
Some Security Concerns Regarding

PPP{EAP{TLS�

Jonathan Herzog

jherzog@mitre.org

The MITRE Corporation

MP 00B0000019

August 1, 2000

1 Introduction

The Point{to{Point Protocol (PPP) [9] is an IETF standard for multiplexing

the datagrams of multiple network protocols over a point{to{point link. Like

several other standards, PPP has undergone constant revision and evolution

since its inception, including the addition of cryptographic security mechanisms.

Although mechanisms for authentication and con�dentiality were present in the

original drafts of PPP, these mechanisms have been signi�cantly revised and

expanded in later documents. In particular, RFC 2716 [1] proposes a way in

which the Transport Layer Security (TLS) protocol [3] can be used to secure a

PPP connection.

In this note we examine this RFC and note some unresolved issues and

concerns. We will start by briey describing some of the beginning phases of

a PPP connection, particularly those related to security. We will then turn to

TLS, touching on those aspects of the protocol relevant to its use in PPP. We

will then detail some concerns regarding the suggested use of TLS, and conclude

with some suggestions.

2 PPP

The Point{to{Point Protocol is a data link layer (Layer 2) protocol, lying be-

tween the physical layer (e.g., Ethernet, ATM) and the network layer (e.g., IP).

It is responsible for con�guring a single connection, framing packets, fragmenta-

tion and reassembly, and multiplexing the datagrams of higher protocols. The

connection is assumed to be between a single pair of peers, such as a modem

� c2000 The MITRE Corporation. All Rights Reserved.

1

connection or dedicated link. PPP is not responsible for reliability, addressing,

or routing.

During initialization the connection passes through several phases, only some

of which will be detailed here. At the beginning of the protocol the physical

connection is assumed to be in the Dead state. By some external mechanism,

the PPP implementation is then informed that the connection is Alive and ready

to be con�gured.

The �rst phase of the PPP life-cycle, the Link Establishment Phase, is reg-

ulated by a sub{protocol known as the Link Control Protocol (LCP). Various

aspects of the connection are negotiated during this phase, such as encapsulation

format options, packet sizes, and whether the connection is to be authenticated

before used.

If so, and once the connection has been established by LCP, the connection

can progress into an optional Authentication Phase. During this phase, the

Extensible Authentication Protocol (EAP) [2] is used to negotiate the manner

of authentication. As its name indicates, EAP can choose between any number

of authentication mechanisms, several of which are de�ned separately.

Because PPP is a peer{to{peer protocol, it is assumed that authentication

will be requested by each party that desires it. The party that makes the request

(called the \authenticator") will actually send one or more messages to the peer,

each specifying an individual authentication method. The peer then chooses one

of these authentication methods and completes its side of the protocol. Note

that the peer authenticates itself to the authenticator ; it is the authenticator

that will be sure of the identity of the peer. If the peer wishes for reciprocal

authentication, it is responsible for making its own authentication requests and

assuming the role of authenticator in those runs of EAP. It is explicitly stated

that this could result in two authentication methods being used, each providing

authentication in a di�erent direction [2, \Security Considerations"].

Once the Authentication Phase is �nished, either party can then request an

optional Encryption Phase in which the Encryption Control Protocol (ECP) [7]

is used to negotiate an encryption algorithm. At this point in time (August 1,

2000), only two standards for encryption algorithms have reached RFC status:

DES [10] and triple{DES [6]. Both assume that a shared secret key has already

been exchanged by some other method.

After the Encryption phase, there are several other optional phases through

which the PPP connection can pass; none are related to security. When these

are completed, the connection will enter the Network Phase, where the Network

Control Protocol (NCP) is used to establish virtual connections for higher{level

protocols.

3 Transport Layer Security

Like PPP, TLS also uses two sub-protocols to provide security:

� The Handshake protocol is a sequence of messages whereby the two parties

can:

2

{ authenticate one another, if desired, and

{ negotiate two items:

� a shared secret, and

� a mutually acceptable cryptosuite (set of cryptographic algo-

rithms).

� The Record protocol is a set of message formats in which the messages of

the Handshake protocol and of higher{level protocols are sent. The Record

protocol can encrypt these messages using the cryptosuite negotiated in

the Handshake protocol, and with keys derived from the shared secret and

random numbers.

The TLS protocol is quite exible, and can handle a large number of options.

We will not reproduce the inner workings of the protocol here, however; TLS

has been thoroughly examined using a variety of methods ([8, 5, 11]). We do,

however, note several things that will prove to be of relevance in our discussion:

� First, the Handshake and Record sub{protocols are interdependent. A

TLS connection always begins with the establishment of a Record protocol

connection, albeit one without any cryptographic security. On top of this

connection a run of the Handshake protocol then commences, wherein the

cryptosuite and shared secret are negotiated. Just before the Handshake

protocol completes, the underlying Record protocol begins protection of

its contents (using the negotiated values.) Once the Record protocol has

become a secure tunnel, the Handshake protocol completes by sending its

last messages. The secure tunnel is then available for the use of higher{

level protocols.

Hence, not only does the Record protocol require initialization by the

Handshake protocol, but the Handshake protocol requires the secure tun-

nel provided by the Record protocol.

� The set of cryptosuites available to the Record protocol is �xed and ex-

plicitly enumerated in the TLS speci�cation ([3]). Each suite speci�es

{ an authentication/key exchange method (e.g., authenticated DiÆe{

Hellman),

{ a public key signature algorithm,

{ a bulk encryption algorithm, and

{ a keyed MAC algorithm.

The �rst two algorithms are used only in the Handshake protocol, for au-

thentication. The second two|the bulk encryption and the keyed MAC|

are for use in the Record protocol and protect the communications of

higher{level protocols. (The keys for these two algorithms are derived

from the shared secret.)

3

One cryptosuite is Null, where no algorithms will be used for any of the

above purposes. This is the cryptosuite used at the beginning of a TLS

connection, before another suite is negotiated by the Handshake protocol.

All non{Null suites specify algorithms for at least key exchange, public{

key signatures, and MAC algorithms, and many also specify an algorithm

for bulk encryption.

This implies two interesting facts. First, all non{Null cryptosuites require

the use of a MAC algorithm. Second, all non{Null cryptosuites require

the use of a public key signature. Both of these facts will become relevant

in our discussion of PPP{EAP{TLS.

� TLS is derived from SSL [4], which is designed to protect web connection-

s. Because of this, TLS is designed for client{server communications: the

initiator of the protocol is designated the \client," the responder is des-

ignated the \server," and the protocol places di�erent requirements upon

them. In particular, the client and the server have di�erent authentication

burdens: the server is required to authenticate itself whenever the client

does, but not vice{versa. The server can of course request that the client

authenticate itself, but the client is allowed to refuse.1

4 TLS in PPP

In RFC 2716 [1], it is recommended that TLS be added to the authentication

mechanisms available for use in PPP, and suggests a way in which TLS can

be embedded within EAP. In fact, this embedding is very simple: TLS already

speci�es the formats that its messages take, so these messages are simply sent

as the data of PPP packets.

In PPP{EAP{TLS, TLS is executed only until the end of the �rst run of

the Handshake protocol. At that point, the authentication has �nished, the

shared secret has been exchanged, and the underlying Record protocol has been

initialized and is providing a secure tunnel. In PPP, however, the authentication

phase and the encryption phase are distinct; all that PPP requires from TLS is

authentication and a shared secret. Hence, the secure tunnel provided by TLS

is abandoned, and the shared secret stored for use by ECP. (Figure 1 shows the

relationship between the TLS protocol and PPP connection establishment.)

Although PPP does not guarantee reliability, this does not seem to com-

promise the security of TLS.2 What could be troubling, however, is the fact

that PPP is a peer-to-peer connection while TLS is based on a client-server

model. Except for PPP{EAP{TLS, all EAP protocols provide authentication

in one direction only. Two simultaneous authentication protocols, therefore,

would not conict. TLS, however, can provide mutual authentication, and it is

1The server can then refuse to continue, but to do so is actually considered an error rather

than a resolution of the protocol.
2In fact, since TLS is designed to be secure against active attacks (i.e., those that disrupt

or forge messages), vulnerability to packet loss would indicate a serious design aw.

4

LCP

Messages

EAP

Messages

TLS Handshake Messages

TLS Record TLS Record

PPP

EAP

ECP

Messages

Higher-Level

Protocol Traffic

ECP

NCP

Bottom \pipe" contains actual messages sent during establishment of PPP connection

(from left to right) where EAP{TLS is used in Authentication phase and an unspeci�ed

protocol is used by ECP during the Encryption Phase. Tabs on top represent the nesting

of protocols over the same period of time. Bold lines represent use of cryptographic

algorithms.

Figure 1: Protocols and Messages in PPP Establishment, using EAP{TLS

unclear what should happen when it is requested by both sides. The desirable

behavior, of course, would be for both requests to collapse into a single run of

the protocol, using mutual authentication. However, the speci�cation seems to

allow the possibility of two independent runs of TLS. If this happens, then at

their completion the PPP connection will have two separate shared secrets and

two (possibly distinct) cryptosuites. PPP{EAP{TLS speci�es how one shared

secret is used to generate the keys necessary for ECP, but not how to pick which

of the two shared secrets or cryptosuites are to be used.

Another related oddity is that the role of the authenticator in PPP{EAP{

TLS does not map directly to the role of authenticator in other authentication

protocols. Elsewhere, the authenticator is the one receiving the authentication;

the peer proves its identity to the authenticator. But in PPP{EAP{TLS, the

authenticator takes on the role of server, and as mentioned above, it is possible

for authentication in TLS to be server{to{client only. And while in PPP{EAP{

TLS (as opposed to TLS) the client is required to authenticate itself when the

server requests such, the server is not required to request. So, the authenticator

can now request an authentication mechanism by which it is authenticated to

the peer but not vice versa.

Also, there appears to be a large disconnect between PPP{EAP{TLS and

ECP. During PPP{EAP{TLS, the client and server negotiate a set of crypto-

graphic algorithms, and according to the speci�cation, any subsequent run of

ECP is required negotiate those same algorithms. This raises several potential

sources of concern, however.

� First, all cryptosuites de�ned in TLS require that a keyed MAC be added

whenever encryption is used. However, none of the encryption algorithms

de�ned for ECP have any type of integrity check. It is therefore impossible

for ECP to negotiate the exact cryptosuite which was agreed upon in

TLS.This is easily �xed by de�ning ECP protocols to match the TLS

5

cryptosuites, but no such protocols are de�ned at this time.

� Even if ECP performs the most natural action and uses the encryption

algorithm from the TLS cryptosuite, problems remain. ECP is designed

to be extensible; theoretically, ECP can negotiate any algorithm mutually

acceptable to both parties. However, TLS is not similarly extensible; the

list of cryptosuites available to TLS are enumerated in the speci�cations,

and to use any cryptosuites not on that list would mean either revising or

deviating from the standard. In other words, compliant implementations

of ECP will no longer be able to use private or proprietary algorithms

when EAP{TLS is used for authentication.

� Lastly, this requirement|that ECP use the algorithm negotiated in TLS|

potentially undermines the basic design of PPP. In the original design of

PPP, authentication and encryption are negotiated and enacted in sep-

arate phases. If TLS is used as proposed, however, the negotiation of

encryption has been transplanted from ECP to the earlier phase of EAP.

While this may not necessarily introduce any weaknesses, it does signi�-

cantly change the design of PPP.

5 Summary and Suggestions

The use of TLS as an authentication mechanism is an excellent idea. However,

some minor issues should be addressed before it should be used. In particular,

it would be advisable for the authenticator to play the role of client (rather than

server), to bring EAP{TLS into concordance with the way those roles are used

in other EAP protocols.

Also, the speci�cation should resolve the ambiguity that results when both

sides request TLS. It would be simpler to require that both requests be merged

into a single run of the protocol, but if the speci�cation wishes to allow simul-

taneous runs it should describe how to choose between the resulting secrets and

cryptosuites.

Lastly, EAP{TLS raises three concerns about ECP:

� First, EAP{TLS relocates cryptosuite negotiation from ECP to EAP.

While this may be a change for the better, it is still a signi�cant alteration

to the design of PPP and may deserve further consideration.

� Second, it highlights the fact that no de�ned ECP protocol includes a

keyed MAC for integrity. While this is not a problem caused by EAP{

TLS, it is still serious enough to warrant note.

� Third, it prohibits ECP from using any cryptosuite that cannot be nego-

tiated in TLS, including all private algorithms.

The solution to the last two concerns above would seem simple and two-fold.

First, ECP cryptosuites that include integrity protection should be de�ned. Ide-

ally, these would include all the cryptosuites de�ned in the TLS speci�cation.

6

Second, the list of cryptosuites available to TLS should be expanded to include

all ECP cryptosuites. The TLS speci�cations explicitly allows subsequent s-

tandards to expand the list of cryptosuites; the EAP{TLS speci�cation should

map ECP cryptosuites to a set of TLS cryptosuites which may only be available

during EAP{TLS.

References

[1] B. Aboba and D. Simon. PPP EAP TLS authentication protocol. RFC

2716, October 1999.

[2] L. Blunk. PPP extensible authentication protocol. RFC 2284, March 1998.

[3] T. Dierks and C. Allen. The TLS protocol. RFC 2246, January 1999.

[4] Alan Frier, Philip Karlton, and Paul Kocher. The SSL 3.0 protocol. Internet

Draft, November 1996.

[5] Jonathan Herzog, Laura Feinstein, and Joshua Guttman. A strand space

analysis of TLS 1.0. MITRE Document MTR 0B0000011, 2000.

[6] H. Jummert. The PPP triple{DES encryption protocol. RFC 2420, Septem-

ber 1998.

[7] G. Meyer. The PPP encryption control protocol. RFC 1968, June 1996.

[8] Lawrence C. Paulson. Inductive analysis of the Internet protocol TLS.

ACM Transactions on Computer and System Security, 1999.

[9] W. Simpson. The point{to{point protocol. RFC 1661, July 1994.

[10] K Sklower and G. Meyer. The PPP DES encryption protocol, version 2.

RFC 2419, September 1998.

[11] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proceed-

ings, Second USENIX Workshop on Electronic Commerce, pages 29{40,

1996. Available at http://www.counterpane.com/ssl.html.

7

