
30 June 2000. Appears in ESORICS, Springer LNCS. 1

Authentication and Confidentiality via IPsec�

Joshua D. Guttman, Amy L. Herzog, and F. Javier Thayer

The MITRE Corporation
{guttman, althomas, jt}@mitre.org

Abstract. The IP security protocols (IPsec) may be used via security
gateways that apply cryptographic operations to provide security ser-
vices to datagrams, and this mode of use is supported by an increasing
number of commercial products. In this paper, we formalize the types of
authentication and confidentiality goal that IPsec is capable of achiev-
ing, and we provide criteria that entail that a network with particular
IPsec processing achieves its security goals.

This requires us to formalize the structure of networks using IPsec, and
the state of packets relevant to IPsec processing. We can then prove
confidentiality goals as invariants of the formalized systems. Authentica-
tion goals are formalized in the manner of [9], and a simple proof method
using “unwinding sets” is introduced. We end the paper by explaining
the network threats that are prevented by correct IPsec processing.

1 Introduction

The IP security protocols [7, 5, 6] (see also [8, 4]), collectively termed IPsec,
are an important set of security protocols currently making their way into the
commercial world. The IPsec standards include protocols for ensuring confiden-
tiality, integrity, and authentication of data communications in an IP network.
The standards are very flexible, and this flexibility has led to great commer-
cial interest; many IPsec products are now available. The same flexibility also
means that the protocol set is complex [2]. Hence, näıvely configured IPsec
products will often be set up wrong, making it hard to know what security goals
have actually been achieved. Our rigorous treatment suggests an approach to
constructing IPsec configuration tools, and suggests specific checks by which a
system administrator can ensure his goals are met, even without a tool.

IPsec can be used in two different ways. It can be used end-to-end, in which
case the source and destination hosts for a datagram are responsible for all
cryptographic processing. It can also be used via gateways, in which case a
system near the source host is responsible for applying cryptographic operations
on behalf of the source, while a system near the destination is responsible for
checking and decryption. A flow of packets in which at least one endpoint is an
IPsec gateway is called a tunnel .
� This work was supported by the National Security Agency through US Army CE-

COM contract DAAB07-99-C-C201.

The IPsec protocols work by prefixing special IP headers (or infixing special
header fields). These headers contain an index (the Security Protection Index) by
which the system applying the cryptographic operations specifies algorithms and
keys to be used. The cryptographic operations are intended to provide authen-
tication and integrity1 for packets, or else confidentiality for packets. A single
IPsec header may provide both authentication and confidentiality, and indeed
it is sound practice not to provide confidentiality without authentication [1]. Au-
thentication is provided by means of keyed hashes, confidentiality by symmetric
encryption. Hence, in both cases secrets must be shared between the systems ap-
plying and removing the cryptography. Manual key placement or cryptographic
key exchange methods [4, 8] may be used to create these shared secrets.

We will always regard the action of an IPsec gateway as a matter of manip-
ulating headers. To apply cryptography, a source host or a gateway wraps the
datagram (including its non-IPsec header information) in a new header. If this
header offers authentication then it can be applied only by a system sharing the
symmetric key. Moreover, the payload is protected from alteration in the sense
that alteration can be detected, and will prevent delivery of the (damaged) pay-
load. If the new header offers confidentiality, then it can be removed only by a
system sharing the symmetric key. Headers are applied at one end of a tunnel
and checked and removed at the other. We abstract from operations on the pay-
load itself, namely encrypting it or calculating a hash over it, although of course
these operations are necessary for IPsec to be useful.

When IPsec is used via gateways, the hosts (or the organizations operating
them) delegate a degree of trust to certain gateways. The purpose of this paper is
to study the logic of that trust. We will formalize exactly what assumptions are
needed for the two types of goal, authentication and confidentiality, and explain
how the trust assumptions depend on network topology. We regard this paper as
an extension of a research program, begun in [3], which aims to analyze the local
processing required to enforce network-wide security policies. In [3], we studied
the local packet filtering behavior routers must be trusted to perform, in order
to enforce network-wide firewall-like security goals.

In the next section, we formalize the security goals one can achieve via IPsec,
and introduce the notion of a trust set, which is central to our analysis. We
then formalize the structure of networks using IPsec (Section 3.1), the state
of packets relevant to IPsec processing (Section 3.2), and the properties of
cryptographic operations (Section 3.3). We detail our behavior requirements,
and prove that they are sufficient to ensure goal achievability (Section 4). We
illustrate specific attacks that our approach prevents in Section 5. We end by
summarizing, and discussing potential future work.

1 For our purposes, integrity and authentication belong together. Jointly, they ensure
that the packet has originated at a known system, and has remained unchanged since,
except for such header manipulations required by IP routing and delivery mecha-
nisms. We will speak henceforth only of authentication; it should be understood that
integrity is also included.

2

2 Achievable Security Goals

We focus on authentication and confidentiality as security goals in our analysis.
Concrete security goals select certain packets that should receive protection [7];
selection criteria may use source or destination addresses, protocol, and other
header components such as the ports, in case the protocol is TCP or UDP.

2.1 Authentication Goals

The essence of authentication is that it allows the recipient to—so to speak—
take a packet at face value. Thus, for a packet p selected for protection by a
authentication goal,

If A is the value in the source header field of p as received by B, then
p actually originated at A in the past, and the payload has not been
altered since.

We do not regard a packet as being (properly) received unless the cryptographic
hash it contains matches the value computed from a shared secret and the packet
contents. It will not be delivered up the stack otherwise, nor forwarded to another
system after IPsec processing.

2.2 Confidentiality Goals

We assume that confidentiality headers (as in the Encapsulating Security Pay-
load (ESP) protocol [6]) provide authentication, and add encryption. We have
two reasons for doing so. First, the IPsec specification allows both authenti-
cation and confidentiality to be used with the ESP header; it is inadvisable to
request only confidentiality when authentication can also be had at the same
time, and at modest additional processing cost. Second, it seems hard to state
precisely what data is kept confidential, if that data might change as the packet
traverses the network. It is thus hard to say what protection has been achieved [1,
2]. When using confidentiality headers, we are therefore attempting to achieve
an authentication goal as well as a confidentiality goal.

A confidentiality goal for a packet with source field A, requiring protection
from disclosure in some network location C, stipulates:

If a packet originates at A, and later reaches the location C, then while
it is at C it has a header providing confidentiality.

The cryptographic protection may refer to the ESP header more specifically,
stipulating certain parameters (key length, algorithm, etc). The proviso that the
packet was once at A is necessary, because in most cases we cannot prevent
someone at C from creating a spoofed packet with given header fields. However,
a spoofed packet cannot compromise the confidentiality of A’s data if it has no
causal connection to A.

3

2.3 Example Goals

Consider the network in Figure 1. Given this example network, a potential au-
thentication goal could be that packets traveling from EngineeringA to Engi-
neeringB should be authenticated, meaning that any packet with source field
claiming to be from EngineeringA that reaches EngineeringB should in fact
have originated in EngineeringA. An example confidentiality goal is that pack-
ets traveling from FinanceA to FinanceB should be encrypted whenever outside
those areas. This means that if a packet has source field in FinanceA, and actu-
ally originated there, then if it reaches any other area R, it has an ESP header
providing encryption while at R.

✗
✖

✔
✕Internet

✗
✖

✔
✕PerimeterB

✗
✖

✔
✕PerimeterA

✗
✖

✔
✕EngineeringB

✛
✚

✘
✙

FinanceB

✗
✖

✔
✕EngineeringA

✛
✚

✘
✙

FinanceA

SG 3

❄
SG 2

❄❅
❅

��

SG 1

❄ �
�

❅
❅

SG 4

❄
host3✛dbA✲

COMPANY A COMPANY B

Fig. 1. Sample IPsec Network Representation

One advantage to this form of expression is that it is semantically precise.
Another is that policies expressed in this form appear to be intrinsically compos-
able, in the sense that separate goals can always be satisfied together. Moreover,
this form of expression often suggests placement of trust sets, in a sense we will
now introduce.

2.4 Trust Sets

Once a packet enters an appropriate cryptographic tunnel, achieving a security
goal does not depend on what happens until it exits. Thus, the set of locations
in the network topology that are accessible to the packet from the source (before
entering the tunnel) or accessible from the exit of the tunnel (before reaching the
destination) are the only ones of real importance. We will call these locations a
trust set for a particular security goal. A trust set is goal-specific; different goals
may have different trust sets. For instance, an engineering group working on a
sensitive project could easily have much more restrictive security goals than its
parent corporation (in terms of trust).

Typically, a trust set is not a connected portion of the network. In many of
the examples we will describe later, the trust set consists of two large connected
portions, with a large public ‘Internet’ network between them. In some cases

4

the trust set may consist of several islands, and the tunnels may not connect
all of them directly. In this case, a packet may need to traverse several tunnels
successively in order to get from one island of the trust set to a distant one.

The choice of trust set for a particular security goal is a matter of balance.
Clearly, the source must belong to the same island of the trust set as the tunnel
entrance, and the tunnel exit must belong to the same island as the destination
(or the entrance to the next tunnel). This encourages creating trust sets as large
as possible, since then a few tunnels may serve for many endpoints. However,
the scope of a trust set must generally be limited to a set of networks on which it
is possible to monitor traffic and check configurations. This encourages making
the trust sets as small as possible. The art of using IPsec effectively consists
partly in balancing these two contrasting tendencies.

Boundaries Of special importance are those systems inside a trust set with a
direct connection to systems outside the trust set. We term these systems the
boundary of the trust set. We assume that every device on the boundary of
a trust set is capable of filtering packets. This may be a portion of its IPsec
functionality [7]. Alternatively, the device may not be IPsec-enabled, but instead
be a filtering router or packet-filtering firewall. We regard such devices as a
degenerate case of an IPsec-enabled device, one which happens never to be
configured to apply any cryptographic operations.

3 Network Modeling

We begin talking about systems by viewing them as composed of networks and
devices capable of IPsec operations or packet filtering. A device has interfaces
on one or more networks. Any machine (such as a switch or host) that performs
no IPsec operations or filtering we may simply ignore. We may also ignore a
machine that can perform IPsec operations, if it is not a member of the trust
set for any security goal we would like to enforce. For instance, IPsec-enabled
machines elsewhere on the Internet can be ignored.

We regard a system as a graph with two kinds of nodes, representing the
networks and the devices respectively. In the example shown in Figure 1, net-
works appear as ovals and devices appear as black squares. An edge represents
the interfaces between a device and the network to which it is connected. We will
never connect two networks directly via an edge; this would not give a security
enforcement point to control the flow of packets between them. Instead, we will
coagulate any two networks that are connected by a device that provides no
security enforcement, representing them by the same oval. Figure 1 is a simple
picture: for any two nodes, deletion of a single edge causes them to become dis-
connected. In other cases, there may be many disjoint paths between a pair of
locations.

5

3.1 System Model

While the simple representation we have just described is useful for understand-
ing one’s network in terms of security policy, it is inconvenient for more rigorous
examination. IPsec processing depends heavily on which interface a packet is
traversing, as well as the direction in which the packet is traversing that inter-
face. Therefore it is convenient to have a system model in which there are two
nodes corresponding to each interface. They represent the conceptual location of
a packet when IPsec processing is occurring, either as it traverses the interface
inbound into the device or as it traverses the interface outbound from the device.
We call these conceptual locations directed interfaces.

We introduce a model consisting of a directed graph containing three kinds of
nodes. These represent networks, devices, and directed interfaces. To construct a
model from a system representation in the style of Figure 1, for each edge between
a device g and a network r we two directed interface nodes, which we will call
ig[r] and og[r]. These represent inbound processing for a packet traveling from
r to g and outbound processing for a packet traveling from g to r respectively.
We add four directed arcs:

1. r → ig[r] and ig[r] → g, the inbound arcs, and
2. g → og[r] and og[r] → r, the outbound arcs.

For instance, the result of applying this process to the system representation
shown in Figure 2 produces the enriched model shown in Figure 3.

A2

A B

I

B2

G1 G2

Fig. 2. Unenriched System Representation

A2

A

B2

B

G2G1

I

Fig. 3. Enriched System Representation

We will assume an enriched system representation G = (V,E) throughout
the remainder of this section. A location is a node, i.e. a member of V .

6

3.2 Packet States

Let P be a set of values we call protocol data. We may think of its values as the
elements of IP headers other than source and destination. For instance, an IP
header may specify that the protocol is TCP, and the embedded TCP header
may specify a particular source port and destination port; this combination of
protocol and port information may be taken as a typical member of P .

Let A ⊂ P be a set we call authenticated protocol data; it represents those
headers that provide IPsec authentication services. Let C ⊂ A be a set we
call confidentiality protocol data; it represents those headers that provide IPsec
confidentiality services. The assumption C ⊂ A codifies our decision not to
consider ESP headers that provide only confidentiality (cf. Section 2.2).

A header is a member of the set H = V × V × P , consisting of a source
location, a destination location, and a protocol data value. Packet states are
members of H∗, that is, possibly empty sequences 〈h1, . . . , hn〉. We use · as
prefixing operator: h · 〈h1, . . . , hn〉 = 〈h, h1, . . . , hn〉.

Let K be a set of “processing states,” with a distinguished element ready ∈
K. Intuitively, when an interface has taken all of the processing steps in the
Security Association (SA, see [7]) for a packet p, then it enters the processing
state ready, indicating that the packet is now ready to move across the arc from
that interface. If this is an outbound interface, it means that the packet may
now go out onto the attached network; if it is an inbound interface it means that
the packet may now enter the device, typically to be routed to some outbound
interface or for local delivery. Other members of K are used to keep track of
complex IPsec processing, when several header layers must be added or removed
before processing is complete at a particular interface. These clusters of behavior
represent IPsec Security Association bundles.

We regard the travels of a packet through a system as the evolution of a
state machine. The packet may not yet have started to travel; this is the start
state. The packet may no longer be travelling; this is the finished state. Every
other state is a triple of a node ∈ V , indicating where the packet currently is
situated; a processing state κ ∈ K, indicating whether the packet is ready to
move, or how much additional processing remains; and a packet state θ ∈ H∗,
indicating the sequence of headers nested around the payload of the packet.

Definition 1. Ω(G,K,P,A,C) is the set of network states over the graph G =
(V,E), the processing states K, and the protocol data P with C ⊂ A ⊂ P .
Ω(G,K,P,A,C) is the disjoint union of

1. start,
2. stop, and
3. the triples (, κ, θ), for ∈ V , κ ∈ K, and θ ∈ H∗.

The transition relation of a network state machine is a union of the following
parameterized partial functions. We define what the resulting state is, assuming
that the function is defined for the state given. We also constrain when some of
these functions may be defined; different IPsec security postures are determined

7

by different choices of domain for each of these partial functions (subject to the
constraints given).

Definition 2. A network operation is any partial function of one of the following
forms:

1. Packet creation operators create�,h(start) = (, ready, 〈h〉), when defined, for
(, h) ∈ V ×H . create�,h is not defined unless its argument is the state start.

2. The packet discard operator discard(, κ, θ) = stop, when defined. discard is
undefined for start.

3. Packet movement operators movee,κ(, ready, θ) = (′, κ, θ), when e ∈ E,

e→ ′ and κ �= ready. movee,κ is undefined for all other network states.
4. Header prefixing operators prefixh,κ(, κ′, θ) = (, κ, h · θ) when defined. The

function prefixh,κ is nowhere defined when h �∈ A.
5. Header pop operators popκ(, κ′, h · θ) = (, κ, θ) when defined.
6. Null operators nullκ(, κ′, θ) = (, κ, θ) when defined.

A transition relation → ⊂ (Ω(G,K,P,A,C) × Ω(G,K,P,A,C)) is a union of
operators create, discard, move, prefix, pop, and null.

The assumption that prefixh,κ is nowhere defined when h �∈ A means that the
only nested headers we consider are IPsec headers.

We call the assumption that movee,κ(, κ′, θ) = (′, κ, θ) is not defined when
κ′ �= ready the motion restriction. We call the assumption that it is not defined
when κ = ready the inbound motion restriction. The motion restriction
codifies the assumption that a device will not move a packet until it is ready.
The inbound motion restriction codifies the assumption that there will always
be a chance to process a packet when it arrives at a location, if needed, before
it is declared ready to move to the next location.

Given a packet p, we call the address in the source header field of its topmost
header src(p). We call the address in the destination header field of the topmost
header dst(p). We also call a packet p an IPsec packet if its outermost header is
an AH or ESP header; an ESP packet if its outermost header is an ESP header;
and an AH packet if its outermost header is an AH header.

Definition 3. A trust set S for G = (V,E) consists of a set R ⊂ V of networks,
together with all devices g adjacent to networks in R and all interfaces ig[∗] and
og[∗].

The inbound boundary of S, written ∂inS is the set of all interfaces ig[r] or
ig[g′] where g ∈ S and r, g′ �∈ S.

The outbound boundary of S, written ∂outS is the set of all interfaces og[r]
or og[g′] where g ∈ S and r, g′ �∈ S.

In the remainder of this section, fix a trust set S and locations a, b ∈ S. We
will use the following notation: Suppose x = (, κ, θ) is a network state where
x �= start, stop.

– (x) = ,

8

– κ(x) = κ,
– θ(x) = θ.

A transition x→ y is header non-augmenting iff it is of the form (, κ, θ�θ′) →
(, κ′, θ′), where θ′ is a final segment of the concatenation θ�θ′.

3.3 Cryptographic Assumptions

We will make two assumptions about the IPsec cryptographic headers. First,
we assume that cryptographic headers cannot be spoofed; in other words, that
if we receive a message with an authenticating header from a source “known to
us,”2 then the entity named in the source field of the header is the entity that
applied the header, and the payload cannot have been changed without detection.
Second, confidentiality headers have the property that packets protected with
them can be decrypted only by the intended recipient, i.e. the device named in
the ESP header destination field. More formally, using a dash for any field that
may take any value, we stipulate that for any transition:

(, κ, 〈[s′, d′,−], . . . 〉)

(, κ′, 〈[s, d, α], [s′, d′,−], . . . 〉)
❄

α ∈ A and s ∈ S implies = s. Moreover, for any transition:

(, κ′, 〈[s, d, γ], [s′, d′,−], . . . 〉)

(, κ, 〈[s′, d′,−], . . . 〉)
❄

γ ∈ C and s ∈ S implies = d.
These properties axiomatize what is relevant to our analysis in the assump-

tion that key material is secret. If keys are compromised then security goals
dependent on them are unenforceable.

4 Security Goal Enforcement

Given an environment in which one can rigorously reason about packet states,
and precise specifications of security goals, how does one ensure the goals are
enforced? This section focuses on answering that question, by detailing formal
behavior requirements for systems and then proving they guarantee enforceabil-
ity.

In our reasoning, we will assume that security goals are stated in the form
given in Section 2.3.
2 Presumably as certified by some public key infrastructure, and certainly assumed to

include those devices which are shown as nodes in the system model.

9

4.1 Authentication

Our authentication problem can be stated in the following way. Suppose a and
b are network nodes. What processing conditions can we impose such that an
authentication goal holds?

To make this precise, let us say an authenticated state is one having the form
(a, κ, 〈[a,−,−]〉) and an acceptor state is one of the form (b, ready, 〈[a,−,−]〉).
The symbol authentic denotes the set of authenticated states, accept denotes the
set of acceptor states. Our question can be stated thus: exhibit a set of processing
restrictions which ensure the following:

For any path start −→∗ ω where ω ∈ accept there is an intermediate
state ω′ so

start −→∗ ω′ −→∗ ω

where ω′ ∈ authentic.

Thus, whenever an acceptor state is reached, an authenticated state must have
occurred earlier in the state history. In this sense, the prior occurrence of an
authenticated state is guaranteed when an acceptor state is observed. This use
of “authenticated” for the states ω′ ∈ authentic follows Schneider [9].

Achieving authentication requires two types of behavior restrictions on trusted
nodes, depending on whether the system in question is in the boundary or not.
We list behavior restrictions for each.

First we list a constraint that is required for the proofs, but is vacuous in
IPsec [7], where inbound processing can only remove packet headers (but never
add them).

Prefix Ready Rule.

(, κ, θ)

(, κ′, h · θ)
❄

If ∈ ∂inS then κ = ready.

Authentication Tunnel Constraints In order to achieve authentication,
there are two rules that must be observed by every IPsec-enabled device in
the trust set. The first of these is that nodes in S must not spoof packets with
sources in S.

Creation Rule. For any transition

start

(, κ, 〈[s,−,−]〉)
❄

10

if ∈ S then = s.
For the second rule, fix a trust set S. Whenever an IPsec-enabled device in

S processes an IPsec packet p with src(p) �∈ S, and removing this header leads
to a packet p′ with src(p′) ∈ S, p′ must be discarded. It codifies the idea that
only nodes in S should be trusted to certify a packet as coming from S.

Pop Rule. For any transition

(, κ, 〈[s, d, A], [a,−,−]〉)

(, κ′, 〈[a,−,−]〉)
❄

If ∈ S then s ∈ S.

Authentication Boundary Constraints Given the authentication goal above,
boundary systems must only abide by one extra processing constraint: they must
not pass an inbound packet that did not present any authentication headers.

Inbound Ready Rule.

(, κ, θ)

(, ready, 〈[a,−,−]〉)
❄

If κ �= ready and ∈ ∂inS, then θ = 〈[s, d, A], [a,−,−]〉.

Unwinding We prove that the processing restrictions formulated above are
sufficient to ensure the authentication goal. To do so, we exhibit an unwinding
set G.

Definition 4. An unwinding set G is a set such that

1. start �∈ G,
2. accept ⊆ G,
3. authentic ⊆ G,
4. For any transition x→ y with x �∈ G and y ∈ G then y ∈ authentic.

Proposition 1. A sufficient condition for the authentication condition to hold
is the existence of an unwinding set.

Proof. Any path start −→∗ ω with ω ∈ accept, must have the form

start −→∗ x→ y −→∗ ω

with x �∈ G, y ∈ G. By the unwinding condition 4, y ∈ authentic. �

We now exhibit an unwinding set G.

G = accept ∪ authentic ∪ continue

where continue is defined:

11

Definition 5. (Continuing States) A state is a continuing state if it belongs
to one of the three disjoint classes below:

C1 (, ready, 〈[a,−,−]〉) for ∈ ∂inS;
C2 (, κ, 〈[a,−,−]〉) for ∈ S \ ∂inS,

i.e. for locations in the portion of S other than the inbound boundary;
C3 (, κ, 〈· · · [s, d, A], [a,−,−]〉) for s ∈ S and any .

Proposition 2. G is an unwinding set.

Proof. Suppose x→ y with x �∈ G, y ∈ G. The proof is a completely mechanical
enumeration of cases. In each case, we show either that either it cannot really
occur or that y ∈ authentic.

Case I: y ∈ accept. By definition of accept, y is of the form (b, ready, 〈[a,−,−]〉).
1. b ∈ ∂inS.

(a) x → y is a motion. The inbound motion restriction excludes this
case.

(b) x→ y is non-augmenting. By the inbound ready rule, x is of the form

(b, κ, 〈. . . , [s, d, A], [a,−,−]〉)
with s ∈ S. This implies x ∈ C3 ⊆ continue ⊆ G.

(c) x = start. In this case, by the creation rule b = a. Thus y ∈ authentic.
2. b ∈ S \ ∂inS.

(a) If x→ y is a motion, then x must be of the form (, ready, 〈[a,−,−]〉) By
definition of network boundary of S, ∈ S. This implies x ∈ C1∪C2 ⊆
G. This case is thus excluded.

(b) Otherwise x must be of one the forms
i. (b, κ, 〈[s, d, A], [a,−,−]〉) with s ∈ S, so x ∈ C2 ⊆ G, which excludes

this case also.
ii. start. In this case, by the creation rule y is of the form (b, κ, 〈[s,−,−]〉)

with b = s = a. Thus y ∈ authentic.

Case II: y ∈ C1. Thus y = (, ready, 〈[a,−,−]〉) for ∈ ∂inS.

1. x = (′, κ, θ). The inbound motion rule excludes this case.
2. x = (, κ, θ). By the inbound ready rule, the transition x → y must be a

pop. In this case, by the pop rule xmust be of the form (, κ′, 〈[s, d, A], [a,−,−]〉)
for s ∈ S, so x ∈ C3 ⊆ G, which excludes this case also.

3. x = start. In this case, the creation rule implies = a, so y ∈ authentic.

Case III: y ∈ C2. In this case y is of the form (, κ, 〈[a,−,−]〉) for ∈ S \ ∂inS.

1. x = (′, κ′, θ) with ′ �= . In this case, the transition x→ y must be a location
change. By definition of border, ′ ∈ S and by the motion ready restriction,
κ′ = ready. In this case x ∈ C1 or x ∈ C2 depending on wehether ′ ∈ ∂inS
or ′ ∈ S \ ∂inS. Thus this case is excluded.

2. x = (, κ′, θ). In this case, the transition x → y must be a pop. By the
pop rule x must be of the form (, κ′, 〈[s, d, A], [a,−,−]〉) for s ∈ S, so
x ∈ C3 ⊆ G, which excludes this case also.

3. x = start. In this case, the creation rule implies = a, so y ∈ authentic.

12

Case IV: y ∈ C3. y is of the form (, κ, 〈· · · [s, d, A], [a,−,−]〉) for s ∈ S.

1. If x→ y is a motion, then x ∈ C3
2. If x → y is a non-augmenting header transition, then x must also be of the

form C3.
3. If x→ y is a push, then either x ∈ C3 or x is of the form (, κ′, 〈[a,−,−]〉).

By cryptographic restriction, = s ∈ S. In this case x ∈ C1 or x ∈ C2
depending on wehether ∈ ∂inS or ∈ S \ ∂inS. Thus this case is excluded.
�

4.2 Confidentiality

We will consider the following confidentiality problem: Suppose a and b are
network nodes. What conditions can we impose on the enclave nodes’ processing
to ensure that packets travelling from a to b are encrypted whenever they are
not in the trust set S? More formally,given some set of processing restrictions,

If we start with a packet of the form (a, ready, 〈[a, b, p]〉), where a, b ∈ S,
then it will never be the case that (, κ, 〈[a, b, p]〉) if �∈ S.

Achieving confidentiality is even simpler than authentication. There are two
simple constraints, one on all devices in the trust set, and an additional constraint
for boundary members.

Confidentiality Tunnel Constraints Fix a trust set S. The constraint on all
trust set members requires them not to “tunnel” packets requiring protection out
to a dangerous area. Our constraint will ensure that whenever a system inside
S adds a confidentiality header to a packet which would require protection, the
source and destination of the added header are also in S.

Destination Prefix Rule. For any transition

(, κ, 〈[s1, d1, p1] · · · [a, b, p]〉)

(, κ′, 〈[s2, d2, p2][s1, d1, p1] · · · [a, b, p]〉)
❄

if ∈ S, s1, d1 ∈ S, and p1 �∈ C, then s2, d2 ∈ S. We include the case where
〈[s1, d1, p1] · · · [a, b, p]〉 = 〈[a, b, p]〉.

Confidentiality Boundary Constraints As with authentication, we impose
one constraint on boundary members. If a packet p is traversing an outbound
interface on the boundary of S, and p could contain a packet p0 ∈ P with no
confidentiality header, discard p.

One way to safely implement this is to pass a packet p only if its topmost
layer is a confidentiality header, or else it has no IPsec headers and p �∈ P .

13

Outbound Ready Rule. For any transition

(, κ, θ)

(, ready, θ′)
❄

if ∈ ∂outS, then either θ′ = 〈[s, d, C], . . . [a, b, p]〉 for s, d ∈ S, or else θ′ =
〈[s′, d′,−], . . .〉 where either s′ or d′ not in S.

Invariant. We will prove that the processing restrictions formulated above are
sufficient to ensure the confidentiality goal using an invariant of our state ma-
chine. We will first show that the invariant holds, then prove that given the
invariant, our confidentiality goal holds as well.

Proposition 3. Suppose that Σ is a state machine satisfying the outbound
ready rule and the destination prefix rule, and suppose that (, κ, θ) is the state
resulting from a sequence of actions beginning with createa,[a,b,p], where a, b ∈ S.

1. If ∈ S, then either
(a) whenever [s1, d1, p1] is any layer of θ, then s1, d1 ∈ S and p1 �∈ C, or
(b) there is a final segment of θ of the form 〈[sk, dk, C] · · · [si, di, pi] · · ·〉 where

sk, dk ∈ S and for each i < k, si, di ∈ S and pi �∈ C.
2. If �∈ S, then there is a final segment of θ of the form 〈[sk, dk, C] · · · [si, di, pi] · · ·〉

where sk, dk ∈ S and for each i < k, si, di ∈ S and pi �∈ C.

Proof. We will examine each of the possible state transitions in turn, showing
for each that they cannot violate the invariant.

Case 1: create and discard In the case of the create operator, we know that the
first transition in our state machine is the following (which does not violate the
invariant):

start

(a, ready, 〈[a, b, p]〉)
❄

The invariant imposes no constraints on the finish state, thus the discard transi-
tion is irrelevant.

Case 2: pop Assume that we are at location . The state transition we are in-
terested in is popκ(, κ′, h ·θ) = (, κ, θ). Our cryptographic assumptions prevent
any location from removing an encryption layer not destined for them. Thus,
no location can remove the necessary confidentiality protection (provided it was
applied), and the invariant is not violated.

14

Case 3: prefix Assume once again we are at location . The transition is
prefixh,κ(, κ′, θ) = (, κ, h · θ). The only case which has bearing on the invariant
is that where ∈ S, and there is no encryption layer in θ. By the Destination
Prefix rule, src(h), dst(h) ∈ S as well. If h is a confidentiality header, the packet
now satisfies the second invariant condition for locations in S. If h is not a con-
fidentiality header, the packet satisfies the first invariant condition for locations
in S.

Case 4: null The invariant imposes no constraints on κ.

Case 5: move Again, assume we are at location . The transition is

movee,κ(, ready, θ) = (′, κ, θ)

Since this involves no change of state, the only case which could violate the
invariant is that where ∈ ∂oS and ′ �∈ S. The Outbound Ready rule ensures
that the top layer of θ is either [s, d, C] with s, d ∈ S or [s′, d′,−] with s′, d′ �∈ S.
The Destination Prefix rule ensures that below the bottom-most confidentiality
layer, all layers have source and destination in S. So, regardless of which portion
of the Outbound Ready rule is appropriate, the invariant is not violated.

Thus, the given invariant holds for our state machine. We now must show it
implies enforecement of the confidentiality goal.

The confidentiality goal is ensured if it is never the case that (, κ, 〈[a, b, p]〉)
if �∈ S. Condition 2 of the invariant provides this: suppose that we’re at �∈ S.
Then there is at least one layer [s, d, C] with s, d ∈ S, and no layers with external
sources ‘beneath’ that layer.

5 What Can Go Wrong

We have seen that the restrictions of Sections 4.1 and 4.2 suffice to ensure that
authentication and confidentiality goals are achieved. In this section, we argue
less formally that they are necessary. We illustrate the problems that can oth-
erwise arise, by presenting example attacks, focusing first on authentication. In
all examples, we use the example network described in Figure 1.

5.1 Failures of Authentication

Corresponding to our three authentication constraints, there are three ways that
IPsec (incorrectly configured) may fail to achieve authentication goals.

Spoofing near source or destination The first of these problems arise if
locations within a trust set spoof packet addresses.

Consider the following security goal: packets traveling from EngineeringA to
EngineeringB should be authenticated. If, in this case, one host in EngineeringA
creates a packet claiming to come from another, the security gateway applying

15

the cryptographic headers (either SG1 or SG2, here) would be unable to deter-
mine that the packet was not legitimate. A similar situation could arise if a host
in EngineeringB created packets with source header field of an EngineeringA
system.

Tunneling packets to a point near source or destination The second
attack becomes possible if machines inside the source region do not ensure that
removed layers correspond to an acceptable authentication tunnel.

Suppose again that the security goal is to authenticate packets traveling from
EngineeringA to EngineeringB. Further suppose that the device which performs
outbound cryptographic processing for Company A is SG1 .

Consider, then, the following case: a machine in the region Internet creates
a packet with an forged source of a host in EngineeringA, and a destination in
EngineeringB, and then adds a tunnel mode authentication header destined for
the host dbA, which performs IPsec processing.

The packet goes via SG2, which routes it through PerimeterA, and past SG1 .
When it reaches the destination dbA, that host removes the tunnel-mode AH
header and successfully checks the cryptographic checksum against the payload
and tunneled header. The result of removing the tunnel-mode header is a non-
IPsec packet with source header field in EngineeringA and destination header
field in EngineeringB. The normal routing mechanism causes it to pass back to
SG1 , which adds the “appropriate” authentication header. As a consequence it
reaches Company B with a cryptographic header purporting to guarantee that
it originated in EngineeringA.

The same effect is obtained if the machine in the region Internet creates
the same packet initially, and then adds a tunnel mode authentication header
destined for the host host3 . Clearly, the IPsec-enabled devices dbA and host3
must be configured to compare the source address on the IPsec header, namely
the Internet machine, against the source address on the inner, non-IPsec header
(which claims to be in EngineeringA). The Pop Rule ensures that they will
discard the forged packet when it emerges from the authentication tunnel with
source outside the trust set S.

Entry of packets near source or destination The third problem arises if
systems on the boundary of the trust set S allow incoming packets to enter, even
if the packets claim to have originated inside.

Again consider the security goal that all traffic between EngineeringA and
EngineeringB must be authenticated. Suppose further that SG1 and SG4 are the
endpoints of the authentication tunnel. Then, if SG1 does not perform inbound
filtering on packets arriving from Perimeter A to check that they do not have
source header field from any system in EngineeringA, a machine in the region
Internet could create a packet with source in EngineeringA, use source routing
(or another routing attack) to send it into EngineeringA, where it would then
be sent to EngineeringB.

16

5.2 Failures of Confidentiality

Again corresponding to our behavior constraints, there are two types of attacks
that IPsec, configured incorrectly, cannot protect against. Assume that the cor-
porations Company A and B wish to protect the confidentiality of traffic flowing
from EngineeringA to EngineeringB, by ensuring that it is always encrypted
while in the public Internet.

Tunneling to a point distant from source and destination The tunnel
endpoints are SG2 and SG3 in this example. If SG4 is misconfigured, it may
insert the packets decrypted by SG3 into another tunnel, intended for a different
sort of traffic. The exit from that tunnel may be on the public Internet, say in
Company C, with which Company B has some commercial relation, but which is
a competitor of Company A. This would be a failure of confidentiality. Company
C might even have been surprisingly helpful when the system administrators in
Company B designed their IPsec configuration.

Our Destination Prefix Rule (Section 4.2) prevents this sort of occurrence.

Escape to a point distant from source and destination In this example,
the tunnel endpoints are SG1 and SG4. If SG4 or SG3 is not set up to prevent
back-flow of packets with source header field in EngineeringA and destination
header field in EngineeringB, then these packets could be re-routed out past SG4
and SG3 after having traversed SG4, the point at which the ESP header was
removed. The risk that this may be a reasonable routing strategy (or a feasible
attack on routing in Engineering B) increases if Engineering B consists of a large
collection of networks, and if it is more richly connected to the outside world
than in our sample diagram.

Hence, systems on the boundary of the trust set must inspect packets before
passing them on; this sort of attack is not possible if the Outbound Ready Rule
(Section 4.2) is in effect.

6 Conclusion

In this paper, we formalized the main security goals IPsec is suited to achieve,
and we formalized IPsec-relevant aspects of networks. We then provided criteria
entailing that a network with particular IPsec processing achieves its security
goals. Achieving these security goals requires identification of a trust set for each
goal.

Our approach has several benefits.

– It is rigorous: provided the behavior restrictions are enforced, the security
goals are formally guaranteed.

– It explains clearly exactly which systems must be trusted, and in exactly
what ways.

17

– Its security management discipline can largely be enforced by software that
checks the configurations of nodes within the trust set.

Future work will include the development of such a software tool. In addition,
it seems likely that other related security protocol sets (for example, PPTP)
could be analyzed in the same way; additional security goal types—such as
traffic flow confidentiality or firewall-like restrictions on types of traffic, in the
manner of [3]—could also be added.

References

1. Steven Bellovin. Problem areas for the IP security protocols. In Proceed-
ings of the Sixth USENIX UNIX Security Symposium, July 1996. Also at
ftp://ftp.research.att.com/dist/smb/badesp.ps.

2. Niels Ferguson and Bruce Schneier. A cryptographic evaluation of ipsec. Counter-
pane Internet Security, Inc., available at http://www.counterpane.com/ipsec.html,
1999.

3. Joshua D. Guttman. Filtering postures: Local enforcement for global policies. In
Proceedings, 1997 IEEE Symposium on Security and Privacy, pages 120–29. IEEE
Computer Society Press, May 1997.

4. D. Harkins and D. Carrel. The Internet Key Exchange (IKE). IETF Network
Working Group RFC 2409, November 1998.

5. S. Kent and R. Atkinson. IP Authentication Header. IETF Network Working Group
RFC 2402, November 1998.

6. S. Kent and R. Atkinson. IP Encapsulating Security Payload. IETF Network Work-
ing Group RFC 2406, November 1998.

7. S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. IETF
Network Working Group RFC 2401, November 1998.

8. D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet Security Associ-
ation and Key Management Protocol (ISAKMP). IETF Network Working Group
RFC 2408, November 1998.

9. Steve Schneider. Security properties and CSP. In Proceedings, 1996 IEEE Sympo-
sium on Security and Privacy, pages 174–87. IEEE Computer Society Press, May
1996.

18

