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ABSTRACT 
This position paper makes the case that time/utility 
functions (or TUFs) and utility accrual optimization 
criteria constitutes, arguably, the most effective and 
broadest approach for adaptive, time-critical resource 
management. A TUF, which is a generalization of 
the classical deadline constraint, specifies the utility 
of completing an application activity as an applica­
tion/ situation-specific function of that activity’s com­
pletion time. With TUF time constraints, timeliness 
optimization criteria can be specified in terms of ac­
crued activity utilities. Such utility accrual (or UA) 
criteria facilitate design of resource management al­
gorithms that are adaptive in the sense that they al­
locate resources in a mission-oriented way i.e., in the 
best interests of the application’s mission. Further, 
they gracefully degrade timeliness performance during 
overloads and gracefully improve performance other­
wise. Such timeliness adaptivity is not possible with 
traditional real-time resource management techniques. 
We overview past and recent UA algorithms that il­
lustrate this. We also identify emerging challenges. 

1. INTRODUCTION 
Time-critical resource management is fundamentally 

concerned with satisfying application time constraints. 
The most widely studied time constraint is the dead­
line. A deadline constraint for an application activity 
essentially implies that completing the activity before 
the deadline implies the accrual of some “utility” to 
the system and that utility remains the same if the 
activity were to complete anytime before the deadline. 
Further, completing the activity after the deadline ac­
crues less utility (zero or sometimes infinitively nega­
tive utility). With deadline time constraints, one can 
specify timeliness optimality criteria such as “meet all 
deadlines,”“minimize maximum lateness,” and “mini­
mize deadline-miss rate” and use traditional real-time 
scheduling algorithms [7] to achieve them. 

There two fundamental problems with deadline-based 
timeliness optimality criteria. First, not all activities 
in many non-trivial real-time systems have the same 
functional utility. Typically, some activities may have 
higher utility than some others and this relative utility 
can dynamically change. Further, the relative utility 
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of activities are often not directly related to their ur­
gency. For example, the most urgent activity may not 
have the highest utility at a given time. 

This orthogonality of urgency and utility becomes a 
fundamental issue during resource constrained situa­
tions (which may be either be transient or permanent), 
when sufficient resources are not available for satis­
fying a collective timeliness optimality criteria such 
as meeting all deadlines. Many real-time systems are 
subject to overload situations, typically due to un­
predictable event arrivals or execution-time overruns. 
Thus, during overload situations, the system is con­
fronted with the decision of “shedding” a subset of 
activities, which is problematic if the scheduling op­
timality criteria is deadline-based as deadlines only 
represent urgency and not utility. 

Secondly, deadlines imply the attainment of uni­
form utility for activity completion anytime before the 
deadline time. This semantics becomes problematic 
for specifying time constraints, where the utility at­
tained for activity completion varies (e.g., increases, 
decreases) with activity completion time. For exam­
ple, converting such timing constraints to deadlines 
will violate their non-uniform timeliness semantics. 

1.1 TUFs and UA Criteria 
Jensen’s time/utility functions [3] generalizes the 

deadline constraint. A TUF specifies the utility to the 
system that results from the completion of an activ­
ity as a function of the activity’s completion time. A 
time-utility function (abbreviated here as TUF) spec­
ifies the utility to the system of completing an appli­
cation activity as an application- or situation-specific 
function of when that activity completes. 

Figure 1 shows examples of time constraints spec­
ified using TUFs. Figures 1(a), 1(b), and 1(c) show 
time constraints of two significant, real-time applica­
tions specified using TUFs. The applications include: 
(1) the AWACS (Airborne WArning and Control System) 
surveillance mode tracker system [1] built by The MITRE 
Corporation and The Open Group (TOG); and (2) a 
coastal air defense system [9] built by General Dynam­
ics (GD) and Carnegie Mellon University (CMU). 

Figure 1(a) shows the TUF of the track associa­
tion activity of the AWACS; Figures 1(b) and 1(c) 
show TUFs of three activities of the coastal air defense 
system called plot correlation, track maintenance, and 
missile control. Note that Figure 1(c) shows how the 
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Figure 1: Example Time Constraints Specified Using Time/Utility Functions 
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TUF of the missile control activity dynamically changes. 
The classical deadline constraint is a downward “step” 

shaped TUF. This is shown in Figure 1(d). 
Note that a TUF precisely captures the semantics 

of time constraints with non-uniform (and uniform) 
timeliness semantics. Further, TUFs decouple activ­
ity importance and urgency. Furthermore, predicates 
that are defined using TUFs of all application activi­
ties allow the specification of adaptive timeliness opti­
mality criteria. An example such criterion is to maxi­

mize, accrued (e.g., total ) utility. With utility accrual 
predicates, one can design scheduling and resource 
management algorithms that are precisely driven by 
the predicates. We call such algorithms, utility accrual 
(abbreviated as UA) algorithms. 

In many situations, an UA algorithm that seeks to 
maximize total summed utility can facilitate adapta­
tion through graceful performance degradation and 
performance improvement. For example, when re­
sources are sufficient, such an algorithm will inherently 
schedule activities and allocate resources such that 
the maximum possible total utility is obtained. Fur­
thermore, when resources are insufficient to achieve 
the maximum possible total utility, the algorithm will 
schedule activities and allocate resources such that as 
many “high” utility activities complete, as close to 
their optimal completion times as possible, thereby 
maximizing the total summed utility. 

Of course, maximizing the total summed utility may 
not always be appropriate. For example, an UA al­
gorithm might complete (say) two activities, yield­
ing utilities that sum to more than the utility that 
could have otherwise been obtained from another ac­
tivity. Now, in some situations, completing more ac­
tivities may be preferable to completing fewer activi­
ties, or completing activities having higher maximum 
utilities may be preferable to maximizing the overall 
sum, or activities with higher maximum utility may 
be more “important” regardless of the overall sum. 
Thus, in such situations, appropriate utility accrual 
predicates must be formulated (e.g., maximize number 
of activity-completions as a primary objective, while 
maximizing total summed utility as a secondary goal). 
Subsequently, UA algorithms that are driven by such 
predicates must then be designed. 

The class of UA algorithms thus facilitate the con­
struction of adaptive resource management services 
with the following distinguishing characteristics: (1) 
they allow time-critical activities including those that 

have non-uniform timeliness semantics; (2) they dy­
namically adapt to workload and execution environ­
ment uncertainties by gracefully degrading and grace­
fully improving performance; and (3) they dynami­
cally differentiate importance of activities, irrespective 
of their urgency. 

Thus, we argue that TUF/UA models constitute, 
arguably, the most effective and broadest approach 
for adaptive, time-critical resource management. 

We now overview four UA scheduling algorithms. 
These include: (1) Locke’s Best Effort Scheduling Al­
gorithm (or LBESA) [8]; (2) Dependent Activity 
Scheduling Algorithm (or DASA) [2]; (3) Utility Ac­
crual Packet scheduling Algorithm (or UPA) [10]; and 
(4) Generic Utility Scheduling algorithm (GUS) [5]. 
These are discussed in Sections 2, 3, 4, and 5, respec­
tively. In Section 6, we report experimental measure­
ments that compare the performance of these algo­
rithms on a POSIX real-time OS implementation. We 
conclude the paper and identify emerging challenges 
in TUF/UA research in Section 7. 

2. LBESA 
The LBESA algorithm [8] is the first known UA 

scheduling algorithm. The algorithm considers a task 
model, where tasks are subject to time constraints ex­
pressed using almost arbitrarily shaped TUFs, have no 
resource dependencies, and have variabilities in their 
execution times, which are stochastically expressed us­
ing random variables. Given such a model, the al­
gorithm seeks to schedule tasks so that the accrued 
utility can be maximized. 

A TUF considered by LBESA can be decreasing, 
constant, and even increasing (e.g., those shown in 
Figure 1). Further, each TUF is associated with a 
“deadline” time, which is defined as the latest time af­
ter which its utility drops below an application-specified 
percentage of its maximal utility (e.g., 90% of the 
maximal utility). This definition of “deadline” can 
handle TUFs whose utilities delay very slowly. 

Two key observations drive the design of LBESA: 
(1) If the processor is under-loaded, an Earliest-Deadline-
First (or EDF) schedule can satisfy all deadlines [7]; 
and (2) When an overload occurs, a decreasing “value 
density” order — value density of a task is defined as 
the attained task utility over its remaining execution 
time — can yield good performance. 

Based on these two observations, LBESA employs 
an additional heuristic to handle overload: When an 
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overload occurs, tasks are rejected in non-decreasing 
order of value densities until the remaining task set 
can meet all its deadlines (or is “feasible”). Then, the 
earliest deadline task in the remaining task set is se­
lected by mimicking an EDF scheduler. The rational 
of rejecting tasks in non-decreasing order of value den­
sity is to minimize utility loss as much as possible. 

Since task execution tines are stochastically described, 
LBESA computes the expected task utility, which, in 
general, requires integral over a timer interval. Fur­
ther, for tasks with increasing TUFs, LBESA com­
putes a timer instant, called earliest starting time 
(EST), after which the task can accrue at least some 
predefined utility. Thus, if such a task is released be­
fore its EST, the algorithm ensures that they are not 
eligible for scheduling until their EST. 

LBESA detects overloads, in principle, by compar­
ing task processor time demand against available time 
until the task deadline. However, due to the ran­
domness of task execution times, the algorithm com­
putes the probability of processor overload and com­
pares that with a threshold probability. The processor 
is determined to be overloaded when the computed 
probability exceeds the threshold value. 

3. DASA 
DASA advances LBESA by considering tasks with 

dependencies i.e., tasks that share resources, which 
may be subject to mutual exclusion constraints, and 
precedence relationships. However, DASA only allows 
deterministic task execution times and downward step 
TUFs, while LBESA allows stochastic task execution 
times and almost arbitrary TUFs. 

DASA makes scheduling decisions using the concept 
of potential value density (or PVD), which is similar to 
LBESA’s value density. The difference is that DASA’s 
PVD considers both the utility of a task itself and 
utilities of its dependent tasks. If the execution of a 
task Ti needs a resource R, which is currently held by 
another task Tj , then Ti is said to be dependent on 
task Tj . Consequently, task Tj has to be scheduled 
first before task Ti can be scheduled for execution. 
Thus, the dependent tasks of a task Ti include those 
tasks that must be executed before Ti such that Ti can 
access its needed resources and continue its execution. 

DASA aborts tasks for improving timeliness perfor­
mance. If an aborted task possesses shared resources, 
then extra processor time is needed to release those re­
sources. DASA uses the notion of abort time to model 
the execution time of cleanup operations on the shared 
resource, such as resetting a shared variable to a safe 
and consistent value. 

T
T

For example, suppose that task Ti needs to access 
resource R, which is currently held by another task 

j . To allow this, the scheduler can schedule task 
j to continue execution until it releases R. Alter­

natively, the scheduler can abort Tj , secure resource 
R, conduct cleanup operations on R, and grant it to 
Ti. DASA aborts task Tj if Tj ’s remaining execution 
time is longer than its abort time. Otherwise, Tj is 
executed normally. The rational behind this heuristic 
is to release resource R as soon as possible. 

T
Let Ti.Dep(t) be the set of dependent tasks of task 

i and let Rj (t) be the remaining execution time of a 
task Tj (or abortion time of Tj if it is aborted). Then, 
the potential value density of Ti at time t is computed 

U �Ui + 
�

Tk �Ti .Dep k 
as PV Di(t) = . Note that


U

Ri(t) + 
�

Tk �Ti .Dep Rk (t)

� is zero if task Tk is aborted and is the full utility


of Tk , otherwise.

At each scheduling event, DASA examines tasks in 

the task ready queue in decreasing order of their PVD 
values. The algorithm then inserts each task into a 
tentative schedule at its deadline-position and checks 
the feasibility of the schedule. Tasks are maintained 
in increasing deadline-order in the tentative schedule. 
If inserting a task into the tentative schedule results 
in an infeasible schedule, then the algorithm removes 
the task from the schedule. 

DASA repeats this process until all tasks in the 
ready queue have been examined. The algorithm then 
selects the earliest deadline task in the tentative sched­
ule (which will be at the “head” of the schedule) as the 
next task to be executed. 

Note that if all task deadlines can be satisfied, then 
DASA’s output will be the same as that of EDF. Thus, 
DASA yields the same timeliness optimality of EDF 
under identical conditions [7] i.e., for a set of indepen­
dent periodic tasks, which are subject to step TUFs, 
and when there is no overload, DASA is optimal with 
respect to meeting all deadlines and produces the min­
imum possible maximum lateness. 

k 

4. UPA 
UPA is a packet scheduling algorithm that executes 

at the MAC-layer of system nodes (e.g., hosts, switches) 
for selecting packets for outbound transmission. The 
algorithm considers a packet model, where packets 
have non-increasing, unimodal TUFs and seeks to max­
imize the sum of packets’ attained utilities. Unimodal 
TUFs are those TUFs for which any decrease in util­
ity cannot be followed by an increase. Figure 1 shows 
examples. Non-increasing unimodal TUFs are simply 
those unimodal TUFs for which utility never increases 
as time advances (see Figures 1(a), 1(b), and 1(d)). 

UPA first constructs a tentative schedule by sort­
ing packets in decreasing order of their “return of in­
vestments.” The return of investment for a packet is 
the potential timeliness utility that can be obtained 
by spending a unit amount of network transmission 
time for the packet. Thus, “high return” packets will 
appear early in the tentative schedule. The return 
of investment for a packet is determined by simply 
computing the ratio of the maximum possible packet 
utility (specified by the packet TUF) to the packet 
termination time. In [10], this ratio is called “pseudo-
slope,” since it only gives an approximate measure of 
the TUF slope. 

From this tentative schedule, packets that are found 
to be infeasible are moved to the end of the sched­
ule. The algorithm then maximizes the local aggre­
gate utility in the resulting schedule by observing that 
given two schedules �a = ≥�1, pi, pj , �2∅ and �b = 
≥�1, pj , pi , �2∅ of a packet set A, such that �1 �= 0, 
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�2 �= 0, �1 

 

�2 = A − {pi, pj }, and �1 
� 

�2 = �, the 
scheduling decision at a time t, where t = 

�
k��1 

lk , 
that will lead to maximum local aggregate utility is 
determined by computing �i,j (t), where �i,j (t) = 
[Ui (t + li) + Uj (t + li + lj )] − 
[Uj (t + lj ) + Ui (t + lj + li)] . Thus, if �i,j (t) � 0, 
then schedule �a will yield a higher aggregate utility 
than �b . 

UPA maximizes local aggregate utility by examining 
adjacent pairs of packets in the schedule, computing 
�, and swapping the packets, if the reverse order can 
lead to higher local aggregate utility. The procedure is 
repeated until no swaps are required. The packet that 
appears first in the resulting schedule is then selected 
for transmission. 

5. GUS 
GUS is a task scheduling algorithm that combines 

the models of LBESA and DASA. It considers tasks 
that have dependencies due to shared resources under 
a single-unit resource request model, and have their 
time constraints specified using arbitrarily shaped TUFs. 
Given such a model, the scheduling objective is to 
maximize the sum of tasks’ attained utilities. 

Similar to DASA, the key concept of GUS is the Po­
tential Utility Density (or PUD) metric. The PUD of 
a task simply measures the amount of value (or util­
ity) that can be accrued per unit time by executing 
the task and the task(s) that it depends upon. The 
PUD therefore, essentially measures the “return of in­
vestment” for the task. Further, by considering the 
dependent tasks in computing the PUD, GUS explic­
itly accounts for task dependencies. 

However, unlike LBESA or DASA, a TUF in GUS 
need not have a deadline time. Thus, GUS does not 
explicitly perform a feasibility test to determine whether 
or not a task’s deadline can be satisfied. Rather, it im­
plicitly checks the feasibility of a task set by ensuring 
the task set can yield positive utility. In fact, in the 
case of arbitrary TUFs, a deadline order or consequent 
deadline-based feasibility check may not be applica­
ble. Another difference between GUS and DASA lies 
on GUS’ more general resource access model. 

GUS considers the “greedy” strategy, i.e., selecting 
a task and its dependents, whose execution will yield 
the maximum utility-increase per unit time (i.e., max­
imum PUD). 

For step TUFs, the PUD of a task can be deter­
mined as the ratio of the sum of the utility of the 
task and all tasks in the dependency chain to their 
total execution time. However, it is difficult to simi­
larly compute the PUD for non-step TUFs, because a 
task can yield different utilities at different completion 
times. Further, a task may not finish its execution at 
its optimal time and thereby can accrue sub-optimal 
(positive) utility. 

To allow arbitrary TUFs, the philosophy of GUS is 
to regard the TUF as an application-specified “black 
box” in the following sense: The black box simply ac­
cepts a task completion time and returns an utility 
value. Therefore, to compute the PUD of a task T at 
time t, the algorithm considers the expected comple­

tion time(s) of the task (denoted as tf ), and possibly, 
its dependent tasks if they need to be completed to ex­
ecute task T . The expected completion times are then 
“plugged” into individual task TUFs, to compute the 
sum of the expected utilities by executing the tasks. 
Once the expected utility U is computed, PUD of task 
T at time t is calculated as U/ (tf − t). 

Thus, when triggered at a scheduling event — which 
includes task arrival and departure, and resource re­
quest and release — GUS first computes the task PUDs. 
The largest PUD task and its dependents are then 
collected and inserted into a tentative schedule. The 
procedure is repeated until all tasks are added into 
the tentative schedule, or the execution of any of the 
remaining tasks will not produce any positive utility. 

6. EXPERIMENTAL COMPARISONS 
We implemented all four UA algorithms discussed 

here and the Dover algorithm [4]. Dover is optimal 
in the sense that it has the highest possible compet­
itive ratio among all on-line algorithms for some re­
stricted cases. All algorithms were implemented in a 
scheduling framework called meta-scheduler [6]. The 
meta-scheduler is an application-level framework for 
implementing UA scheduling algorithms on POSIX 
real-time operating systems (RTOSes), without mod­
ifying the underlying OS. We use QNX Neutrino 6.2 
as the underlying RTOS. 

Figure 2: Performance of Algorithms Under 
Step TUFs and No Dependencies 

Our first experiment considers tasks with step TUFs 
and no dependencies, which is applicable for all five 
algorithms. From Figure 2, we observe that the perfor­
mance of the five algorithms do not significantly differ 
for light load and medium load conditions (workload 
is less than 0.8). However, DASA and LBESA show 
superior performance for heavy and overloaded situa­
tions. Further, we observe that GUS 1 performs worse 
than DASA and LBESA, but better than UPA and 
Dover . 

Our second experiment compares the performance 
of DASA with that of GUS for tasks with step TUFs 

1GUS was called “GBS” and UPA was called “BPA” 
then. 
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and dependencies. We would expect DASA to out­
perform GUS for this class of experiments, because 
GUS neither conducts a feasibility test, nor consid­
ers the deadline order for scheduling the feasible task 
subset. Figure 3, however, shows that GUS actually 
performs better than DASA during light workload sit­
uations. Performance of the two schedulers are very 
close during overloaded situations. This is because 
in our particular implementation, the GUS scheduler 
incurs smaller overhead than the DASA scheduler. 

Figure 3: DASA versus GUS Under Step TUFs 
and Dependencies 

Besides step TUFs, LBESA and GUS can also han­
dle almost arbitrary TUFs, and GUS can further deal 
with dependent tasks. From Figure 4, we observe that 
LBESA and GBS exhibit close performance in terms 
of accrued utility ratio. 

Figure 4: LBESA versus GUS Under Arbitrary 
TUFs and No Dependencies 

7. CONCLUSIONS, CHALLENGES 
Thus, we conclude that UA algorithms: (1) yield the 

timeliness-optimality of traditional real-time schedul­
ing algorithms (e.g., DASA); (2) outperform tradi­
tional algorithms during overloads and thus has supe­
rior adaptability; (3) allow specification of non-uniform 
timeliness semantics (e.g., LBESA, UPA, GUS); and 
(4) has reasonable overhead even at an application-
level. 

There are many emerging challenges in TUF/UA re­
search. A major challenge is to provide assurances on 
system behavior including that on individual and col­
lective timeliness behavior. Examples include proba­
bility distributions on utility attained individually and 
collectively. None of the existing UA algorithms pro­
vide such assurances. 

Other challenges include developing a methodology 
for designing TUFs. TUFs are currently empirically 
designed by application designers [9], [1]. An analyti­
cal foundation that provides assurances on UA-system 
behavior can help toward a systematic methodology 
for designing TUFs. 

Existing UA algorithms are also restricted on the 
collective timeliness optimality of maximizing the sum 
of activities’ attained utilities. Other timeliness opti­
mality criteria are possible. Examples include max­
imizing the weighted sum of activities attained util­
ities and the number of activity completions before 
non-zero or non-negative utility times. 

Finally, the intersection of UA scheduling and most 
other resource management problems such as memory 
management and power management are open. 
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