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Abstract

In this review, we summarize recent accomplishments in literature data mining for biology. We then discuss
the need for a challenge evaluation for this field, and initial steps to create such an evaluation. Literature
data mining has progressed from simple recognition of terms to extraction of interaction relationships from
complex sentences, and has broadened from recognition of protein interactions to a range of problems such as
improving homology search, identifying cellular location, or recognizing trends and themes in the literature.
Given this explosion of research, we argue that the time is now right to create a challenge evaluation focused
on one or more problems of immediate biological relevance. A challenge evaluation will give rise to a shared
infrastructure, including annotated training and test data, and shared evaluation methods. This would enable
researchers to compare approaches and share information, leading to accelerated progress in the field. In
this context, we describe two specific applications: extraction of biological pathways from the literature and
automated database curation. For each of these, we outline the task definition, the creation of an annotated
corpus, and evaluation metrics.

1 Introduction

Even though the number and the size of sequence databases are growing rapidly, most new information relevant
to biology research is still recorded as free text in journal articles and in comment fields of databases like the
GenBank feature table annotations. As biomedical research enters the post-genome era, new kinds of databases
that contain information beyond simple sequences are needed, for example, information on cellular localization,
protein-protein interactions, gene regulation and the context of these interactions. The forerunners of such
databases include KEGG [1], DIP [2], BIND [3], among others. They are still small in size and are largely
hand curated. The development of reliable literature data mining technologies can accelerate their growth.

This paper reviews some recent accomplishments and applications of literature data mining technologies
to biology. Section 2 reviews the work in terms of depth, and Section 3 shows the breadth of recent work.
Most of the early work on automated understanding of biomedical papers concentrated on analytical tasks
such as identifying protein names [4] or relied on simple techniques such as word co-occurrence [5] and pattern
matching [6]. More recently, we have begun to see work based on more general natural language parsers that
could handle considerably more complex sentences [7, 8]. This year, we see the emergence of sophisticated
natural language technologies that can handle anaphora, as well as extracting a broader range of information [9,
10, 11, 12, 13, 14]. For the past three years, the Pacific Symposium on Biocomputing series has had a track
dedicated to natural language processing and information extraction in biology. The response to the call for
papers and the quality of the submitted papers mark this as an emerging field which combines bioinformatics
and natural language processing in innovative and productive ways.

It is also apparent from these papers that there is no common yardstick for impartially assessing and
fairly comparing the performance of these systems. We think it is important to the development of the field
to organize a set of biologically significant challenge problems and to set up the corresponding evaluation



benchmarks. We motivate this proposal by drawing from the experience in the newswire domain, where
literature data mining techniques have been demonstrated to work well. Results from various evaluations
show that information extraction systems can identify and classify names of person, organization, location,
etc. at an accuracy of greater than 90%; and they can successfully extract binary relations among these
entities, such as “ORGANIZATION located_at LOCATION” or “PERSON works_at ORGANIZATION” [16],
at over 80% accuracy. In addition, other information access and retrieval techniques have proved effective
in selecting documents relevant to a specific topic or to providing answers to questions based on information
located in document collections: the leading systems can provide correct answers to factual queries at 75-85%
accuracy [17].

Much of the progress in the newswire domain has come about because of systematic common evaluations
conducted in natural language processing and information retrieval at the series of Message Understanding
Conferences (MUC) [18, 19, 16] and Text REtrieval Conferences (TREC) [20, 17, 21]. Having a “challenge
evaluation” for literature data mining in Biology can benefit biology in the way that the CASP evaluation®
has accelerated progress in developing computational models for protein folding. The second half of this paper
is devoted to this issue. Section 4 describes the goals of a challenge evaluation and the ingredients needed
for a successful evaluation. Section 5 and Section 6 illustrate how a challenge evaluation can be set up in the
areas of extraction of biological pathways and automated database curation.

2 Recent Accomplishments: Increasing Depth

We provide here a brief survey on extracting the interactions between proteins, drugs, and other molecules.
The surveyed works illustrate the progress of the field and show the increasing depth of the natural language
processing techniques that have been used.

Fukuda et al. [4] was a pioneer of the field. In this early paper, the focus was on identifying protein
names. They encountered many protein names that were very long compound names; also, different names
were used to identify the same protein, even within the same article; and furthermore, some protein names
were also common English words. The solution proposed was to make use of special characteristics such as
the occurrence of uppercase letters, numerals, and special endings to pinpoint protein names. While they did
not report the precision of their method, a similar approach taken by a team at Molecular Connections Pvt
Ltd of India suggested that a precision or specificity of over 70% was easily obtainable at an estimated recall
or sensitivity of over 70%. The development of a large biology-specific corpus by Ohta et al. [22], together
with techniques based on Hidden Markov Models [23] or on Bayesian classifiers trained on k-grams [24], would
further raise both sensitivity and specificity in recognizing protein names.

Shortly after that, the field progressed rapidly beyond the problem of recognizing names and entered the
realm of recognizing interactions between proteins and other molecules. The early works on this topic could
be roughly divided into two main approaches. The first approach, represented by Stapley et al. [5] extracted
co-occurrences of gene names from MEDLINE documents and used them to predict their connections based
on their joint and individual occurrence statistics. This approach was subsequently followed up by Ding et al.
[9], who systematically examined the impact on recall and precision of mining interaction information when
an abstract, a sentence, or a phrase is used as the unit in which to check for term co-occurrence. The second
approach, represented by Ng et al. [6], used templates that matched specific linguistic structures to recognize
and extract protein interaction information from MEDLINE documents.

The pioneering work of Ng et al. was productively pursued by the use of natural language processing
techniques of increasing sophistication. Wong [25] expanded the number of templates to increase sensitivity.
Park et al. [7] introduced a bidirectional incremental parsing technique based on combinatory categorial
grammar. Yakushiji et al. [8] used a full parser with a large-scale general-purpose grammar to analyze the
argument structure in MEDLINE abstracts. While no extensive and careful validation results were available on
these systems, their specificity was estimated in the 60%-80% range. All these papers could handle sentences
whose structures were more complex than those handled by Ng et al. However, none of them could handle
pronouns. And the overall sensitivity (recall) of these more complex systems remains an issue.

Most recently, works were reported that address the pronouns and co-referring sentences. Pustejovsky
et al. [12] presented a robust parser for identifying and extracting inhibition relations from biomedical lit-
erature. The system uses a corpus-based approach to develop rules specific to a particular predicate or a

L Critical Assessment of Techniques for Protein Structure Prediction; see http://predictioncenter.llnl.gov/.



class of predicates. An interesting feature of this system was its anaphora resolution module. The results
reported in this paper focused on inhibition relations and demonstrated that it was possible to extract limited
but biologically important information from free text with high reliability using a classical natural language
processing approach. Hahn et al. [10] described the MEDSYNDIKATE natural language processor designed
for acquiring knowledge from medical reports. The system was capable of analyzing co-referring sentences
and was also capable of extracting new concepts given a set of grammatical constructs. Leroy et al. [11]
presented the GeneScene system whose parser used prepositions as entry points into phrases in the text, in
contrast to the main trend which used verbs as entry points. It then filled in a set of basic templates of
patterns of prepositions around verbs and nominalized verbs. It also had a set of rules for combining these
templates to extract information from more complex sentences. Again, extensive and careful validation results
were not available on these systems. However, based on small-scale experiments, these systems should have
higher performance. For example, Pustejovsky et al reported that their system achieved 90% specificity at
57% sensitivity for extraction of inhibition relations.

3 Recent Accomplishments: Increasing Breadth

Besides the recognition of protein interactions from scientific text, natural language processing has also been
applied to an increasingly broad range of information extraction problems in biology, such as identifying
cellular localization, improving homology search, recognizing themes and trends, etc. This section provides a
brief description of some recent applications of information extraction.

Baclawski et al. [26] described a diagrammatic knowledge representation technique called keynets. The
rich ontology of the Unified Medical Language System was used to construct and index keynets. Using both
domain-independent and domain-specific knowledge, keynets parsed texts and resolved references to construct
new relationships between entities.

Humphreys et al. [27] described two information extraction applications in bioinformatics based on tem-
plates. The first application, EMPathIE, extracted details of enzyme and metabolic pathways from journal
articles. The second application, PASTA extracted information on the roles of amino acids and active sites
in protein molecules from journal articles. This work illustrated the importance of template matching, and
applied the technique to terminology recognition.

Rindflesch et al. [28] described EDGAR, a natural language processing system that extracted relation-
ships between cancer-related drugs and genes from biomedical literature. EDGAR drew on a combination of
technologies: a stochastic part of speech tagger, a syntactic parser able to produce partial parses, a rule-based
system, and semantics information from the Unified Medical Language System. The metathesaurus and the
lexicon in the knowledge base were used to identify the structure of noun phrases in MEDLINE texts.

Thomas et al. [29] presents the customization of an existing information extraction system called Highlight
for the task of gathering data on protein interactions from MEDLINE abstracts. They developed and applied
templates to every part of the texts and calculated the confidence for each match. The resulting system could
provide a cost-effective means for populating a database of protein-protein interactions.

Chang et al. [30] modified the PSI-BLAST algorithm to use literature similarity in each iteration of
its database search. They showed that supplementing sequence similarity with information from biomedical
literature search could increase the accuracy of homology search result.

Tliopoulos et al. [31] described an algorithm for large-scale clustering of MEDLINE abstracts based on a
statistical treatment of terms, together with stemming, a “go-list”, and unsupervised machine learning. In
spite of the minimal semantic analysis, clusters constructed in this paper provided a shallow description of the
documents and supported concept discovery.

Stapley et al. [13] used a support vector machine to classify terms derived by standard term weighting
techniques in order to predict the cellular location of proteins from their description in abstracts. The per-
formance of the classifier on a benchmark of proteins with known cellular locations was better than that of a
support vector machine trained on amino acid composition and was comparable to an expertly hand-crafted
rule-based classifier [15].

Wilbur [14] formalized the idea of a “theme” in a collection of documents as a subset of the documents
and a subset of the indexing terms such that each element of the latter had a high probability of occurring
in all elements of the former. An algorithm was given to produce themes and to cluster documents according
to these themes in an optimal way. The result of applying this method to over fifty thousand documents on
AIDS was given as an illustration.



4 Organizing a Challenge Evaluation

The papers described in the preceding sections illustrate the enormous potential for the application of natural
language processing and literature data mining techniques to biology. These techniques can be applied to the
extraction of biological pathways, to the curation of biomedical databases, or to improving access to on-line
literature. However, to date, few of these techniques have made it into routine use to help manage biological
information.

To understand which techniques will work on which problems, we need to do systematic evaluation of these
techniques. We propose that we can do this by defining biologically motivated common challenge problems
that will attract a diverse set of researchers to solve these problems. A challenge problem would focus on
a specific problem of biological importance; the organizers of the challenge problem would provide training
data, blind test data and evaluation metrics. These would be presented to the research community, who would
provide running systems that would be evaluated using a standard set of evaluation metrics. The participants
would then meet, to discuss their experiences and learn from each other’s experiences, to understand what
worked and what didn’t work.

We can identify the set of ingredients for a successful evaluation:

e Challenge problem. This should be a problem of biological significance, preferably one already being
addressed, such as literature search to assemble biological pathways, or creation of specialized databases
to organize information and make it accessible.

e Task definition. This defines the criteria for evaluation—what constitutes a “correct” answer in the
context of the challenge problem. This requires a formal specification of the target output. For the
biological pathway task, this might be a formal relational language consisting of a set of predicates
(activate, inhibit,...), and classes of entities that can participate in that relationship (see Section 5 for
examples). For the database curation task, it might consist of entries conforming to some specific ontology
or nomenclature as specified by the database curators (see Section 6 for examples).

e Training data. To enable developers to build systems that solve the “challenge problem,” developers need
annotated data that can be used as “practice tests”—with the right answers provided. For a biological
pathway, this might be a set of documents and the relations extracted from each of the articles. For
a database curation task, it would be the database entries and the set of documents referenced in the
curation. In addition, the training data must specify the linkage between the extracted information and
the occurrences (phrases or sentences) in the associated article that provide the evidence for the extracted
information. These linkages are the annotations that make it possible to create rules that map from the
free text occurrence of information to the required target output.

e Test data. Once the system is built, it must be evaluated against blind test data—data that neither the
system nor the developers have previously seen. This makes it possible to assess the generality of the
solution. Note that the test data may not need to have the linkages annotated: it is sufficient to supply
the input (free text) and target output.

e Evaluation methodology and implementation. The definition of a formal evaluation methodology is a key
part of creating a challenge problem. There must be a reproducible method of evaluating system perfor-
mance on the defined problem. Ideally, there would be an automated evaluation method and supporting
software. This would allow participants to grade themselves on the training data (the “practice tests”);
automated evaluation also supports system development techniques such as iterative hill climbing and
machine learning.

e Evaluator. There must be a neutral group who runs the evaluation. The evaluator is responsible for
providing the test data, for collecting the system runs on the test data, and for evaluating those runs.

e Participants. Any evaluation is only as good as the groups (and systems) that participate in it. Therefore,
it is critical to identify beforehand a core set of groups who would be willing to perform such an evaluation,
if the rest of the infrastructure were provided.

e Funding. To create a successful challenge evaluation, there must be funding for the infrastructure. The
evaluation itself must be funded (in particular, the designated evaluator group), and finally, participants
are more likely to participate if there is funding associated with the evaluation. For the participants,
the association with funding may be indirect, e.g., it may be sufficient that there are funded programs
(government or private) that might directly or indirectly reward good results in such an evaluation.



We next look at two examples of challenge problems: the extraction of biological pathways from the
literature and techniques for automating database curation.

5 Extraction of Biological Pathways

To a biologist, a biological pathway is generally a chain of events and decision points that pertain to specific
biological functions, such as the production of a desaturated fatty acid. In contrast to the situation with genes,
where a detailed ontology for their classification and annotation has been established [32], there is no widely
accepted ontology for biological pathways. Moreover, the ideal ontology that most closely reflects biological
pathways as a biologist sees them may not be suitable for information extraction tasks. Here, we adopt a
more relaxed view instead and consider biological pathways as a network of interactions and events between
proteins; drugs, and other molecules. We propose three layers of challenges with respect to this more relaxed
view. At the first layer, the task is to recognize names of proteins, drugs, and other molecules. At the second
layer, the task is to recognize basic interaction events between molecules. At the third layer, the task is to
recognize the relationships between the basic interaction events.

Before we describe the three tasks above in more detail, let us first set up the framework for benchmarking
these tasks. The framework is oriented towards information extraction rather than deep natural language
understanding. That is, we see each task as filling in a set of prescribed templates for each problem, as
opposed to obtaining detailed parse trees and complete semantic representations of each sentence. We have
three reasons for this orientation. First, filling in a template is closer to the application scenario of filling
in a database table. Second, information extraction may not necessarily be syntax-based, and hence the
present choice allows us to assess a broader range of techniques. Third, we do not have grammars that provide
sufficiently broad coverage for the language found in the biomedical literature. This is because the language
is complex, parsers are not yet that robust, and because the articles or abstracts may not always be written
in grammatical English.

The framework is as follows. A number of test databases are constructed. Each test database is organized
as a set of records. Each record should have a piece of text to be tested and a list of expected facts. The text
can be at the sentence level, the abstract level, or the entire article level. The list of expected facts should
contain everything that a “perfect” information extractor for the task on hand can extract and nothing else.
For convenience, each fact can be thought of as a short sentence in a highly standardized form such as “P;
activate P,”. More abstractly, we see a test database db as a set {(t1, F1), ..., (tm, Fm)}, where ¢; are the texts
and F; = {fi,1, ..., fi,n; } are expected facts. There are two primary levels of evaluation. The first is at the
level of individual records. The second is at the level of the entire test database.

The traditional performance evaluation of information retrieval systems calls for the following. At either
level, we evaluate the sensitivity (or recall) and specificity (or precision) of an information extractor E against
the list of expected facts, where

TP(E)
TP(E) + FN(E)

TP(E)

recall(E) = TP(E) + FP(E)

precision(E) =

The definitions for TP(E) (ie. true positives), FN(E) (ie. false negatives), and FP(E) (ie. false positives)
depend on whether we are evaluating at the record level or at the database level. Note that it is not possible
to define the usual notion of true negatives in our context because there is no theoretical bound on the number
of “facts” that can be generated from a sentence and because it is not reasonable to use the closed world
assumption in biology. At the record level, each expected fact in a separate record is counted as a separate
instance. If E(t) is the set of facts that E extracts from a text ¢, then

TP(E)= Y |E@)N F| FN(E)= Y  |F|-TP(E) FP(E)= Y |E(t)|- TP(E)

(t,F)edb (t,F)edb (t,F)edb

At the database level, all different instances of an expected fact are counted as one. Then we have instead

tP(E)=| |J BW)n F| FNE)=| | ] F|-TP(E) FP(E)=| |J E®)|- TP(E)
(t,F)edb (t,F)edb (t,F)edb



However, it is not straightforward to compare two information extractors each characterized by a pair of
numbers. The usual mechanism in diagnostic systems is to generate a range of precision numbers over a range
of recall numbers to derive a single number called the area under the relative operating characteristic curve
(the aROC number) [33] and compare the aROC numbers of two systems. Unfortunately, it is not always
possible to obtain aROC numbers of the information extractors we are considering because they are typically
not based on a continuous decision threshold. In order to choose an alternative, two conditions should be
imposed [34]. The first condition is that it must be able to distinguish the ideal information extractor from
the worst information extractor. The second condition is that it shows a gradual and strictly monotonic change
in value when the information extractor is changed from the worst to the best one. Note that neither recall
nor precision alone satisfies these two conditions.

Many choices that satisfy these two conditions are possible [34, 35]. However, many of them depend
on the definition for “true negatives”, which is not available in our context. So we propose a variation of
the simple matching coefficient (SMC) which simply measures the probability of the information extractor
correctly extracting a fact.? It is defined as follows and is easily verified to satisfy the two conditions above:

_ TP(E)
T~ TP(E)+ FP(E) + FN(E)

SMC(E) , 0<SMC(E) <1

Now we return to our three information extraction tasks. The first task is obvious. We want to recognize
proper names of proteins, drugs, and other molecules mentioned in texts. We do not want to recognize names
of authors, processes, and any other entities mentioned in these texts.

The second task is slightly more complicated. We want to recognize interaction events between proteins,
drugs, or other molecules. These events should include events of transcription, translation, post transla-
tional modification, complexing, dissociation, and other similar interactions. If we view each fact as a highly
standardized short sentence, we can propose a grammar for them:

PositiveEvent ::= P phosphorylate P [on T] [at L]
P dephosphorylate P [on T] [at L]
P ubiquinate P
P acetylate P

|

|

|

| P interact-with P [to-produce P]
| P [at L] bind-to P [at L] [to-produce P]
| P dissociate [to-produce P+]
| P degrade P

| P activate-transcription P [to-produce P]
| P inhibit-transcription P

| P activate [F activity-of] P

| P inhibit [F activity-of] P

| P transport P [from C] [to C]

Event == PositiveEvent [mediated-by P+] [independent-of P+]
| not PositiveEvent [mediated-by P+] [independent-of P+]

In the grammar above, P denotes proteins, drugs, or other molecules; T" denotes amino acids; L denotes
positions; F' denotes biological function; and C' denotes cellular locations. In evaluating an information extrac-
tor for this task, we can further consider its performance with or without extracting the optional components
in the grammar. In the few clauses where a plurality of P’s are expected (ie. the P+’s), we can consider the
situation of a complete or an incomplete match.

2A related metric has been proposed in the spoken language processing community for measuring transcription accuracy for
transcribing audio input into text (word error rate) and for identifying entities and relations among entities (slot error rate) [36].
The error rate is the ratio of insertions, deletions and substitution errors divided by the true positives. In our context, we can
interpret insertions as false positives and deletions as false negatives; substitutions are not directly relevant. Another related measure
is the F-measure, defined as the harmonic mean of recall and precision. That is, F(E) = (2 X recall(E) x precision(E))/(recall(E) +
precision(E)). After substituting the definitions for recall and precision, this reduces to F(E) = (2xTP(E))/(2xTP(E)+ FN(E)+
FP(E)). There is no intuitive statistical reason for having the multiplicative factor of 2 on TP(E). However, if we drop this
multiplicative factor, the result is precisely SMC(E).



It is important to understand that this grammar is not intended as a grammar for parsing scientific texts.
Rather, it is more appropriately treated as a grammar defining a set of target representations; the goal is
to convert pertinent parts of scientific texts into these relations. As such, an information extractor should
convert or normalize different expressions of the same fact into the semantically closest standard form in the
grammar. It should not make fine distinctions between different sentence forms. For example, it should convert
“camptothecin, an inhibitor of human TOP1” to “camptothecin inhibit TOP1”. It should also not make fine
distinctions between shades of meanings. For example, “caspase-8 was also stimulated by NB-506" is mapped
to “NB-506 activate caspase-8”.

The third task is to recognize relationships between the basic events already outlined above. In contrast to
the basic events which focus on interactions between molecules, this task is focused on the causal and temporal
relationships between two such events. The grammar we propose for them is given below.

Relationship == Event [is-caused-by Event+] [provided Event+]
| Event [is-independent-of Event+] [provided Event+]
|

Event [is-inhibited-by Event+] [provided Event+]

The intention of a relationship such as “Ej is-caused-by E» provided E3” is as follows. The event Ej3 is
assumed to have taken place some time in the past and its resultant conditions have remained true. This
allows event Fs to take place and as a result the event E; will also take place at the completion of E». Again,
an information extractor should convert or normalize different expressions of the same event relationships
into the semantically closest standard form in the grammar. For example, statement A8 in the appendix of
Kohn [37], “c-Abl tyrosine kinase activity is blocked by pRb, which binds to the c-Abl kinase domain”, would
be mapped according to the grammar as “(pRb inhibit tyrosine kinase activity-of c-Abl) is-caused-by (pRb
bind-to c-Abl at kinase domain).”

Having now described the three tasks, we would also like to propose some candidates for forming the
benchmark databases for these tasks. We would like to suggest that the appendix of the paper by Kohn [37]
as one of the candidates. This appendix lists about 200 statements of interaction events and has sentences of a
fairly complex form. Another candidate is the set of MEDLINE abstracts matching the term “Topoisomerase
inhibitors.” Presently this set includes just over 200 abstracts. A preliminary analysis shows that they contain
less than 1000 names and less than 200 interaction events. These numbers are small enough for a small team
of experts to construct a benchmark database manually.

6 Automated Database Curation and Ontology Development

Automated database curation and ontology development represents a second challenge application. Automated
curation is important because the rate of published experiments is outstripping the ability of database curators
to keep up with the relevant literature. In addition, automated curation techniques could allow curators to
check the consistency and completeness of their databases. Associated with the curation problem is the
database interoperability issue arising from the voluminous, heterogeneous, and distributed data. There is a
growing recognition that the adoption of standard nomenclature, controlled vocabulary, and common ontologies
are critical to interoperation and integration of biological data. Data integration into a knowledge base system
is necessary for answering complex biological questions that may typically involve querying multiple sources. In
particular, interesting relationships between database objects, such as relationships among protein sequences,
families, structures, and functions, can be readily revealed. An ontology is a semantic model that contains a
shared vocabulary and classification of concepts in a domain. An ontology is valuable for query expansion in
mining scientific literature and integrating data from heterogeneous sources. It is also important for consistent
database curation where functional conservation is annotated with a common language.

Database curation is interesting for another reason: curated databases represent a repository of “gold
standard” data. A database entry is typically associated with the literature references from which it is
derived—this means that the human curator has already done the extraction from the literature. Craven and
Kumlien [38] reported an experiment in which they were able to use the subcellular localization field of the
Yeast Protein Database [39]. They collected instances of this relation from the database, traced the references
associated with each database entry back to the PubMed abstract, and then within each abstract, identified,
where possible, the sentence within the abstract that gave rise to the annotation. This gave them a set of
extracted relations (from the database) and the underlying text sources (sentences from the abstracts). They



were then able to train and compare several classifiers that extracted the desired localization information. This
experiment is suggestive of the ways in which curated databases can be exploited to create “cheap” annotated
corpora. It is relatively straightforward to associate the entry in a database field with the underlying article
from which it is derived. The harder part is to provide an explicit linkage from the database entry to the
phrases and sentences from which it is derived. When the database uses a controlled vocabulary or an ontology
to define legal entries for each field, the phrases appearing in the journal article or abstract may not correspond
to the actual entry in the database.

In the examples below, we see some of the possible relations between the mention in the literature and its
representation in the fields of the database. The example is from the FlyBase genome database [40], where each
entry report contains attributed data with hotlinks to the articles from which the information was derived.
The first list shows three fields from the polypeptide Appl+P130kD (FBpp0002057) entry, each containing an
associated reference [41].

1. Protein size (kD): Luo et al, 1990 130
2. Cell location: Luo et al, 1990 axon
3. Expression pattern: Luo et al, 1990
Stage Tissue/Position
Embryo Embryonic Central Nervous System
Embryo Peripheral Nervous System

The next list contains sentences extracted from the abstract of the Luo et al. [41] article cited above. The
phrases in boldface show the specific source of information within each sentence.

1. APPL is synthesized as a ... precursor that is converted to a 130-kDa secreted for ...
2. APPL immunoreactivity was observed in ... axonal tracts, ...
3. In the embryo, APPL proteins are expressed exclusively in the CNS and PNS neurons ...

Even in this very small sample, we see that simple pattern matching suffices in phrase 1 to find 130-kDa,
complex morphology is needed in phrase 2 to associate azonal tract with “cell location: axon”, and we must
decode abbreviations (CNS = central nervous system, PNS = peripheral nervous system) as well as using
information derived from multiple parts of the sentence in phrase 3. A larger sample would contain many
more complex mappings between database fields and the underlying literature reference, including entries that
require resolution of coreference across sentences or entries that require an analysis of the underlying syntactic
relations among entities.

To create an annotated corpus from a curated database, we need to map from entries in database fields
back to the text. To do automated database curation, we need the inverse mapping from free text to database
entry. We believe that we can create a reversible set of tools that can be used in either direction: mapping
from database field to literature or mapping from literature to database. By providing collections of linked
pairs of database entry and associated text for use as training and evaluation sets, we would enable many
researchers to participate in building tools to automate the database curation process. Although the database
curation application is different in its structure from the biological pathway detection experiment outlined in
Section 5, it is amenable to the same kinds of automated evaluation techniques outlined there.

As with automated database curation, ontology development can also exploit knowledge accumulated in
curated databases and literature. Presented below is a potential knowledge base for protein name ontology.
A protein name ontology might be constructed out of a data dictionary and thesaurus of terms and their
relationships. Such an ontology is important, because the protein name is the form in which a protein object
is referred to and communicated in the scientific literature and biological databases. There is, however, a
long-standing problem of nomenclature for proteins, where profligate and undisciplined labeling is hampering
communication, as discussed in Nature 1997 [42]. Scientists may name a newly discovered or characterized
protein based on its function, sequence features, gene name, cellular location, molecular weight, or other
properties, as well as their combinations or abbreviations. Ontology development, nevertheless, requires
knowledge acquisition from scientific literature and substantial human effort. Established natural language
processing technologies in information extraction, classification and ontology induction can be applied to
the protein domain for automated construction of synonym relations among protein names and subsequent
classification in terms of the GO functional hierarchy. This would permit greatly enhanced retrieval, using the
many synonyms and hypernyms (superordinates) for a given protein name.



A protein knowledge base suitable for ontology development could be developed from curated PIR protein
databases (PIR-NREF and iProClass) [44], Gene Ontology (GO) [32], and information extracted from MED-
LINE abstracts (Figure 1). The PIR-NREF (Non-redundant REFerence) sequence database contains compos-
ite protein names and a bibliography of all published protein sequences. The bibliography is hypertext-linked
to PubMed for direct online abstract retrieval. The iProClass (integrated Protein Classification) database [43]
provides comprehensive superfamily-domain-motif relationships and structural and functional features of pro-
teins, with links to GO via enzyme (EC) number and keywords. Given the association of database entries and
underlying articles, the knowledge base would be ideal for creating annotated corpora containing both protein
names (terms) and relationships (isa, homologous_to, has_function) among the protein terms.

The PIR-NREF database provides a timely and comprehensive collection of all protein sequence data,
keeping pace with the genome sequencing projects and containing source attribution and minimal redundancy.
It currently consists of more than 850,000 sequences from PIR, SwissProt [45], TrTEMBL, RefSeq [46], GenPept,
and PDB [47], clustered by sequence identity and taxonomy at the species level. The NREF database can
be used to develop an initial ontology of protein names and to identify the relationships among terms (e.g.,
isa, function_of). By looking across annotations for related proteins, it may be possible to detect annotation
errors or discrepancies (Figure 2).

The composite protein names from all underlying protein databases, including synonyms, alternate names,
and even misspellings, constitute an initial dictionary of terms that can help ontology development. As
illustrated in Figure 2A, a protein may be variably named based on its function at different hierarchical
levels (“ATP-dependent RNA helicase” vs. “RNA helicase”), motif sequence similarity (“DEAD/H box-5),
molecular weight (“protein p68”), or combinations of names (“RNA helicase p68”). A protein may also be
named based on gene name. The gene-based names are organism-specific, whereas function- or similarity-
based names are usually applied across wide taxonomy ranges. For example, “DRH1” and “DBP2” are names
specific to Arabidopsis thaliana and Saccharomyces cerevisiae (reports not shown), respectively. The different
protein names assigned by different source databases may also reveal relationships among terms or annotation
errors. The mixed occurrences of two protein names, “eukaryotic translation initiation factor eIF-4A” and
“RNA helicase”, (Figure 2B) for the protein entry is a reflection of sequence similarity (i.e., a relationship)
shared by common domains and motifs, as described both in iProClass report and MEDLINE abstracts (see
below). In another example (Figure 2C), the protein entry is named by three sources as a single-function (EC
3.5.4.19), bifunctional (EC 3.5.4.19, 3.6.1.31), and trifunctional (EC 3.5.4.19, 3.6.1.31, 1.1.1.23) protein. The
source name attribution, thus, provides clues for potentially incompletely or mis-annotated proteins.

The composite bibliography information in NREF with PubMed cross-references can be used for direct
online abstract retrieval and extraction of additional synonyms or related terms. Through hyperlinks in the
databases, one can trace back to the MEDLINE abstracts to identify the sentences within each abstract
that contain the protein names and/or their relationships. Information extraction techniques could be used
to associate a set of relations (from the database) with their underlying text sources (sentences from the
abstracts). Once these are linked, they can be used as training and test sets for developing extraction systems
for protein names and relations. These data sets can also be used as test cases for automated classification
into existing ontologies (e.g., GO) or even development of ontology induction algorithms.

Figure 3 shows terms and relationships retrievable from MEDLINE abstracts based on curated protein
names in the NREF database. The reference (PMID: 2451786) cited in the entry shown in Figure 2A asserts
that “p68” has extensive homology with “translation initiation factor eIF-4A” and that “eIF-4A” acts as an
“ATP-dependent RNA helicase”. Here, the phrase “acts as” implies a new functional relationship between
“eIF-4A” and “RNA helicase”, extending beyond the extensive homology relationship, and provides a basis
for the interchangeable use of the two names in the example entry in Figure 2B.

The GO consists of three ontologies for molecular functions, cellular locations, and biological processes.
The terms, together with their definitions and synonyms, are organized in a network architecture (with one
or multiple paths to terms). As majority of proteins are named based on their functions or similarity to
proteins of known functions, aligning protein names to the widely adopted molecular function GO will help
address the database interoperability issue for protein nomenclature. The mapping of protein names to the GO
functional hierarchy can also help resolve names that reflect functional characterization at different granularity
or alternative functions. For example, “ATP-dependent RNA helicase” is identified as a kind of (isa) “RNA
helicase” (higher hierarchical level, Figure 4A). As stated in reference PMID: 9592148 (abstract not shown),
the protein has also been identified alternatively as a kind of “ATPase” (alternative path to term, Figure 4B).

Data sets for training and validating ontology classification algorithms and ontology induction techniques



could be compiled from the protein knowledge base assembled from NREF, using synonyms, protein families
and functional relations to improve search accuracy and database curation. As discussed above, composite
names in NREF may reveal annotation errors. Thus it is critical to differentiate valid from incorrect names
when compiling data sets. Protein family classification allows systematic detection of genome annotation
errors when it is based on both global and local similarities at the superfamily (whole protein), domain (struc-
tural/functional unit), and motif (structural/functional site) levels. Such comprehensive family relationships
are described in iProClass. Figure 5 shows the iProClass report of the “ATP-dependent RNA helicase” NREF
entry in Figure 2A. It clearly indicates that the entry is a member of the PIR superfamily [48] SF001321,
with several characteristic sequence features, including two Pfam domains [49] (PF00270 and PF00271), one
ProClass/ProSite motif [50] (PCM00039), and three sites (nucleotide-binding motifs A and B, and DEAD
motif).

In order to benchmark how such extended ontologies could improve retrieval, database interoperability
and consistency checking, “gold-standard” data sets could be generated using members of well-characterized
protein families that contain positive identifications of sequence features. The retrieval performance using
these “gold standard” sets could be compared to retrieval performance of automatically derived synonym sets
and ontologies for that set of proteins.

7 Conclusion

This review illustrates both the promise of literature data mining and the need for challenge evaluations. It
shows how current language processing approaches can be successfully used to extract and organize information
from the literature. It also illustrates the diversity of applications and evaluation metrics. By defining several
biologically important challenge problems and by providing the associated infrastructure (annotated data and
a common evaluation framework), we can accelerate progress in this field. This will allow us to compare
approaches, to scale up the technology to tackle important problems, and to learn what works and what areas
still need work.

We should also point out that in this review we have primarily used papers from Proceedings of Pacific
Symposium on Biocomputing as this has so far been the only conference that has a dedicated track on natural
language processing in biology and the papers reported therein were quite representative of the progress made.
There are other papers [51, 52, 38, 53, etc.] that we did not discuss and they would be worth further reading
to gain a more comprehensive understanding of the field.
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