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Abstract

Self-calibration algorithms estimate both source directions-of-arrival (DOAs) and
perturbed array response vector parameters, such as sensor locations. Calibration
errors are usually assumed to be small and a first order approximation to the per-
turbed array response vector is often used to simplify the estimation procedure. In
this paper, we develop a more robust procedure that does not rely on the small
error assumption. It has better performance for large estimation errors, and when
used to initialize the Weiss and Friedlander MUSIC-based iterative technique, we
see significant improvement over existing techniques for both small and large errors.

1 Introduction

A common application in antenna array processing is direction of arrival
(DOA) estimation for closely spaced sources. A number of algorithms exist
for solving this problem. Research has shown that these algorithms can be
very sensitive to errors in the antenna array, including gain/phase deviations,
sensor location errors, and mutual coupling errors [1]-[9].

There are a number of techniques available for calibrating the array. The sim-
plest techniques require sources with known DOAs [10]-[22]. This may not be
realistic in many situations, and we’d prefer to use an algorithm that doesn’t
require any known sources, but instead relies entirely on targets of opportunity.
Several examples of this class of algorithms, known as self calibration algo-
rithms, have been proposed in recent years to correct for gain/phase [2], [3],

Preprint submitted to Elsevier Preprint 2 January 2002



[6], [23]-[31], mutual coupling [3], and sensor location errors [3], [30]-[34]. Two
techniques that we study in detail in this paper were developed by Weiss and
Friedlander [32] and Viberg and Swindlehurst [31]. The Weiss and Friedlander
(WF) technique is based on the MUSIC algorithm and alternately estimates
the DOAs and the sensor locations until convergence is achieved. The Viberg
and Swindlehurst technique uses a maximum a posteriori noise subspace fit-
ting (MAP-NSF) method which estimates all parameters simultaneously by
using a Bayesian approach.

Another approach to this problem is to avoid calibration altogether by design-
ing DOA estimation techniques which are less sensitive to calibration errors
[6], [23], [35]-[42]. Examples of these techniques are the weighted subspace
fitting (WSF) and optimal subspace fitting (OSF) techniques introduced by
Viberg and Swindlehurst [6]. These are multi-dimensional techniques that ap-
ply weighting matrices to a cost function to reduce the sensitivity to calibra-
tion errors. An improvement to the WSF algorithm was introduced by Jans-
son, Swindlehurst, and Ottersten [23] to provide greater performance against
correlated signals.

In this paper we focus on self calibration for sensor position errors. Rockah and
Schultheiss [1] showed that simultaneous DOA estimation and sensor location
calibration is possible provided that the array is not linear and that there are
three distinct sources as well as knowledge of the exact location of one sensor
and the direction to a second sensor. Existing self calibration techniques as-
sume that calibration errors are small and use a first order approximation to
the perturbed array response vector in their cost functions to simplify the es-
timation procedure. Our simulations indicate that a first order approximation
to sensor location errors is not adequate as the errors increase [43]. In many
applications, sensor perturbations can be larger than the small errors these
techniques were designed to handle. In this paper, we combine portions of the
techniques in [16], [31], [32], and [44] to construct a more robust procedure
that does not use an approximation to sensor location errors. The develop-
ment is based on an exact calibration procedure for known sources developed
by Fistas and Manikas (FM) in [16] combined with a non-parametric steering
vector estimation (SVE) technique from [44] for estimation of large calibra-
tion errors. This iterates with a modified noise subspace fitting (NSF) DOA
estimation technique from [31] and [45], and final refinements are made using
the WF self calibration technique [32].

This paper is organized as follows. The problem is formulated in Section 2.
The FM calibration technique, the NSF DOA estimation technique, and the
WEF and MAP-NSF self calibration algorithms are summarized in Section 3. In
Section 4, the SVE algorithm is summarized and the large error self calibration
procedure is developed. Simulation results are presented in Section 5, and a
summary is given in Section 6.



2 Problem Formulation

Our problem consists of M narrowband radiating sources with center fre-
quency wq being received by an array of N sensors, where M < N. The signal
at the output of the sensors can be described by the N x 1 column vector

x(t) = V(o, p)s(t) +n(t), (1)

where n(t) is the N x 1 noise vector, s(t) is the M x 1 vector of source signals,
and V(¢, p) is the N x M array response matrix.

The columns of V(¢, p) are the array response vectors (also called steering
vectors) for the individual sources,

V(o,p) =[V(¢1,p) V(ga, p) -+ Vb, p)]. (2)

The array response vectors are a function of the source DOAs ¢ and the sensor
parameters p. In general, p consists of sensor positions, gain, phase, mutual
coupling, etc. We initially consider only perturbations of the sensor positions,
and assume the other parameters are known. The array response of the nth
sensor to a source from ¢,, is

Vn(¢ma p) = €exp {]?(ﬁn COS Py + Yp SiN ¢m)} ) (3)

where z, and y, are the x and y positions of the nth sensor and A is the
wavelength corresponding to wy.

We assume that the positions are perturbed from their nominal positions by
Az, and Ay,. Let p, denote the vector of nominal position parameters, and
pa denote the perturbations. The perturbed array response has the form

Vi bm, Po + PA) = exp {]277 [(zn + Axy,) coS O + (Yo + Ayy) sin d)m]} .(4)

The perturbations are modeled as a zero-mean Gaussian random vector with
covariance matrix 2. The DOAs are assumed to be non-random parameters.
The goal is to estimate the sensor position perturbations as well as the DOAs
of the sources using K independent data snapshots taken at times ¢,..., tx.
Our primary goal is accurate DOA estimation, with perturbation parameters
considered as nuisance parameters that must also be estimated.

The source signals and noise are assumed to be sample functions of uncorre-
lated zero-mean Gaussian random processes. The noise is uncorrelated from



sensor to sensor with noise power o2, thus the noise covariance matrix is given

by

R, = E{n(t)n(t)7} = o*1y, (5)

where Iy is the N x N identity matrix. The source signals are uncorrelated
with the noise and each other. Let 02, denote the power of the mth source.
The source covariance matrix is the M x M diagonal matrix

oy 0 --- 0
0 c2... 0
R, = B{s(t)s(t)"} = diag{o?,....o3 k= | | ()
(00 -0
The data covariance matrix Ry has the form
R = B {x()x(1)"} = V(¢ p)RV (6. p)" +0"Ly. (7

The techniques we will investigate rely heavily on the eigen-decomposition of
R, which has the form

Ry = E,A,E + ¢’E,E/, (8)
where E; is the N x M matrix of the signal subspace eigenvectors, A; is
a diagonal matrix containing the M signal subspace eigenvalues, and E,, is

the N x (N — M) matrix of the noise subspace eigenvectors which all have
eigenvalue 0. The eigen-decomposition in (8) can be re-written as

R.=E, (A, - o’Iy) E + 0’E.E! + o’E,E!
=E, (A, — o’Iy) B + 0’Iy. (9)

Comparing (7) and (9), we have the relationship

V(¢,p)RV(¢,p)" = E, (A, — 0’y ) EL" (10)

This relationship establishes the well known fact that the array response vec-
tors in V(¢, p) and the signal subspace eigenvectors in E; both span the signal
subspace.



In practice, the eigenvectors and eigenvalues are estimated from the sample
covariance matrix Ry,

Z X(tk)x(tk)H = EsAsEf + &2EHE7€I’ (11)

where the eigenvectors in E, and E,, are obtained directly from the numerical
eigen-decomposition of R,. The signal subspace eigenvalues in A, are the M
largest eigenvalues, and the noise power 62 is estimated from the average of
the N — M smallest eigenvalues, e.g.

1 N

N-M

5% =

A (12)
i=M+1

The Cramer-Rao bound (CRB) for the random signal model with non-random
DOAs and random perturbations was developed in [30] for generic array per-
turbations. It is based on the hybrid CRB structure developed by Rockah and
Schultheiss in [1] for combinations of random and non-random parameters.
An explicit evaluation of the terms in the bound for position perturbations
follows directly from [30] and is carried out in [43]. Using this bound, the
identifiability conditions of a non-linear array, three distinct sources (M > 3),
and knowledge of three components of the perturbation vector (e.g. the exact
location of one sensor and the direction to a second sensor or the exact loca-
tion of one sensor and the z-component of a second sensor) derived in [1] for a
different signal model were also verified numerically in [43], and are assumed
to be satisfied. Thus the perturbation vector p, will consist of the L = 2N —3
unknown x and y components of the sensor perturbations.

The identifiability conditions guarantee that the CRB for the DOAs decreases
as the signal-to-noise ratio (SNR) increases. This occurs in spite of the fact
that the CRB for the perturbation parameters levels out and does not decrease
beyond a fixed value related to the a priori variance when SNR increases [24].

3 Calibration Techniques
3.1 Array Calibration with Known DOAs

If the DOAs and the array response vectors for two distinct sources are known,
the sensor locations can be obtained exactly from the definition in (3). When
there are also gain and phase uncertainties, all parameters can be found from



knowledge of the DOAs and array response vectors for three distinct sources.
Fistas and Manikas have developed a technique for estimating the parame-
ters from measured array response vectors when three sources are observed
individually [16].

Given the array response matrix and the source DOAs, the sensor location
estimation is based on the following relationships. Let Vi, V2, and V3, de-
note the response of the nth sensor to sources with DOAs ¢, ¢, and ¢s,
respectively. Then

Vo Vin =exp {j27ﬂ- (xn]cos @1 — cos ¢o] + yp[sin ¢y — sin ¢2])} (13)
Vi Vi =exp {1277( (2,][cos 1 — cos ¢3] + yy,[sin ¢; — sin ¢3])} . (14)

Rearranging these equations, the sensor positions can then be obtained in
direct form using:

—1
Tp B Tn, + Ay, G2 Si2 %Z(Vzn‘/ln) (15)

Un Un + Ay, €13 S13 %Z(V;n‘/ln)

where c¢19 = cos @1 — cos ¢o, ¢13 = COS P — COS (3, S;o = Sin Py — sin ¢, and
$13 = sin ¢ —sin ¢3. The function /() extracts the angle of a complex number,
ie. /(re?) =40.

In practice, the array response vectors are not known. However, when a source
is observed individually, an unstructured estimate of its array response vector
can be obtained from the sole signal subspace eigenvector of the sample co-
variance matrix. This technique is useful when a single known source can be
observed from different DOAs. In many practical situations, however, this is
not possible.

3.2 Small Perturbation Self Calibration Techniques

In our problem formulation, we have modeled DOAs as non-random parame-
ters and the sensor perturbations as random parameters. Our goal is to esti-
mate the DOAs, with perturbation parameters considered as nuisance parame-
ters that must be estimated simultaneously. Self calibration techniques jointly
estimate the unknown sensor positions and the DOAs of interest for targets of
opportunity. A number of techniques have been developed in which the sensor
parameters are modeled as either non-random parameters or random parame-
ters. Both types of techniques can be applied under our model. The techniques



for non-random parameters simply ignore the additional information provided
by the a priori distribution of the random parameters.

Two techniques that we study in detail in this paper are the WF technique de-
veloped by Weiss and Friedlander [32] and the MAP-NSF technique developed
by Viberg and Swindlehurst [31]. The WF technique assumes the perturba-
tion vector p, is a non-random parameter vector. It is based on the MUSIC
algorithm in which DOA estimates are obtained (assuming that sensor loca-
tion parameters are known) from the positions of the M largest peaks in the
MUSIC “spectrum”:

Pa() = (V(6,0)"BE,BIV(6,0) (16)

or equivalently, from the peaks in the MUSIC cost function

Cuu(9) = Ve, p)"EE!V (4, p). (17)

Weiss and Friedlander suggested that if the source DOAs are known, the per-
turbation parameters could be obtained by maximizing the same cost function
with respect to the perturbation parameters, summed over all the sources, i.e

M
Cwr(pa) = Z V(s po + PA)HEsEfV(Qbma Po + Pa)- (18)

m=1

This may be expressed compactly by defining v(¢, p) to be the NM x 1
column vector obtained by stacking the columns of V(¢, p), i.e.

v($, p) = vec(V(9, p)). (19)

The cost function becomes

CWF(pA) = V(¢7 Py + pA)H(IM ® ESEE)V(qba Py + pA)a (20)

where ® denotes the Kronecker product. This is a complicated multi-dimensional
optimization problem. However, if the location errors are small, the array steer-
ing vector can be modeled by the first order approximation

v(®,py + pa) = Vo + Dppa, (21)

where vy = vec(V(¢, py)) and D, is the NAM x L derivative matrix

_|ov(g,p)  Ov(®,p)

D, = .
g dp1 dpr, HP=P0




The cost function becomes

Cwr(pa) = (vo+Dppa)" (T @ BB ) (vo + D,pa). (23)
Defining
Twr =Re{D} (I, ® [E.E!])D,} (24)
and

the solution to this optimization problem is

pa = —Typfwr. (26)

The combined DOA estimation and sensor position calibration algorithm con-
sists of estimating the DOAs using (17), then using the DOA estimates to
estimate the location errors using (26). The algorithm iterates until it con-
verges to a final solution. The WF technique requires initial DOA estimates,
which may be obtained from the MUSIC algorithm using the nominal sensor
positions.

The MAP-NSF algorithm was developed to solve the gain/phase calibration
problem, but is easily adapted to the location error problem. It is based on
the NSF DOA estimation algorithm [45] in which DOA estimates are obtained
(assuming that sensor location parameters are known) from an A/-dimensional
maximization of the NSF cost function

Cnsr(@) = v(o, P)HWV(¢: p) (27)

where

and

~ ~ ~ _1 ~
v = (vHv> v’ (29)

The matrix ¥V = V(¢, p) is an estimate of the array response matrix from
some initial DOA estimates and the known array parameters. The remaining



quantities in (28) are obtained from the eigen-decomposition of the sample
covariance matrix in (11).

In the MAP-NSF technique, the perturbation vector p, is assumed to be a
zero-mean Gaussian random vector with covariance matrix €2, and the DOAs
and perturbation parameters are estimated jointly using a maximum a poste-
riori (MAP) approach. The first order approximation to the perturbed array
response vector given in (21) is used, and the following cost function is ob-
tained:

“ 1 _
Cyvapr-nsr(®, pa) = (Vo + DppA)HW(VO + DppA) + §P£Q IPA (30)

where W is defined in (28) and ¥V = V(¢, p,) is an estimate of the array
response matrix from some initial DOA estimates and the nominal array pa-
rameters. Defining

5 1
Tyap=Re {DEWDP + 591} (31)
farap =Re {D Wvo} (32)

we obtain an estimate of the perturbation parameters from

pa = —Tiiapfuar. (33)

This can be plugged back into (30) and the DOA estimates can be obtained
from the resulting composite cost function

Chrrap—nsr(@) = v Wvg — £1,p Tt apfarap (34)

where vy, fyrap and Ty ap are all functions of ¢. MAP-NSF requires initial
DOA estimates and knowledge of the perturbation covariance matrix 2. MAP-
NSF is not an iterative technique, but requires finding the maximum of an
M-dimensional cost function.

The performance of the WF and MAP-NSF algorithms was simulated and the
results are shown in Figure 1. A 6 element circular array with \/2 spacing was
used. The signals impinging on the array were at azimuth angles of 37.3, 0.0,
and -37.3 degrees. All three signals are just within the null-to-null beamwidth
of the array. The signals were uncorrelated with equal power. In order to
satisfy the identifiability conditions, the exact location of one sensor, and
the x position of a second sensor were assumed known. The perturbations
for the remaining sensor locations were modeled as independent, identically
distributed Gaussian random variables in both the x and y directions with



standard deviations varying from 0 to 0.15 A. In all cases, K = 1000 snapshots
of data were collected and the results were averaged over 200 trials. The sensor
location perturbations were constant over the 1000 snapshots for each trial,
but varied from trial to trial according to their a priori Gaussian distributions.
The mean square error of the DOA estimate for the first signal vs. SNR is
shown in each plot, where the SNR is defined as the ratio of the signal power
to the noise power o%/c%. The DOA estimation results for the other signals
are comparable.

MAP-NSF was initialized using an alternating minimization technique and
nominal sensor positions. First only one signal is assumed present and the
MAP-NSF cost function is minimized with respect to it’s DOA. The resulting
DOA estimate is then held fixed and the MAP-NSF function assuming two
source signals is minimized with respect to the second DOA. This method is
repeated for as many source signals as are present.

WF was initialized with DOA estimates obtained from the standard MUSIC
algorithm assuming nominal sensor positions (WF(MUSIC)). MAP-NSF per-
forms better than the standard MUSIC algorithm when there are position
perturbations, but WF shows almost no improvement. With better initializa-
tion, however, WF generally has better performance than MAP-NSF [43]. To
demonstrate this, we also show results obtained with the WF technique ini-
tialized by the true DOAs (WF(True)), and by the estimates obtained from
MAP-NSF (WF(MAP-NSF)). We see that much better results are obtained
with more accurate initial DOA estimates. All algorithms deviate significantly
from the Cramer-Rao bound as the sensor location perturbations increase. The
poor performance is due to the failure of the small error assumption in (21).

Since it is not fair to initialize with the true DOAs, for the remainder of
this paper, WF is initialized with MAP-NSF. This can also be viewed as post-
processing MAP-NSF with WF. We refer to this procedure as MAP-NSF/WF.

4 DOA Estimation and Large Sensor Position Perturbation Cali-
bration

The results in the previous section indicate that a first order approximation
to sensor location errors is not adequate as the errors increase. A second order
model may be appropriate, but we would ideally like to use an exact solution
for the sensor locations, such as in [16].

In our problem, there are three or more sources present simultaneously, and
the array response vectors cannot be individually observed so the technique
in [16] cannot be applied directly. However, there are techniques for obtaining
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Fig. 1. Comparison of DOA estimation performance vs. SNR for random sensor
location perturbations with standard deviation ranging from 0 to 0.15 A. The array
is a 6 element half-wavelength spaced uniform circular array. There are 3 equal
power uncorrelated sources impinging on the array with DOAs of -37.3, 0.0, and
37.3 degrees. Number of snapshots was 1000. The results were averaged over 200
trials.

unstructured steering vector estimates from the sample covariance matrix.
Examples are the PROS algorithm developed by Tseng, Feldman, and Griffiths
[46] and a technique based on second order moments developed by Weiss and
Friedlander [44], herein referred to as the steering vector estimation (SVE)
algorithm.

In the SVE algorithm, the N x M array response vector matrix V is assumed
to have an unstructured form where the n, m element has a real gain g, and
phase angle 0, ,,,, i.e. V}, , = gne’?»m . The matrix V can be written as

V=GC (35)

where G is an N X N diagonal matrix of real sensor gains, G = diag{gi, 92, ..., 9n},
and C is an N x M matrix of unit magnitude complex phase responses, i.e.
Cpm = €/%m_ The steering vectors can only be determined up to a complex
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scale factor, therefore it is assumed without loss of generality that the first
element of each vector is equal to one, i.e. gy =1 and 6, =--- =0,y = 0.

The algorithm is based on the relationship between the parametric model and
the eigen-decomposition model of the signal subspace in (10). An equivalent
relationship is

VRYZ =E, (A, —o?L),)"s, (36)

where S is any M x M orthonormal matrix. (We can obtain (10) from (36)
by post-multiplying each side by its hermitian transpose.) Defining

B=E, (A, - o’Ly) "’ (37)

and substituting (35) and (37) into (36), we have

GCR!/? = BS. (38)

. N 1/2
Let B = E; (As — 6QIM) / be an estimate of B obtained by substituting the

estimates B, A,, and 62 in the right hand side of (37). The SVE algorithm
obtains estimates of the matrices G, C,R!/2, and S by replacing B with B
and minimizing the Lo-norm of the difference between the right and left hand
sides of (38), i.e. it minimizes the cost function

7 =|GCRY? - Bs| . (39)

At each step of algorithm, the matrices G, C, R!/2, and S are estimated
separately by holding all of the other matrices fixed. Note that G and R/ =
diag{oy, ..., o} are diagonal matrices. Details of the algorithm are available
in [44], and summarized here:

(1) S = UHY, where UXH is the singular value decomposition of BYGCR!/2.
~ ~R1/2 Half ~R1/2 2 _ .
(2) g = max (0. Re {[CRY?] | [BS] L/I[CRIZ] 7). n=2....

m)
where [-](m) denotes the mth row of a matrix.

(3) 6 = max (o,Re{[GC]‘”’H [BS](”)}/H Ge]™ ||2>, m o= 1,...,M;
where [-]™ denotes the nth column of a matrix.

(4) émn:exp{l[]éé]m,n}, m=1,....M,n=2,...,N.

The algorithm iterates until convergence is achieved. The final unstructured
array response matrix estimate is Y = GC.

12



Using the SVE algorithm with the FM technique, we can obtain sensor loca-
tion estimates given knowledge of the source DOAs without using the small
error approximation. The calibration process can then be coupled with a DOA
estimation technique in an iterative procedure which alternates between DOA
and array location estimation.

The MAP-NSF algorithm, which is based on the NSF cost function, is gener-
ally more robust to initialization errors and correlated sources than the WF
algorithm, which is based on the MUSIC cost function. For these reasons, we
use the NSF cost function as the basis for our DOA estimator. The DOA
estimates are obtained by minimizing

Q@) = v(¢, p)"Wov(o, p) (40)

where Wy, is the NSF matrix given in (28) but with the unstructured V
obtained from the SVE algorithm. (In [47] we used the PROS algorithm for
steering vector estimation but we have since found the SVE algorithm to
provide better results [48],[43].) At each step of the minimization of (40) we
use (15) to update our estimates of the sensor locations.

To summarize, this technique (denoted as ‘Q’) consists of the following steps:

(1) Initialization
(a) Estimate the array manifold vectors, VY = GC, using the SVE algo-
rithm [44], outlined above.
(b) Obtain initial DOA estimates assuming nominal sensor positions and
alternating minimization of the NSF cost function.
(2) Iterate on DOA and sensor position estimation
(a) Estimate the sensor positions using the Fistas and Manikas sensor
position estimation technique (15) with the unstructured estimate
VY = GC and the current DOA estimates.
(b) Estimate the DOAs using the current sensor position estimates the
large error SVE-NSF cost function (40).

The Q technique provides improved performance over the MAP-NSF and
MAP-NSF/WF techniques for moderate to large perturbations as shown in
the simulation results in Figure 2. However, the performance does not improve
with increasing SNR, and never reaches the Cramer-Rao bound.

This technique does, however, give us considerably better estimates of the
DOAs and the true sensor locations than we started with. The remaining sen-
sor position deviations are small enough that the first order approximation
used in WF and MAP-NSF is valid, and the DOA estimates are accurate
enough for initialization of the WF technique. If we now apply WF, we see
significant improvement for both small and large errors. This combined tech-

13
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Fig. 2. Comparison of DOA estimation performance vs. SNR for random sensor
location perturbations with standard deviation ranging from 0 to 0.15 A. The array
is a 6 element half-wavelength spaced uniform circular array. There are 3 equal
power uncorrelated sources impinging on the array with DOAs of -37.3, 0.0, and
37.3 degrees. Number of snapshots was 1000. The results were averaged over 200
trials.

nique (‘Q’ followed by the WF algorithm) is referred to as the QWF technique.
To summarize, the QWF technique consists of the following steps:

(1) Initialization : same as in Q technique
(2) Iterate on DOA and sensor position estimation as in Q technique
(3) Refine estimates using WF technique

The QWF procedure as stated above is the main result of this paper.

5 Simulation Results

DOA estimation performance and the Cramer-Rao bound are shown vs. SNR
in Figure 2. The simulation scenario is the same as in Figure 1. A 6 element
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circular array with \/2 spacing was used. The signals impinging on the array
were at azimuth angles of 37.3, 0.0, and -37.3 degrees. The signals were un-
correlated with equal power. In order to satisfy the identifiability conditions,
the exact location of one sensor, and the z position of a second sensor were
assumed known. The perturbations for the remaining sensor locations were
modeled as independent, identically distributed Gaussian random variables
in both the x and y directions with standard deviations varying from 0 to
0.15 A. In all cases, K = 1000 snapshots of data were collected and the results
were averaged over 200 trials. The sensor location perturbations were constant
over the 1000 snapshots for each trial, but varied from trial to trial according
to their a priori Gaussian distributions. The mean square error of the DOA
estimate for the first signal vs. SNR is shown in each plot.

Performance is compared to the standard MUSIC algorithm, the MAP-NSF
self-calibration technique, and MAP-NSF followed by WF (MAP-NSF/WF).
When there are no sensor perturbations, MUSIC is closest to the CRB, while
all the others except the Q-function are close. Standard MUSIC fails immedi-
ately even for very small location errors. MAP-NSF provides a performance
improvement over MUSIC but never reaches the bound. MAP-NSF/WF does
reach the bound for small perturbation errors, but rapidly degrades as er-
rors increase. The Q-function technique performs better than both MAP-NSF
and MAP-NSF/WF only for moderate and large perturbations. The com-
bined QWF technique provides the best performance over the range of sensor
perturbations. Its performance gradually deviates from the CRB with increas-
ing perturbation variance, but still has excellent performance at perturbation
standard deviations as large as 0.158\.

DOA estimation performance and the CRB are shown vs. SNR and source
separation for all the algorithms in Figures 3 and 4. The same 6 element
circular array with A\/2 spacing was used. The three signals impinging on
the array were at azimuth angle separations of 37, 27, and 17 degrees. The
most closely spaced sources are well within the half-power beamwidth of the
array. The sensor location perturbations, the number of snapshots, and the
number of trials are all the same as in the first experiment. The QWF al-
gorithm reaches the bound over the entire range of sensor perturbations and
source DOA separations. Its performance gradually deviates from the CRB
with increasing perturbation variance, but still has excellent performance at
perturbation standard deviations as large as 0.158\ and source separations of
only 17 degrees.

DOA estimation performance and the CRB are shown vs. the standard de-
viation of the location perturbations for all the algorithms in Figure 5. The
same 6 element circular array with A/2 spacing was used. The three signals
impinging on the array were at azimuth angle separations of 37 degrees. The
sensor location perturbations, the number of snapshots, and the number of
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Fig. 3. Comparison of DOA estimation performance vs. SNR and source separation
for random sensor location perturbations with standard deviation of 0.0707 X. The
array is a 6 element half-wavelength spaced uniform circular array. There are 3 equal
power uncorrelated sources impinging on the array with source separations of 37,
27 and 17 degrees. Number of snapshots was 1000. The results were averaged over
200 trials.

trials are all the same as in the first experiment. The QWF algorithm comes
closest to the bound over the entire range of sensor perturbations and SNRs.
Its performance gradually deviates from the CRB with increasing perturba-
tion variance, but still has excellent performance at perturbation standard
deviations as large as 0.2\.

6 Summary

We considered the problem of array self calibration and showed the limita-
tions of existing array self calibration algorithms against all but the smallest
array element location errors. We then developed a more robust technique
for calibration of large sensor perturbation errors which eliminates the small
error approximation. The performance was compared to other techniques via
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Fig. 4. Comparison of DOA estimation performance vs. SNR and source separation
for random sensor location perturbations with standard deviation of 0.158 A. The
array is a 6 element half-wavelength spaced uniform circular array. There are 3 equal
power uncorrelated sources impinging on the array with source separations of 37,
27 and 17 degrees. Number of snapshots was 1000. The results were averaged over
200 trials.

simulation. The QWF algorithm combines ideas from several existing tech-
niques. It is able to make use of the best parts of these techniques to provide
significantly improved performance over a wide range of sensor perturbation
errors.

The QWF algorithm was designed specifically for sensor position errors. An
extension to handle gain and phase perturbations when the sensor positions are
known, as well as simultaneous sensor position, gain, and phase perturbations
was also developed. It is described and analyzed via simulations in [43].
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Fig. 5. Comparison of DOA estimation performance vs. standard deviation of
sensor location perturbations for three different SNRs. The array is a 6 element
half-wavelength spaced uniform circular array. There are 3 equal power uncorre-
lated sources impinging on the array with source separations of 37 degrees. Number
of snapshots was 1000. The results were averaged over 200 trials.
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