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Abstract

This paper presents new expressions for the bias error and variance introduced by
multipath onto the time of arrival estimate obtained using a non-coherent early-late gate
discriminator.  The results include the effect of front-end bandwidth and early-late gate
spacing.

We also investigate a blind method for cancelling the multipath, in order to improve
the time-of-arrival estimate.  Our approach uses early-late gate processing on an objective
function derived from an adaptive FIR filter that attempts to match the crosscorrelation of
the received signal with a multipath-free replica of the desired crosscorrelation.  This
method performs reasonably well, and decreases the bias by approximately a factor of 2,
even in very stressing multipath environments.
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Introduction

The Global Positioning System (GPS) uses the measured time delays between a user
and at least four satellites to estimate user position [1, 2].  Unfortunately, multipath can
introduce [3-5] a bias in the measured time delay that cannot be removed by smoothing
or by narrowband correlation [6].  Advances in receiver technology are producing
receivers with wider front-end bandwidths and narrower early-late gate spacings; which
helps to mitigate multipath effects.

In this paper we will investigate an approach to cancel the multipath.  As part of the
analysis, we will first obtain new results for the multipath-induced bias and variance in
the time of arrival estimate obtained by an early-late gate discriminator.  These results
include the effects of both front-end bandwidth and gate spacing.  The multipath
cancellation approach we consider for multipath equalization differs from (1) the
classical approach, which is to estimate and invert the channel, and (2) various
maximum-likelihood-estimation approaches [7-18].  The maximum likelihood method is
very powerful, but is computationally complex, especially when there are many
multipaths and the number of multipaths is unknown.  Furthermore, some of the
algorithms (e.g., Expectation Maximization) used to estimate the multipath parameters
sometimes converge to spurious estimates.  Consequently, we consider a blind
equalization approach that simultaneously cancels multipath and estimates the true time
delay.  No information about the channel is required, other than the assumption that the
coherent sum of the multipath signals is weaker than the direct-path signal.  We will
demonstrate that for a given front-end bandwidth and gate spacing, our method can
reduce the bias by a factor of two (or more), even in stressing multipath environments.

Bias and Variance Due to Multipath

We first wish to obtain formal expressions for the multipath-induced bias and
variance in the time-of-arrival estimate obtained using noncoherent early-late gate
processing.  A noncoherent early-late gate processor estimates time-of-arrival by
minimizing the error function

( ) ( ) ( )2ˆ2ˆˆ dtdtt --+= FFe (1)

where t̂  is the estimate of the true delay t, d is the time interval between the early and

late gates, ( ) ( )2tt vrF = and ( )t̂vr is the crosscorrelation defined as

( ) ( ) ( )tt ˆ1ˆ * -= Ú tstvdt
T

r
o

v (2)

In Equation (2), To is the integration time of the correlator, s(t) is the transmitted signal
and v(t) is the received voltage, which can be modeled as
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where s(t - t) is the direct-path signal, t is the true direct-path delay, x(t) is the noise, ap,

tp are, respectively, the complex amplitude and differential delay of multipath component

p and Q is the number of multipath scattering centers.  In writing Equation (3) we have
assumed that the differential Doppler shifts between the multipath and direct-path signal
are small.  If Equation (3) is used in (2) we obtain

( ) ( ) ( )

( )2

2ˆ2ˆ *
*

dx

dtttdt

±+

---=± ÚÂ
=

mtstsdt
T
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T

o
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op o

p
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o

(4)

where we have defined 0,1 ºº ooa t , and the noise term x is

( ) ( ) ( )2ˆ1
2 * dtdx m-=± Ú tstxdt

T
oT

o
o

 . (5)

Let us assume that the received signal has been first filtered by an ideal filter of
bandwidth B.  Then we can express s(t) in terms of its Fourier transform S(f) as

( ) ( ) ( )ftifSdfts
B

B
p2exp

2

2Ú-
=  . (6)

If Equation (6) is used in (4), and we use the fact that the correlation interval To is very
much larger than any errors in delay, we can rewrite Equation (4) as

( ) ( ) ( )[ ]
( )2

22cos2ˆ
2

2

*

dx

tdepdt

±+

+=± ÚÂ -
=

p

B

B

Q

op
psv ffPdfaCr m

(7)

where P(f) is the normalized* power spectrum of the signal, defined as

( ) ( )
o

s T

fS
fPC

2

=  , (8)

Cs is the signal carrier power, and

tte ˆ-=   . (9)

In writing Equation (7) it has been assumed that P(f) is a symmetric function of
frequency, f.   Although the results are valid for arbitrary symmetric power spectra, in this
paper P(f) will be chosen as the pseudonoise (PN) power spectrum

                                                            

* P(f) is normalized such that 1)( =Ú
•

•-
dffP .
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( )CC fTTfP p2sinc)( = (10)

where TC is the chip duration of the PN signal.

Now substitute Equation (7) into (1), and assume* that 25.0<eB  so in Equation (7)
( )[ ] ( )[ ]22cos~22cos dtptdep ±--+ pp ff m [ ( )].22sin2 dtpep ±-+ pff  Then we obtain

for the error function defined in Equation (1), the result

( ) ret ++= bKe oˆ (11)

where Ko and b are independent of ,t̂te -= and are defined as

[ ]qpqpqpqpq

Q

p

Q

q
pso ZHHZXYYXaaCK --+= ÂÂ

= =

*

0 0

24p  , (12)

[ ]qpqpq

Q

p

Q

q
ps XZZXaaCb +-= ÂÂ

= =

*

0 0

22  , (13)

( ) ( ) ( )p

B

Bp fffPdfX tpdp 2coscos
2

2Ú-
=  , (14)

( ) ( ) ( )q

B

Bq ffffPdfY tpdp 2cossin
2

2Ú-
=  , (15)

( ) ( ) ( )p

B

Bp fffPdfZ tpdp 2sinsin
2

2Ú-
-=  , (16)

( ) ( ) ( )q

B

Bq ffffPdfH tpdp 2sincos
2

2Ú--=  , (17)

and r is a noise term.  If noise is ignored, and we set the error equal to zero, we find

oK
b-=e (18)

or substituting for e

oK
b+= tt̂   . (19)

                                                            
* Although the approximation used here is valid for the power spectrum in Equation (10) provided Be <

0.25, we caution that the requirement is much more stringent for power spectra, such as binary offset
carrier (BOC), that have much of their energy concentrated near the band edges.  In fact, we have
found that for the BOC (10, 5) that is being contemplated for the new military (M) code the
approximation is inadequate, and a numerical evaluation of Equation (1) is required to accurately
calculate the bias error introduced by multipath.
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Consequently, the estimate t̂ of the true delay t is biased, and that bias is equal to b/Ko.

If multipath is absent altogether then ao = 1 and all other ap = 0.  Then, because to = 0,

by definition, it is readily shown that b = 0, so that the bias vanishes, as expected.

We now derive the variance of the time-of-arrival estimate t̂ .  Let us first define

( ) ( ) qpq ffPdfCD
B

Bs 2cos
2

2Ú-= . (20)

Then, Equation (7) can be rewritten as

( ) ( ) ( )222ˆ * dxtdedt ±++=± Â
=

p

Q

op
pv Dar m (21)

where x is defined in Equation (5).  Therefore, the error e( t̂ ) defined in Equation (1) is

( ) ( ) ( )

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]
( ) ( )[ ]22

**

0

*

0

*

0 0

22

2222

2222

2ˆ2ˆˆ

dxdx

dxdtedxdte

dxdtedxdte

dtdtt

--+

-++--++

-++--++

L=

--+=

Â

Â

ÂÂ

=

=

= =

qq

Q

q
q

pp

Q

p
p

pqq

Q

p

Q

q
p

DDa

DDa

aa

FFe

(22)

where

( ) ( ) ( ) ( )2222 dtedtedtedte ++++--+-+=L qpqppq DDDD   . (23)

The first term on the right-hand side of Equation (22) reduces to bKo +e , in the limit

when 1<<Be , where Ko and b are defined in Equations (12) and (13) respectively.  The
last three terms on the right-hand side of Equation (22) have been denoted by r in

Equation (11), and represent the effects of the noise.  In the limit when e is small these

noise terms can be approximated by

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]
( ) ( )[ ]22

***

0

22

2222

2222

dxdx

dxdtdxdt

dxdtdxdtr

--+

-+-+-+

-+-+-=
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=

=
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q

pp

Q

p
p

DDa

DDa

(24)

where we have used the fact that D(-q) = D(q).
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We first need to calculate the variance of r defined as

222 rrs r -= . (25)

Then, upon referring to Equation (11), the variance in e and hence t̂ , is given by

2

2
2
ˆ

oK
r

t

s
s = (26)

where Ko is defined in Equation (12).  Let us assume that the noise is a circular*,
gaussian random process with a symmetric power spectrum Pxx(f).  Then, after
considerable manipulation, one can show that

( ) ( )[{
( ) ( )] ( ) ( ) ( ) ( )
( ) ( ) ( )}

( ) ( )[ ].0
2

22

22022

22
2
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2

0 0q
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d

ddtdt
ddtdtdtdt

dtdts r
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JDD

JDDJDD
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T

o
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qpqp

qp

Q

p

Q

qp
o

-+

-+-

+----+

--= Â Â
= =

(27)

where

( ) ( ) ( ) qpq ffPfPdfJ xx

B

B
2cos

2

2Ú-
= . (28)

Equation (27) is lengthy, but we can verify its correctness by taking the limiting case
when the multipath is absent. Then only the p=q=0 term remains in Equation (27), and
Ko and 

2
rs  reduce to

( ) ( ) ( ) ( )dpdpp ffPffdffPdfCK
B

B

B

BSo ¢¢¢¢= ÚÚ --
sincos8

2

2

2

2

2
(29)

( ) ( ) ( )

( ) ( ) ( ) ( )
˛
˝
¸

Ó
Ì
Ï

˜̂̄ÁË
Ê-˜̂̄ÁË

Ê+

˜̂̄ÁË
Ê=

ÚÚ

ÚÚ

--

--

22

2

22

22

2

22

2

22

2

3
2

cos
2

sincos
8

B

B xx

B

B xx
o

S

xx

B

B

B

B
o

S

ffPfdfPfPfdfP
T
C

ffPfPdfffdfP
T

C

dp

dpdps r

(30)

                                                            
* A circular, gaussian random process  has the property that 0=TXX , whereas 0¹HXX , where

the superscript H denotes conjugate transposed and L  denotes an expectation.
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and

2

2
2
ˆ

oK
r

t

s
s =   . (31)

This result is in exact agreement with the results obtained in References 19 and 20, for
the case when Pxx(f) is symmetric in f (as we have assumed).

It is useful to normalize the variance to the Cramer-Rao bound, which for white noise and
no multipath is

bp
s

˜̄̃
ˆ

ÁÁË

Ê
=

o

oS

CR

N

TC2

2

8

1
(32)

where No is the power spectral density of the white noise, and

( )fPfdf
B

B

22

2Ú-=b . (33)

We now assume that the signal power spectrum is that for a pseudonoise (PN) sequence,
given by Equation (10).  For this signal, the normalized Cramer-Rao bound in Equation
(28) is

21

˜̄̃
ˆ

ÁÁË

Ê
=

o

oSC

CR

N
TCT
as

(34)

where a is given in Table 1.

Table 1.  Values of aaaa for Different Bandwidths

BTC aaaa

1 .5

2 .35

3 .29

4 .25

5 .22

6 .20

7 .19
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The Cramer-Rao bound in Equations (28) and (30) is the unsmoothed error.  In refs. 19
and 20 it is demonstrated that the Cramer-Rao bound, after smoothing by a tracking loop
of bandwidth BL, is approximately

22 2 CRoLCRS TB ss = (35)

so that the smoothed error can be written as
21

2
˜̄̃
ˆ

ÁÁË

Ê
=

oS

L

C

CRS

NC

B

T
a

s
. (36)

For P(Y) code the average value of CS/No for a receiver with a noise figure of 4 dB and a
2 dB antenna gain is approximately 44 dB-Hz.  Also, the loop bandwidth BL can range
from slightly less than 1 Hz up to 10 Hz.  For BL = 4 Hz, CS/No = 44 dB-Hz and BTC = 3
we find from Equation (36) that

005.0=
C

CRS

T
s

  . (37)

Therefore, it makes little sense to attempt to reduce the bias error to much less than about
0.006 TC.

Let us now present some quantitative results on how multipath affects the bias and
standard deviation of the time-of-arrival estimate.  We assume that there is a single
multipath scatterer of strength ( )fia exp5.01 =  where f is a random variable that is

uniformly distributed between -p and p.  The delay t1 (relative to the direct-path delay) is

chosen as ( ) CTht 8.02.01 +=  where h is a random variable that is uniformly distributed

between 0 and 1.  We then used Equations (19) and (26) to calculate the bias and standard
deviation (normalized to the Cramer-Rao bound) for 100 random draws of the variables
(f, h).  Figure 1 shows the average of the absolute values of the bias for the case when

the gate spacing d = 0.1 TC.  We also performed calculations for d = 0.01 TC, 0.05 TC and

0.15 TC, but the results were rather insensitive to d, and hence not shown.  From Figure 1

we observe that the bias error is significant, but can be reduced by increasing the front-
end bandwidth B.  We also calculated the bias when two and three multipaths are present,
and as expected, the bias error was larger than that shown in Figure 1, but still decreased
as B was increased.

In Figure 2 we show how multipath affects the normalized standard deviation of the
time-of-arrival estimate.  Again, each point is the average of 100 random draws of (f, h).

From Figure 2 we observe that the multipath does not drastically increase the standard



10

deviation, because the results are only slightly larger than the Cramer-Rao bound given
by Equation (34).

Because it is not always feasible to use large front-end bandwidths to reduce the
multipath-induced bias, we now examine a simple approach to further reduce bias by
multipath equalization.

Figure 1.  Effect of Input Bandwidth on Bias for 1 Multipath
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Figure 2.  Effect of Input Bandwidth on Standard Deviation for 1 Multipath
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Multipath Equalization

We wish to use a finite impulse response (FIR) filter to reduce the bias that is
introduced by multipath on the estimate of the direct path time delay.  The FIR filter is
shown in Figure 3, and its unknown weights are estimated using the approach shown
conceptually in Figure 4.  The overall method proceeds in two steps.  First, we postulate
that the direct-path signal has a delay t̂ , so that the received signal is ( )t̂-ts  with a
corresponding conditional* crosscorrelation function ( )tq ˆ-R .  The actual received
voltage v(t) produces a voltage y(t) at the output of the equalization filter in Figure 4, and
has a corresponding crosscorrelation function ( )qyR .  The unknown weights in the

equalization filter are then  determined by trying to match ( )qyR  to the desired conditional

correlation function ( )tq ˆ-R .  In particular, we determine the weights in the FIR filter by
minimizing the conditional error ( )t̂E , defined as the mean square difference between

( )tq ˆ-R  and ( )qyR .  Once the filter weights for the postulated delay t̂  are known, these

are used in ( )t̂E , and the second step is to search the conditional error function ( )t̂E  for
that value t  that produces a minimum.  The value t  is then declared to be the estimate of

direct-path delay.

Now let us explain in detail how the approach works.  Let v(t) be the total received
voltage consisting of the direct-path signal plus multipath and noise.  Then, referring to
Figure 3, the output of the FIR filter is

( ) ( )

VW

kTtvwty

T

K

Kk
k

=

+= Â
-= (38)

where [ ] ( ) ( )[ ]KTtvKTtvVwwwW T
KoK

T +-== - LLL ,  and N = 2K+1 is the total

number of time taps in the FIR filter.  Note that N = 1 (K = 0) corresponds to the case
when the filter is absent.  The tap spacing T must be chosen judiciously, and must be
small enough to approximately match the smallest expected differential multipath delay.
Likewise, the number of taps must be such that KT is of order of the largest expected
multipath delay.  The unknown weights wk will be calculated shortly.  By using Equation
(38) it is readily seen that the output ( )qyR  of the crosscorrelator is given by

( ) ( )nTtvtsdt
T

wR oT

o
o

K

Kn
ny +-= ÚÂ

-=
qq *1

)( (39)

where K is assumed to be sufficiently large so that KT is at least equal to the largest
multipath delay relative to the direct path.

If we recall the definition of the crosscorrelation function of the received voltage in
Equation (2) it is readily seen that Equation (39) can be rewritten as

                                                            
* i.e., conditional on the assumed value t̂
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( ) ( )nTrwR v

K

Kn
ny += Â

-=

qq   . (40)

Now, define the vector

( ) ( )[ ]Tvvv KTrKTrR +-= qq L  . (41)

 Then, Equation (40) can be rewritten as

( ) WRRWR T
vv

T
y ==q   . (42)

We choose the weight vector W and the time delay estimate t̂ to minimize the error
function

( ) ( ) ( ) qqtqt
t

t
dRR

T
E

T

T y

2ˆ

ˆ
1

1

1

ˆ
2
1ˆ Ú

+

-
--= (43)

where ( )qR is the desired signal crosscorrelation function.  This minimization proceeds in
two steps: We first assume t̂ is the correct delay and then choose the weight vector W
that minimizes E given t̂ .  Then, once W is known we substitute that W into Equation
(42) and then minimize E with respect to t̂ .

If we substitute Equation (42) into (43), and then minimize with respect to W, we find
that

CW 1-L= (44)

where the (2K+1)x1 vector C and the (2K+1)x(2K+1) matrix L are defined as

( ) ( )tqqq
t

t
ˆ

2
1 1

1

ˆ

ˆ

*

1

-= Ú
+

-
RRd

T
C

T

T v , (45)

( ) ( )Tvv

T

T
RRd

T
qqq *

12
1 1

1
Ú-

=L   . (46)

If Equation (44) is substituted into (43) we obtain

( ) ( ) CCdR
T

E HT

T

12

1

1

12
1ˆ -

-
L-= Ú qqt  . (47)

Because the first term on the right-hand side of Equation (47) is a positive definite
quantity it is clear that E is minimized by the delay t that maximizes the second term.

Therefore,

[ ]CC H 1

ˆ
maxarg -L=

t
t   . (48)

Note that there are multiple maxima in the function CC H 1-L for K > 0.  Therefore, the
conventional (K=0) solution is always used to resolve the ambiguity.
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Observe that, in practice, the weight vector W is never actually calculated nor is there
a real FIR filter.  These are artifices used to obtain the result in Equation (48).  Rather all
one needs to do is to calculate the crosscorrelation functions in Equations (45) and (46),
so that t can be estimated.

The peak of the function

( ) CCQ H
o

1ˆ -L=t (49)

can be estimated by non-coherent early-late gate processing, using an error function

( ) ( ) ( )2ˆ2ˆˆ dtdtt --+= oo QQe (50)

where t̂ is the estimate of the true time delay t and d is the time interval between the

early and late gates.  In the Appendix we derive an analytical expression for the bias error
obtained with this approach.

Let us now examine the bias error reduction that can be achieved using the
aforementioned approach.  In order to study this problem we choose an early-late gate
spacing d = 0.1 TC, a signal-to-noise ratio (after integration gain) of 20 dB and first

assume that only a single multipath scatterer is present with complex amplitude

( )11 exp5.0 fia = (51)

and delay

1
1 ht =
CT

(52)

where f1 is uniformly distributed random variable (0, 2p) and h1 is uniformly distributed

(0, 1).  The multipath-induced bias error both with (N = 5) and without the multipath
cancellation filter is shown in Figure 5, as a function of front-end bandwidth, for the case
when the tap spacing* T = 0.5 TC.  Each point is the average of 200 Monte Carloes over
the random parameters (f1, h1).  Note that for BTC = 3 the filter decreases the bias by

more than a factor of 2.5 but the decrease is only about 2 for BTC = 5. Nevertheless, the
filter always decreased the multipath-induced bias.

Next, consider two multipaths with the parameters for multipath 1 again given by
Equations (51) and (52) and those for multipath 2 given by

( )22 exp4.0 fia = (53)

2
2 ht =
CT

(54)

                                                            
* Note that if the multipath delay is expected to exceed TC then N = 5 taps, for T = 0.5 TC, is insufficient

and one needs to add more taps.
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where f2 is uniformly distributed (0, 2p) and h2 is uniformly distributed (0, 1).  The

multipath-induced bias error both with (N=5, T = 0.5 TC) and without the cancellation
filter are now shown in Figure 6.  Again, each point is the average of 200 Monte Carlo
realizations of ( )2211 ,,, hh aa .  Observe, that the filter again reduces the multipath-induced
bias, but not by as much as for the case when only one multipath is present.  Similar
results are obtained when three multipaths are present.  For example, we added a third
multipath with ( ) 3333 ,exp3.0 htf == CTia where f3 is randomly distributed (0, 2p), h3

is randomly distributed (0, 1).  The results for this case are shown in Figure 7.  Thus, in
all situations explored, the filter was able to decrease the bias, but usually by only a factor
of order 2.

It should be noted that the use of other tap delays T (i.e., T = 0.25 TC, N = 9 and
T = 0.35 TC, N = 7) were explored, but none produced significantly better* performance
than T = 0.5 TC.

Figure 3.  Five Tap FIR Filter

                                                            
* These smaller tap spacings produced better performance for small multipath delays, but worse

performance for multipath delays of order TC.
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Figure 4.  Block Diagram of Estimator

Figure 5.  Comparison of Multipath Equalizer with Conventional for 1 Multipath
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Figure 6.  Comparison of Multipath Equalizer with Conventional for 2 Multipaths
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Figure 7.  Comparison of Multipath Equalizer with Conventional for 3 Multipaths

Summary and Discussion

In the first portion of this paper we derived analytical expressions for the bias and
variance introduced by multipath on a system that uses a noncoherent early-late gate
discriminator to estimate time of arrival.  These expressions were evaluated for the case
of an early-late gate spacing d much less than the chip duration TC, and allowed us to

quantitatively evaluate the advantage obtained by increasing the front-end bandwidth B
when the signal is a PN sequence in the presence of white noise.

We then examined whether an adaptive multipath equalization filter could reduce the
multipath-induced bias error further.  We found that if an early-late gate discriminator is
applied to find the peak of the generalized noncoherent, crosscorrelation function ( )t̂oQ

given in Equation (49), it is possible to reduce the multipath-induced bias by an
additional factor of approximately two.  The price paid for this bias reduction is the
computation of the quantity
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( ) ( )TmkrrdU vv

T

Tkm

C

C

--= Ú-
qqq *

for Kmk 21,0 K=-  and the function

( ) ( ) ( )kTrRdS v

T

Tk

C

C

-+= Ú-
tqqqt ˆˆ

for k = -K …0, …K.  For N = 2K + 1 = 5 this represents five computations of Ukm and
five computations of ( )t̂kS  for each t̂ .

We stress that all of the results presented are for the power spectrum given by
Equation (10) and for signals with similar power spectra.  Other signals, such as a binary
offset carrier, which has a power spectrum that is very different from that in Equation
(10), can be expected to yield very different results [21].
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Appendix

Bias Obtained Using Processor in Figure 4

In this Appendix we obtain an analytical expression for the bias when the peak in
( )t̂oQ  is estimated using an early-late gate discriminator.  Let us write Qo in terms of its

scalar components.  We get

mnm

K

Kn

K

Km
no CCQ G= Â Â

-= -=

* (A1)

where Gnm is the (n, m) component of the inverse matrix 1-L .

We now compute component n of the vector C.  First, substitute Equation (3) into (2)
to get (for nT+= qt̂ )
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where 0,1 ºº ooa t and the last term on the right-hand side of Equation (A2) is the noise

contribution to the crosscorrelation.  Now recall that the signal autocorrelation function is
given by
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Consequently, by using Equation (A3) we can rewrite (A2) as
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where
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Therefore, component n of the vector C in Equation (45) is
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where we have used the transformation tqx ˆ-=  in Equation (45), along with the fact

that R(x) is a real function.

In order to calculate the bias in the estimate we now ignore the noise term (i.e., the
second term on the right-hand side of Equation (A7)) and express R(x) in terms of its

power spectrum P(f).  For T1 > TC we obtain*
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where we have used the fact that P(f) is a symmetric function of frequency f.  As was the
case in Section 2 of this paper, P(f) is normalized such that along with the definitions its
integral over all frequencies is unity, and CS is the carrier signal power.

The other quantity in Equation (A1) that we must compute is the covariance matrix L,

and its inverse G.  If we use Equation (A3) in (46) it is readily seen that the term Lnm is
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We now take an expectation of Equation (A9) and use the fact that 0*
11 == rr ,

along with the definitions
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If we use Equation (10) for P(f), assume the noise is white so that Pxx(f) = No, set T1 = TC

and define x = 2f/B we obtain

                                                            
* For a PN signal R(x) = 0 for CT³x , so that if T1 > TC we can replace the integration limits in

Equation (A7) by • .
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where CBT=b .  For sufficiently large integration times To the second term on the right-

hand side of Equation (A13) will be small in comparison with the first.  Once the
components of L are known, its inverse G can be computed.

The bias error is now determined by substituting Equation (A8) into (49), using (49)
in (50) and then setting ( ) 0ˆ =te .  If in Equation (A8) we approximate ( )npTf +ep2cos

by npnp fTffT pepp 2sin22cos - , where tte -= ˆ , we find
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and HZYX ,,,  are the same as X, Y, Z, H defined in Equations (14)-(17) except that P(f)

in (14)-(17) is replaced by P2(f) in HZYX ,,, , and 
pt is replaced by nTp -t and

qt  is

replaced by mTq -t .

The term 11 Kb in Equation (A14) represents the bias on the estimate t̂ of the true

signal delay t.  It is readily shown that b1 = 0 when the multipath is absent (i.e.

021 === kaaa L ), so that the estimate is unbiased in the absence of multipath.
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Glossary

ao = strength of direct path signal º 1
ap = complex strength of multipath p (p = 1, 2 º)

B = front-end bandwidth
CS = signal carrier power
N = number of taps in FIR filter = 2 K + 1
No = white-noise power spectral density
P(f) = signal power spectral density
Pxx(f) = noise power spectral density
Q = total number of multipaths
S/N = input signal-to-noise ratio = ( )BNC oS

T = intertap delay in FIR filter
TC = chip duration
To = integration time of crosscorrelator
d = delay between early and late gates

t = true direct-path delay
t̂ = estimate of direct-path delay
tp = delay of multipath p relative to direct path

to = 0 (by definition)


