
International Symposium on Object-oriented Real-time distributed Computing 2004

A Neglected/Ignored Research Topic in Real-Time Systems:
Timeliness in Mesosynchronous Real-Time Distributed Systems

E. Douglas Jensen
The MITRE Corporation
http://www.real-time.org

Abstract

Traditional real-time computing concepts and techniques

are focused on static, synchronous, relatively small-scale,
mostly centralized, device-level subsystems. Many real-time
systems, particularly distributed ones, are relatively large-
scale, above the device level, and at least partially dynamic
and asynchronous. We call such systems “mesosynchronous.”
For example, mesosynchronous systems often are found in
military surveillance and force projection platforms, and in
network-centric warfare (plus civilian domains). Hence the
lives of both friends and foes depend on the timeliness
properties of such systems being dependably acceptable
according to application- and situation-specific criteria. The
real-time research community has historically failed to
perceive and appreciate this – admittedly difficult and domain-
knowledge intensive – problem, especially for end-to-end
timeliness in distributed mesosynchronous real-time systems.

1. Introduction

In the field of mesodynamics, the term mesodynamic refers
to the middle ground between classical physics and quantum
mechanics. By mesosynchronous real-time systems we mean
those that are in the middle ground between

• Totally synchronous – in the sense of having only
static, periodic, time-driven (i.e., TDMA-like)
activities (or at least such activities are the only
ones considered important)

• Totally asynchronous – in the sense of having only
dynamic, aperiodic (not necessarily even sporadic),
event-driven activities.

The derivation of “mesosynchronous” from
“mesodynamic” reflects that: synchronous real-time
computing, like classical physics, is comparatively well
understood; while asynchronous real-time computing, like
quantum mechanics, is still comparatively poorly
understood, and seems to require a paradigm shift on the part

of both the research and the practitioner communities [1].

It might be tempting to erroneously interpret
“mesosynchronous” as meaning that a system is composed of
separate traditional synchronous static hard real-time, and
asynchronous dynamic, non-real-time parts. While
mesosynchronous systems normally do have traditional
synchronous hard real-time parts, the asynchronous parts are
just as “real-time” as the synchronous ones are. And some
parts are neither synchronous nor asynchronous – or are both.
Properly speaking, a real-time activity is one that has a
completion time constraint. Asynchronous activities may
have deadlines, even hard deadlines that if missed result in
operational failures – assurances about their timeliness are
based on adherence to resource management policies, and are
almost always unavoidably non-deterministic. More
commonly, these activities have softer but more complex
time constraints, and sequencing optimality criteria that are
softer but more complex than simply always meeting all
deadlines (e.g., minimize the expected completion time
tardiness according to activity importance). That does not
mean these activities are in any way less “important” or less
mission-critical or even less safety-critical than the
synchronous activities – indeed, quite the contrary.

2. Current and Future Mesosynchronous Systems

Mesosynchronous real-time systems, especially distributed
ones, are (perhaps surprisingly to some people) very
common.

For example, virtually all current and in-progress military
platforms are mesosynchronous:

• surveillance and intelligence platforms – e.g., the
AWACS, Joint Stars, Rivet Joint, and E-10A
aircraft; the Global Hawk UAV; the SBIRS and
Space-Based Radar satellites);

• force projection platforms – e.g., Aegis and
DD(X) ships, the SSGN guided missile
submarines, the Army’s Future Combat System,
UCAV’s, bombers, fighters.

Network-centric warfare – which (among other things)
replaces “smart” munitions with precision-guided munitions
in a “smart” infrastructure for integrated sensing and control

SBORG
Text Box
Approved for Public Release; Distribution Unlimited
Case #04-0410

International Symposium on Object-oriented Real-time distributed Computing 2004

(e.g., the Affordable Moving Surface Target Engagement
(AMSTE) system) – is mesosynchronous: e.g., the sensors
are asynchronous; but the guidance updates to the missile are
essentially synchronous (unlike guidance updates to
interceptors against cruise missiles). Numerous examples
exist in civilian application domains as well.

3. “Safety-Critical” Mesosynchronous Systems

Obviously, the purpose of military warfare systems is to

save or destroy property and human lives – nothing could be
more safety-critical.

Unfortunately, the term “safety critical” is reserved by
convention for the tiny – albeit important – niche of small,
static subsystems that can be developed and certified
according to certain standards, notably RTCA’s DO-178B
(usually levels A or B).

Large scale mesosynchronous real-time systems often
include some small synchronous subsystem(s) to which DO-
178B processes can be applied. But these systems typically
have millions or 10’s of millions of lines of source code, and
the overall system, and the applications in it, and their
execution environment, are all inherently dynamic with
many uncertainties. Neither current nor eventually
foreseeable DO-178B-like development and certification
processes are applicable to such systems. Normally, other,
necessarily less formal and rigorous, approaches to assurance
are employed.

More research is needed on development and certification
processes – particularly for timeliness – for
mesosynchronous real-time systems.

4. Priorities and Deadlines are Insufficient

In traditional real-time computing practice, time-criticality

has been handled in one of two ways.
One way has been to attempt to map the application

activities’ inherent time constraints into an artifact called
priorities, and to manage certain resources (notably,
processor cycles) according to those priorities. The reason
for this approach is that, although it may be feasible to reason
about actual timeliness off-line, execution environments
(OS's, JVM's, middleware) almost never provide support
directly for time constraints and time constraint-based
sequencing optimality criteria. They offer only priorities and
priority-based sequencing. This has a number of serious
disadvantages, including:

• In general, mapping time constraints into
priorities is NP-hard. In practice, such mappings
are semantically lossy, which makes it difficult
to reason about timeliness, and hence makes it
difficult to manage resources to dependably
satisfy time-criticality requirements.

• Priority assignments are not modular – they
require global knowledge of all other priority
assignments (whereas time constraints, such as
deadlines, do not). Such global knowledge is

often difficult to obtain – for example, due to
priority assignments being made by a multiplicity
of designers and users in different organizational
units, and having different limits on their security
clearances.

• Relative importance is orthogonal to urgency, but
priorities are usually the only mechanism
available for expressing both, which inevitably
results in overloaded semantics – again, making
it difficult to reason about and dependably
manage system behavior.

These disadvantages of priorities have proven to be
severely costly in a variety of dimensions for non-trivial real-
time systems – especially mesosynchronous ones.

The second popular way to handle time-criticality has
been to attempt to over-provision resources (e.g., processor
speed) so that timeliness objectives are met by brute force
without having to explicitly take them into account when
reasoning about the system and its mission, and hence when
managing resources. This approach may be adequate in some
cases. But in many other cases, it cannot be. The potential
computational complexity of algorithms (e.g., track
association) in many systems is essentially unlimited – no
matter how fast the processors, some essential algorithms can
consume that computational power, and more. In addition,
computational hardware's size, weight, and power (not to
mention cost) are all limiting factors in many system
platforms.

The obvious solution to this problem is to provide system
users and designers the direct abstraction of time-criticality,
and to explicitly employ that abstraction for on-line
reasoning about system and mission behavior, and hence for
on-line management of resources to satisfy timeliness
objectives.

The real-time research community (and a small fraction of
the real-time practitioner community) does almost that – but
for only a very limited subset of real-time systems: deadlines
in periodic subsystems. Even there, the predominant model
has been to map activity periods into priorities. Then
resources are still managed by the execution environment
using priorities.

Even if deadlines are used for reasoning about timeliness
and managing resources, they suffer from weak
expressiveness.

The extreme special case is in the context of conventional
real-time computing (predominately research), where
deadlines are only unit-valued binary expressions – a
deadline is either met or missed. That context constitutes a
very small part of the field of sequencing (usually meaning
scheduling).

In general sequencing (e.g., scheduling) theory, which has
a long history and vast body of scholarly literature compared
to those of real-time computing, a deadline is a linear
expression defined in terms of lateness=completion time–
deadline. Although that formulation is more expressive than
conventional real-time computing’s binary special case, it is
limited by being a linear expression.

International Symposium on Object-oriented Real-time distributed Computing 2004

That limitation imposes itself immediately in
mesosynchronous real-time systems, which inevitably need
richer time constraints (of which deadlines can be a special
case as needed) and concomitant sequencing optimality
criteria. Time/utility functions and utility accrual optimality
criteria [1,2] are one approach that has been proven to be
successful for an interesting class of mesosynchronous
systems (e.g., [3]); no doubt there will be others.

The real-time computing research community could make
an immensely valuable contribution to both the theory and
the practice of real-time systems by broadening its attention
to include sequencing in mesosynchronous systems.

5. Barriers to Research Progress

Several factors help explain why the real-time computing

research community has not yet adequately begun to address
the problems of timeliness in mesosynchronous real-time
systems.

Most of the real-time computing research community fails
to perceive much less appreciate the significance of
mesosynchronous real-time systems and their need for
concepts and technologies to ensure acceptable timeliness.
One reason for this is that the community has only recently
begun to emerge from more than a decade of concentration
on scheduling hard (i.e., static periodic) real-time
subsystems, conspicuously focused on rate-monotonic
analysis. That concentration arose from the self-reinforcing
cycle of research sponsor interest, and the intellectual and
analytical tractability of the problem.

The easy tractability of the hard real-time scheduling
problem (as with many others in many fields) is due in large
part to it not requiring substantive knowledge about the real-
time application domain – both the part of the domain for
which the research was presumed to apply, and the part that
was not perceived at all. Application domain independent
research obviously has great potential advantages and great
potential risks.

The disconnect between the real-time computing research
community and the real-time application domain is a natural
consequence of real-time computing primarily being a subset
of embedded computing control systems. Historically, almost
no academic research institution has had, or even has had
access to, substantive systems with non-trivial real-time
control requirements. That has recently begun to improve
somewhat with the increase in research on real-time control
of mobile autonomous platforms (e.g., vehicles), but even
those represent a relatively small scale subset of real-time
systems. Consulting has always been an alternative source of
real world needs; but that has been impeded by the usual
conflict between the customers’ need for consultants with
experience, and the consultants’ need to gain experience.
Some faculty (often with previous industrial employment)
and students have been more successful than others in
breaking that cycle. The most challenging – large scale,
dynamic, mesosynchronous – real-time systems have always
been, and continue to be, military ones. They present a

special obstacle for academic researchers because most of the
information about them is classified.

The result is that real-time computing has the biggest gap
in all of computer science and engineering between the
researchers and the real world. Researchers in compilers,
operating systems, middleware, graphics, etc. all are
accurately representative users in the field to which their
research results are intended to apply. That is very rarely true
for real-time computing researchers. Exceptions occur in the
stereotypical hard real-time niche, and when enlightened
sponsors or industrial enterprises arrange collaborative
partnerships between researchers and significant real world
projects. Fortunately, the trend is for an increasing number of
such collaborations to form and succeed for both parties.

6. Conclusion

"The problem is never how to get new, innovative thoughts
into your mind,

but how to get old ones out." [4]

References

[1] E. D. Jensen. Application qos-based time-critical automated

resource management in battle management systems. Proc. IEEE
Workshop on Object Oriented Real-Time Dependable Systems,
October 2003.

[2] M. G. Gouda, Y.-W. Han, E. D. Jensen, W. D. Johnson, and R. Y.

Kain. Distributed data processing technology, vol. iv, applications
of ddp technology to bmd: Architectures and algorithms – chapter
3, radar scheduling: Section 1, the scheduling problem. Technical
Report NTIS ADA047475, Honeywell Systems and Research
Center, Minneapolis, MN, September 1977.

[3] R. Clark, E. D. Jensen, A. Kanevsky, J. Maurer, P. Wallace, T.
Wheeler, Y. Zhang, D. Wells, T. Lawrence, and P. Hurley. An
adaptive, distributed airborne tracking system (“Process the right
tracks at the right time”). In Proceedings of the Seventh
International Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS 1999), April 1999.

[4] D. Hock, The birth of the chaordic age. Berrett-Koehler
Publishers, ISBN 1576750744, January 2000.

