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ABSTRACT

We present the design and development of a Hidden Markov
Model for the division of news broadcasts into story segments.
Model topology, and the textual features used, are discussed,
together with the non-parametric estimation techniques that were
employed for obtaining estimates for both transition and
observation probabilities.  Visualization methods developed for
the analysis of system performance are also presented.

1. INTRODUCTION

Current technology makes the automated capture, storage,
indexing, and categorization of broadcast news feasible
allowing for the development of computational systems
that provide for the intelligent browsing and retrieval of
news stories [Maybury, Merlino & Morey ‘97; Kubula, et
al., ‘00].  To be effective, such systems must be able to
partition the undifferentiated input signal into the
appropriate sequence of news-story segments.

In this paper we discuss an approach to segmentation based
on the use of a fine-grained Hidden Markov Model
[Rabiner, `89] to model the generation of the words
produced during a news program.  We present the model
topology, and the textual features used.  Critical to this
approach is the application of non-parametric estimation
techniques, employed to obtain robust estimates for both
transition and observation probabilities. Visualization
methods developed for the analysis of system performance
are also presented.

Typically, approaches to news-story segmentation have
been based on extracting features of the input stream that
are likely to be different at boundaries between stories
from what is observed within the span of individual stories.
In [Beeferman, Berger, & Lafferty ‘99], boundary
decisions are based on how well predictions made by a
long-range exponential language model compare to those
made by a short range trigram model. [Ponte and Croft,
‘97] utilize Local Context Analysis [Xu, J. and Croft, ‘96]
to enrich each sentence with related words, and then use
dynamic programming to find an optimal boundary

sequence based on a measure of word-occurrence
similarity between pairs of enriched sentences. In [Greiff,
Hurwitz & Merlino, `99], a naïve Bayes classifier is used
to make a boundary decision at each word of the transcript.
In [Yamron, et al., ‘98], a fully connected Hidden Markov
Model is based on automatically induced topic clusters,
with one node for each topic.  Observation probabilities for
each node are estimated using smoothed unigram statistics.

The approach reported in this paper goes further along the
lines of find-grained modeling in two respects: 1)
differences in feature patterns likely to be observed at
different points in the development of a news story are
exploited, in contrast to approaches that focus on
boudary/no-boundary differences; and 2) a more detailed
modeling of the story-length distribution profile, unique to
each news source (for example, see the histogram of story
lengths for ABC World News Tonight shown in the top
graph of Figure 3, below).

2. GENERATIVE MODEL

We model the generation of news stories as a 251 state
Hidden Markov Model, with the topology shown in Figure
1. States labeled, 1 to 250, correspond to each of the first
250 words of a story.  One extra state, labeled 251, is
included to model the production of all words at the end of
stories exceeding 250 words in length.

Several other models were considered, but this model is
particularly suited to the features used, as it allows one to
model features that vary with depth into the story (Section
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Figure 1:  Current HMM Topology



3.1), while simultaneously, by delaying certain features.  It
also allows one to model features that occur in specific
regions the boundaries (Section 3.3).  This is possible
because all states can feed into the initial state, i.e. all
stories end by going into the first word of a new story.

For example, the original model involved a series of
beginning and then end states, with a single middle state
that could be cycled through (Figure 2).  This proved to be
a problem because the ends of long stories were being
mixed with the ends of short stories which led to problems
with our spaced coherence feature (Section 3.1).  Another
possibility involved splitting the model into two main
paths, one to model the shorter stories, and one to model
the longer as there is something of a bimodal distribution
in story lengths (Figure 4).  However, the fine-grained
nature of our model would suffer from splitting the data in
this manner, and a choice about at which length to fork the
model would be somewhat artificial.

3. FEATURES

Associated with the model is a set of features.  For each
state, the model assigns a probability distribution over all
possible combinations of values the features may take on.
The probability assigned to value combinations is assumed
to be independent of the state/observation history,
conditioned on the state. We further assume that the value
of any one feature is independent of all others, once the
current state is known. Features have been explicitly
designed with this assumption in mind.  Three categories
of features have been used, which we refer to as coherence
features, x-duration feature, and the trigger features.

3.1. Coherence
We have used four coherence features.  The COHER-1
feature, shown schematically in Figure 2a, is based on a
buffer of 50 words immediately prior to the current word.
If the current word does not appear in the buffer, the value
of COHER-1 is 0.  If it does appear in the buffer, the value is
-log(sw/s), where sw is the number of stories in which the
word appears, and s is the total number of stories, in the
training data. Words that did not appear in the training
data, are treated as having appeared once.  In this way, rare

words get high feature values, and common words get low
feature values.  Three other features: COHER-2, COHER-3,
and COHER-4  (Figures 3b, c & d) correspond to similar
features; for these, however, the buffer is separated by 50,
100, and 150 words, respectively, from the current word.
Interestingly, the COHER-4 feature actually caused a
reduction in performance, and was not used in the final
evaluation.

3.2. X-duration
This feature is based on indications given by the speech
recognizer that it was unable to transcribe a portion of the
audio signal. The existence of an untranscribable section
prior to the word gives a non-zero X-DURATION value
based on the extent of the section.  Empirically this is an
excellent predictor of boundaries in that an untranscribable
event has uniform likelihood of occurring anywhere in a
news story, except prior to the first word of a story, where
it is extremely likely to occur.

3.3. Triggers
Trigger features correspond to small regions at the
beginning and end of stories, and exploit the fact that some
words are far more likely to occur in these positions than in
other parts of a news segment.  One region, for example, is
restricted to the first word of the story.  In ABC’s World
News Tonight, for example, the word “finally” is far more
likely to occur in the first word of a story than would be
expected by its general rate of occurrence in the training
data.  For a word, w, appearing in the input stream, the
value of the feature is an estimate of how likely it is for w
to appear in the region of interest.  The estimate used is
given by:
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where Rwn ∈ is the number of times w appeared in R in the

training data; wn  is the total number of occurrences of w;

and Rf  is the fraction of all tokens of w that occurred in
the region.  This estimate can be viewed as Bayesian
estimate with a beta prior.  The beta prior is equivalent to a

a

b

c

d

Figure 3: Coherence Features
1 2 500 501

Figure 2: Original Topology



uniform prior and the observation of one occurrence of the
word in the region out of ( )Rf/1  total occurrences.  This

estimate was chosen so that: 1) the prior probability would
not be greatly affected for words observed only a few
times in the training data; 2) it would be pushed strongly
towards the empirical probability of the word appearing in
the region for words that were encountered in R; 3) it has a

prior probability, Rf , equal to the expectation for a
randomly selected word.  The regions used for the
submission were restricted to the one-word regions for:
first word, second word, last word, and next-to-last word.
Limited experimentation with multi-state regions, was not
fruitful.  For example, including the regions, {3,4,…,10}
and {-10,-9,…,-3}, where –i is interpreted as i words prior
to the end of the story, did not improve segmentation
performance.

Since, as described, the current HMM topology does not
model end-of-story words (earlier versions of the topology
did model these states directly), trigger features for end-of-
story regions are delayed. That means that a trigger related
to the last word in a story would be delayed by a one word
buffer.  In this way, it is linked to the first word in the next
story.  For example, the word “Jennings” (the name of the
main anchorperson) is strongly correlated with the last
word in news stories in the ABC World News Tonight
corpus.  The estimated probability of it being the last word
of the story in which it appears is .235 (obtained by the
aforementioned method). The trained model associates a
high likelihood of seeing the value .235 at state = 1; the
intuitive interpretation being, "a word highly likely to
appear at the last word of a story, occurred 1-word ago".

4. PARAMETER ESTIMATION

The Hidden Markov Model requires the estimation of
transition and conditional observation probabilities.  There
are 251 transition probabilities to be estimated.  Much
more of a problem are the observation probabilities, there
being 9 features in the model, for each of which a
probability distribution over as many as 100 values must
be estimated, for each of 251 states.  With the goal of
developing methods for robust estimation in the context of
story segmentation, we have applied non-parametric kernel
estimation techniques, using the LOCFIT library [Loader,
‘99] of the R open-source statistical analysis package,
which is based on the S-plus system [Venables & Ripley,

`99; Chambers & Hastie, `92, Becker, Chambers & Wilks,
`88]. For the transition probabilities, it is assumed that the
underlying probability distribution over story length is
smooth, allowing the empirical histogram, shown at the top
of Figure 4, to be transformed to the probability density
estimate shown at the bottom. From this probability
distribution over story lengths, the conditional transition

probabilities can be estimated directly.

Conditional observation probabilities are also deduced
from an estimate of the joint probability distribution.  First,
observation values were binned.  Binning limits were set in
an attempt to 1) be large enough to obtain sufficient counts
for the production of robust probability estimates, and yet,
2) be constrained enough so that important distinctions in
the probabilities for different feature values will be
reflected in the model.  For each bin, the observation
counts are smoothed by performing a non-parametric
regression of the observation counts as a function of state.
The smoothed observations counts corresponding to the
regression are then normalized so as to sum to the total
observation count for the bin.  The result is a conditional
probability distribution over states for a given binned
feature value,  p(State=s|Feature=fv).  Once this is done
for all bin values, each conditional probability is multiplied
by the marginal probability, p(State=s), of being in a given
state, resulting in a joint distribution, p(fv,s), over the
entire space of (Feature,State) values.  From this joint
distribution, the necessary conditional probabilities,
p(Feature=fv|State=s), can be deduced directly.

Figure 5 the conditional probability estimates, p(fv | s), for
the feature value COHER-3=20, across all states, confirming
the intuition that, while the probability of seeing a value of
20 is small for all states, the likelihood of seeing it is much

Figure 4: Histograms of story lengths (up to 250 words)
-- raw and smoothed --

Figure 5: Likelihood of COHER-3=2 over all states



higher in latter parts of a story than it is in early-story
states.

5. SEGMENTATION

Once parameters for the HMM have been determined,
segmentation is straightforward.  The Viterbi algorithm
[Rabiner, `89], is employed to determine the sequence of
states most likely to have produced the observation
sequence associated with the broadcast.  A boundary is
then associated with each word produced from State 1 for
the maximum likelihood state sequence.

The version of the Viterbi algorithm we have implemented
provides for the specification of “state-penalty”
parameters, which we have used for the “boundary state”,
state 1. In effect, the probability for each path in
consideration is multiplied by the value of this parameter
(which can be less than, equal to, or greater than, 1) for
each time the path passes through the boundary state.
Variation of the parameter effectively controls the
“aggressiveness” of segmentation, allowing for tuning
system behavior in the context of the evaluation metric.

6. RESULTS

Preliminary test results of this approach are encouraging.
After training on all but 15 of the ABC World News
Tonight programs from the TDT-2 corpus [Nist, ’00], a
test on the remaining 15 produced a false-alarm (boundary
predicted incorrectly) probability of .11, with a
corresponding miss (true boundary not predicted)
probability of .14, equal to the best performance reported
to date, for this news source.

A more intuitive appreciation for the quality of
performance can be garnered from the graphs in Figure 6,
which contrast the segmentation produced by the system

(middle) with ground truth (the top graph), for a typical
member of the ABC test set. The x-axis corresponds to
time (in units of word tokens); i.e., the index of the word
produced by the speech recognizer, and the y-axis
corresponds to the state of the HMM model. A path
passing through the point (301, 65), for example,
corresponds to a path through the network that produced
the 65th word from state 301. Returns to state=1
correspond to boundaries between stories. The bottom

graph shows the superposition of the two to help illustrate
the agreement between the path chosen by the system and
the path corresponding to perfect segmentation..

7. VISUALIZATION

The evolution of the segmentation algorithm was driven by
analysis of the behavior of the system, which was
supported by visualization routines developed using the
graphing capability of the R package.  Figure 7 gives an
example of the kind of graphical displays that were used

Figure 7: Visualization for x-duration feature

Figure 6: Performance



for analysis of the segmentation of a specific broadcast
news program; in this case, analysis of the role of the X-

DURATION feature.  This graphical display allows for the
comparison of the maximum likelihood path produced by
the HMM to the path through the HMM that would be
produced by a perfect system – one privy to ground-truth.

The top graph corresponds to the bottom graph of Figure 6,
showing the states traversed by the two systems.  The
second graph shows the value of the X-DURATION feature
corresponding to each word of the broadcast. So, the
plotting of a point at (301, 3) corresponds to an X-

DURATION value of 3 having been observed at time, 301.
One thing that can be seen from this graph is that being at a
story boundary (low-points on the thicker-darker line of
the top graph) is more frequent when higher values of the
X-DURATION cue are observed, than when lower values are
observed, as could be expected.

The third graph shows, on a log scale, how many times
more likely it is that the observed X-DURATION value
would be generated from the true state than from the state
predicted by the system.  Most points are close to 0,
indicating that the X-DURATION value observed was as
likely to have come from the true state as it is to have come
from the state predicted by the Viterbi algorithm.  Of
course, this is the case wherever the true state has been
correctly predicted. Negative points indicate that the X-

DURATION value observed is less likely to be produced
from the true state than from the predicted state.  Strongly
negative points are a major component of the probability
calculation that resulted in the system preferring the path it
chose over the true path.  These points suggest potential
deficiencies in the modeling. Their identification directs
the focus of analysis so that system performance can be
improved by correcting weaknesses of the existing model.

The final graph shows the cumulative sum of the values
from the graph above it. (Note that the sum of the logs of
the probabilities is equivalent to the cumulative product of
probabilities on a log scale.)  The graphing of the
cumulative sum can be very useful when the system is
performing poorly due to a small but consistent preference
for the observations having been produced by the state
sequence chosen by the system.  This phenomenon is made
evident by a steady downward trend in the graph of the
cumulative sum.  This is in contrast to an overall level
trend with occasional downward dips.  Note, that a similar
graph for the total probability (equal to the product of all
the individual feature value probabilities) will always have
an overall downward trend, since the maximum likelihood
path will always have a likelihood greater than the
likelihood of any other path.

Aside from supporting the detailed analysis of specific

features, the productions of these graphs for each of the
features, together with the corresponding graph for the
total observation probability, allowed us to quickly asses
which of the features was most problematic at any given
stage of model development.

8. FURTHER WORK

It should be kept in mind that experimentation with this
approach has been based on relatively primitive features –
our focus, to this point, having been on the development of
the core segmentation mechanism.  Features based on more
sophisticated extraction techniques, which have been
reported in the literature – for example, the use of
exponential models for determining trigger cues used in
[Beeferman, Berger, & Lafferty ‘99] – can easily be
incorporated into this general framework.  Integration of
such techniques can be expected to result in significant
further improvement in segmentation quality.

To date, the binning method described has given much
better results than two dimensional kernel density
estimation techniques which we also attempted to employ.
One of the main difficulties with using traditional kernel
density estimation techniques is that they tend to
inaccurately estimate the density at areas of discontinuity,
such as state=1 in our model and our trigger features.
Preliminary work with boundary kernels [Scott, ‘92] is
very promising.  It is certainly an area worthy of more in-
depth investigation.

Work done by another group [Liu, ‘00] to segment
documentaries based on video cues alone has been
moderately successful in the past.  We engineered a neural
network in an attempt to identify video frames containing
an anchorperson, a logo, and blank frames, with a belief
that these are all features that would contain information
about story boundaries.  Preliminary work was also done to
extract features directly from the audio signal, such as
trying to identify speaker change. Initial work with the
audio and video has been unable to aid in segmentation,
but we feel this is also an area worth continuing to pursue.
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