled using a deadlinebased priority scheme.

Kao and GarciaMolina present multiple strategies for automatically translating the end

toend deadline into deadlines for individual subtasks in distributed soft realtime sys

tems [20], [24]. They reduce the subtask deadline assignment problem (SDA) into two

36

subproblems: the serial subtask problem (SSP) and parallel subtasks problem (PSP). The

authors present decomposition strategies called Ultimate Deadline (UD), Effective Deadline

(ED), Equal Slack (EQS), and Equal Flexibility (EQF) for the SSP problem. Furthermore,

they propose a strategy called DIVx for the PSP problem. The techniques are aimed at

systems with complete a priori knowledge of taskprocessor assignment.

Di Natale and Stankovic [25] presents the endtoend deadline slicing technique for as

signing slices to tasks using the criticalpath concept. The strategy used for finding slices is

to determine a critical path in the task graph that minimizes the overall laxity of the path.

The slicing technique is optimal in the sense that it maximizes the minimum task laxity.

The optimality applies to task assignments and communication costs that are completely

known a priori.

In [26], Gutieérrez Garćıa and González Harbor present an approach that derives dead

lines for preemptive, deadlinemonotonic task scheduling. Given an initial local deadline

assignment, the strategy seeks to find an improved deadline assignment using a heuristic

iterative approach.

Saksena and Hong present a deadlinedistribution approach for preallocated tasks in [27]

and [28]. The approach specifies the endtoend deadline as a set of local deadlineassignment

constraints, and calculates the largest value of a scaling factor based on a set of local deadline

assignments known a priori. The scaling factor is then applied to the task execution time.

The local deadline assignment is chosen to maximize the largest value of the scaling factor.

In [29], Jonsson and Shin presents a deadlinedistribution scheme that distributes task

deadlines using adaptive metrics. The authors experimentally show that their scheme yields

significantly better performance in the presence of high resource contention. The deadline

distribution problem that is addressed in [29] focuses on distributed hard readtime systems

with relaxed locality constraints. Thus, schedulability analysis is performed at preruntime

and only a subset of the tasks are constrained by preassignment to specific processors.

Thus, to the best of our knowledge, past efforts on time constraint decomposition has

focussed on the deadline constraint. We are not aware of any time constraint decomposition

works that consider TUFs.

37

VIII. Conclusions and Future Work

In legacy environments, time constraints of DTs that are expressed using TUFs can be

decomposed for resourcecontention resolution and scheduling to improve their timeliness.

In this paper, we present methods for decomposing TUFs and identify conditions under

which TUF decomposition can improve DT’s performance. Using extensive simulation, we

show that, in legacy environments, the performance of TUF decomposition is affected by

many factors that interact with each other. Among the factors, the most important ones

include the properties of node scheduling algorithms, TUF shapes, task load, GSF , local

threads, and resource dependencies.

There are several interesting directions for future work. One direction is to consider task

models with stochastically specified task properties including that for execution times, as

they can better model uncertainty. Another interesting direction is to develop distributed

scheduling algorithms for scheduling distributable threads.

Acknowledgements

This work was supported by the U.S. Office of Naval Research under Grant N0001400

10549.

References

[1] OMG, “Realtime corba 2.0: Dynamic scheduling specification,” OMG Final Adopted Specification, Tech. Rep.,

September 2001.

[2] “MP radar technology insertion program,” http://www.globalsecurity.org/intell/systems/mprtip.htm/.

[3] “Bmc3i battle management, command, control, communications and intelligence,” http://www.globalsecurity.

org/space/systems/bmc3i.htm/.

[4] E. D. Jensen, “Asynchronous decentralized realtime computer systems,” in RealTime Computing, ser. Proceed

ings of the NATO Advanced Study Institute, Springer Verlag, October 1992.

[5] P. Li, B. Ravindran, H. Wu, and E. D. Jensen, “A utility accrual scheduling algorithm for realtime activities

with mutual exclusion resource constraints,” IEEE Transactions on Computers, submitted August 2003 (under

review). Available at: http://nile.ece.vt.edu/submissions/GUSTOC03.zip.

[6] C.	 D. Locke, “Besteffort decision making for realtime scheduling,” Ph.D. dissertation, Carnegie Mellon

University, 1986, CMUCS86134.

[7] R. K. Clark, “Scheduling dependent realtime activities,” Ph.D. dissertation, CMU, 1990, CMUCS90155.

[8] G. Koren and D. Shasha, “Dover: An optimal online scheduling algorithm for overloaded realtime systems,”

in Proceedings of the IEEE RealTime Systems Symposium, December 1992, pp. 290–299.

[9] K. Chen and P. Muhlethaler, “A scheduling algorithm for tasks described by time value function,” Journal of
RealTime Systems, vol. 10, no. 3, pp. 293–312, May 1996.

[10] D. Mosse, M. E. Pollack, and Y. Ronen, “Valuedensity algorithm to handle transient overloads in scheduling,”

in Proceedings of the 11th Euromicro Conference on RealTime Systems, June 1999, pp. 278–286.

38

[11] J. Wang and B. Ravindran, “Timeutility functiondriven	 switched ethernet: Packet scheduling algorithm,

implementation, and feasibility analysis,” IEEE Transactions on Parallel and Distributed Systems, accepted

August 2003, To appear, Available at http://nile.ece.vt.edu/.

[12] OMG, “Realtime corba 1.0, joint submission,” OMG Document orbos/19981205, Tech. Rep., 1998.

[13] R. Clark, E. D. Jensen, and et al., “An adaptive, distributed airborne tracking system,” in Proc. of The 7th
WPDRTS, ser. Lecture Notes in Computer Science, vol. 1586. SpringerVerlag, April 1999, pp. 353–362.

[14] D. P. Maynard, S. E. Shipman, R. K. Clark, and et al., “An example realtime command, control, and battle

management application for alpha,” CMU C.S. Dept., Archons Project TR88121, Dec. 1988.

[15] The Open Group Research Institute’s RealTime Group, MK7.3a Release Notes. Cambridge, Massachusetts:

The Open Group Research Institute, October 1998.

[16] D. Wells, “A trusted, scalable, realtime operating system,” in Proceedings of The DualUse Technologies and
Applications Conference, 1994, pp. 262–270.

[17] E. D. Jensen, “Private communication,” 2003.

[18] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard realtime environment,”

Journal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[19] S. Oh and S. Yang, “A modified leastlaxityfirst scheduling algorithm for realtime task,” in Proceedings of the
5th International Conference on RTCSA, Hiroshima, Japan, October 1998, pp. 31–36.

[20] B. Kao and H. GarciaMolina, “Deadline assignment in a distributed soft realtime system,” IEEE Transactions
on Parallel and Distributed Systems, vol. 8, no. 12, pp. 1268–1274, December 1997.

[21] A. Varga, OMNET++ Community Site, http://www.omnetpp.org/.

[22] R. Bettati and J. Liu, “Algorithms for endtoend scheduling to meet deadlines,” in Proceedings of The Second
IEEE Conference on Paralle and Distributed Systems, 1990.

[23]	 ——, “Endtoend scheduling to meet deadlines in distributed systems,” in Proc. of RTSS, 1992, pp. 452–459.

[24] B. C. Kao, “Scheduling in distributed soft realtime systems with autonomous components,” Ph.D. dissertation,

Princeton University, November 1995.

[25] M. D. Natale and J. A. Stankovic, “Dynamic endtoend guarantees in distributed realtime systems,” in

Proceedings of IEEE RealTime Systems Symposium, 1994, san Juan, Puerto Rico.

[26] J. J. G. Garćıa and M. G. Harbor, “Optimized priority assignment for tasks and mesages in distributed hard

realtime systems,” in Proceedings of WPDRTS, Santa Barbara, California, 1995, pp. 124–132.

[27] M. Saksena and S. Hong, “An engineering approach to decomposing endtoend delays on a distributed realtime

system,” in Proceedings of WPDRTS, Honolulu, Hawaii, 1996, pp. 244–251.

[28]	 ——, “Resource conscious design of distributed realtime systems: An endtoend approach,” in Proceedings of
the IEEE Intl. Conf. on Engineering of Complex Computer Systems, Montreal, Canada, 1996, pp. 306–313.

[29] J. Jonsson and K. G. Shin, “Robust adaptive metrics for deadline assignment in distributed hard realtime

systems,” RealTime Systems, vol. 23, no. 3, pp. 239–271, November 2002.

Appendix

A. Additional Simulation Results for GUS and LBESA with Different TUFs

We give simple descriptions and indicate similar curves of the figures in Table V.

TABLE V

Similar Curves in Figures of Appendix A

Figure 32 URSLEQF
GUS (TUF2) = URSLALL

GUS (TUF2) ≈ URSCEQF
GUS (TUF2) = URSCALL

GUS (TUF2)

Figure 34 URSLEQF
LBESA(TUF2) = URSLALL

LBESA(TUF2) = URSCEQF
LBESA (TUF2) = URSCALL

LBESA(TUF2).

The other curves are similar to each other

Figure 35

Showing the average performance of TUFs—UR(TUF5)

URUT
LBESA ≈ UROP T CON

LBESA ≈ UROP T LNR
LBESA ≈ URT UF S

LBESA ≈ URST EP S
LBESA

URSLEQF
LBESA ≈ URSCEQF

LBESA ; URSLALL
LBESA ≈ URSCALL

LBESA.

B. Additional Simulation Results for GUS with Dependencies

We give simple descriptions and indicate similar curves of the figures in Table VI.

Fig. 32.

Fig. 33.

39

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

vs.

2

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

vs.

5

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
GSF

UR

(a) UR vs. load (b) UR GSF

Utility Ratio with GUS under TUF

(a) UR vs. load (b) UR GSF

Utility Ratio with GUS under TUF

(a) UR vs. load (b) UR vs. GSF

Fig. 34. Utility Ratio with LBESA under TUF2

TABLE VI

Similar Curves in Figures of Appendix B

Figure 36, 37 URSLEQF
GUS (TUF1/2) = URSLALL

GUS (TUF1/2), URSCEQF
GUS (TUF1/2) = URSCALL

GUS (TUF1/2)

Figure 36(b), 37(b) UROP T CON
GUS (TUF1/2) ≈ UROP T LNR

GUS (TUF1/2)

Figure 40 URSLEQF
GUS (TUF1/2) = URSLALL

GUS (TUF1/2), URSCEQF
GUS (TUF1/2) = URSCALL

GUS (TUF1/2)

URT UF S
GUS (TUF1/2) ≈ URST EP S

GUS (TUF1/2)

Fig. 35.

Fig. 36.

40

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load

UR

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

vs.

5

0

0.01

0.02

0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load

UR

0

0.01

0.02

0.03

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

vs.

1

0

0.01

0.02

0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load

UR

0

0.01

0.02

0.03

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

(a) UR vs. load (b) UR GSF

Utility Ratio with LBESA under TUF

(a) UR vs. load (b) UR GSF

Utility Ratio with GUS and Resource Dependencies under TUF

(a) UR vs. load (b) UR vs. GSF

Fig. 37. Utility Ratio with GUS and Resource Dependencies under TUF2

Fig. 38.

Fig. 39.

41

0

0.01

0.02

0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load

UR

0

0.01

0.02

0.03

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

vs.

4

0

0.01

0.02

0.03

0.04

0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load

UR

0

0.01

0.02

0.03

0.2 0.3 0.4 0.5 0.6 0.7 0.8

GSF

UR

vs.

5

0

0.01

0.02

0.03

0.3 0.5 0.67 0.75 0.8 0.83 0.88
frac_local

UR

`

0

0.01

0.02

0.03

0.3 0.5 0.67 0.75 0.8 0.83 0.88
frac_local

UR

(a) UR vs. load (b) U R GSF

Utility Ratio with GUS and Resource Dependencies under T UF

(a) UR vs. load (b) UR GSF

Utility Ratio with GUS and Resource Dependencies under T UF

(a) UR vs. frac local under T UF1 (b) UR. vs. frac local under T UF2

Fig. 40. UR vs. fraclocal with GUS and Resource Dependencies, T UF1/2

42

0

0.01

0.02

0.03

0.3 0.5 0.67 0.75 0.8 0.83 0.88

frac_local

UR

0

0.01

0.02

0.03

0.3 0.5 0.67 0.75 0.8 0.83 0.88

frac_local

UR

(a) UR vs. frac local under T UF4 (b) UR. vs. frac local under T UF5

Fig. 41. UR vs. fraclocal with GUS and Resource Dependencies, T UF4/5

