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Abstract 
 

In this paper, we discuss and analyze the method of operation of a space-time-polarization 
adaptive array.  We demonstrate by simulation that an array of N dual-polarized antennas can 
cancel up to 2N-1 broadband interferers, while still allowing detection of desired signals over a 
significant portion of a half-space. 
 
I.  Introduction 

 
There has been a great deal of research [1-15] on the ability of adaptive space-time (ST) 

antennas to cancel interference in an antenna array, but little has been done on the value of 
adding polarization, thus, creating a space-time polarization (STP) canceller.  In the STP 
canceller, we have N dual-polarized antennas, with an adaptive finite impulse (FIR) filter behind 
each antenna port, leading to (2N-1) degrees of freedom as shown in Figure 1.  The delays T in 
Figure 1 are equal to intersample period, and are used to compensate for broadband dispersive 
effects.  Thus, the space-time-polarization array can achieve 2N-1 degrees of freedom using only 
one half the area required by a conventional non-polarimetric array.  This is an important 
consideration when cancellers must be mounted on airborne platforms where the available area is 
limited, or for hand-held receivers. 

 
Unfortunately, many people do not understand how the polarization dimension works or do 

not believe that using N dual-polarized elements really creates (2N-1) degrees of freedom, and 
consequently, the potential ability to cancel 2N-1 broadband interferers.  The purpose of this 
paper is to explore this issue.  In order to provide insight into polarization cancellation, we will 
first consider the simplest case of a single dual-polarized element, and demonstrate that this can 
cancel an interferer with an arbitrary polarization state without necessarily cancelling desired 
signals, unless the desired signal is at the same angular location as the interferer and has the same 
polarization state.  We then generalize the treatment to the case of an array consisting of N dual-
polarized elements, and demonstrate that, although the array cannot perfectly cancel 2N-1 strong, 
broadband interferers it does a reasonable job.  Although our discussions will be valid for any 
case, our applications will be primarily to the global positioning system (GPS) [16-17]. 
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Figure 1.  Adaptive Space-Time Polarization Array 
 
II.  Single-Element Limit 

 
Let us first discuss the simplest possible space-time-polarization canceller.  This consists of a 

single dual-polarized element in which interference is cancelled by weighting the output v2 of 
port 2 by a constant w and subtracting it from the output v1, of port 1.  Ports 1 and 2 may be 
either orthogonal, linearly polarized ports, or right and left circularly polarized ports, obtained by 
combining the two orthogonal linearly polarized ports.  The weight w can be determined by 
minimizing the expected residual power ( )2rE , where 21 vwvr −= .  If this is done, we find 
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so that the expected output power is 
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We now evaluate Equation (2) for a single interferer at angular location  in the spherical 

coordinate system, shown in Figure 2.  Suppose  
( φθ, )

( )φα+θα= φθ
ˆˆ)f(J)f(J  is the Fourier transform  

 

 
 

Figure 2.  Jammer n Radiation Incident on Dual-Polarized Antenna 
 

of the interferer electric field vector and ( ) ( )θφθ=φθ θ
ˆ,,fg,,fg pp  + ( )φφθφ

ˆ,,fgp  is the Fourier 

transform of the vector voltage-gain of antenna port p, where  are unit vectors along φθ ˆ,ˆ ( )φθ,  in 
a spherical coordinate system centered on the antenna.  Analytical expressions for or a 

microstrip patch may be found in Reference 18.  The unit vector  defines the 

polarization state of the jammer.  For example, for a circularly-polarized jammer 

φθ g,g  f

φα+θα= φθ
ˆˆα

21=αθ  and 

2i=αφ .  Using these definitions, we then see that if there is a brick-wall filter of bandwidth 
B in each channel, the voltage produced by the jammer on port p is  
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where t = time, f = frequency, p = 1, 2, Ko is a constant of proportionality, the dot denotes an 
inner product, xp(t) is the noise on port p and sp(t) is the desired signal, which is assumed to lie 
below the noise floor.  For the moment, the signal will be ignored.   

 
By using Equation (3), it is readily shown that if the jammer voltage is a statistically-

stationary random process, then 
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where the arguments  have been suppressed in ),,f( φθ ),,f(gp φθ , )f(Φ  is the jammer power 
spectral density, σ2 is the noise power, and pqδ  is the Kronecker delta. 
 

For a narrowband interferer , Equation (4) reduces to )0B( →
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where PJ is the jammer power that would be received by an isotropic antenna with a receive  
polarization matched to the jammer polarization state.  Also, ),,0()0( pp φθ= gg  denotes the 
midband vector voltage gain.  By using Equation (5) in Equation (1) we readily see that, in the 
narrowband limit and when the received jammer power greatly exceeds the channel noise, the 
weight applied is approximately, 
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Equations (5) and (6) are valid only in the narrowband  limit.  For wideband 

jammers, we must consider the effects of the frequency dispersion of the two channels.  In order 
to include dispersion, we approximate the dispersive voltage gain of the two antenna ports as  

)0B( →

(p = 1,2) 
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for frequency 2Bf ≤ .  Any receiver dispersion is included in Equation (7).  That is, we assume 
that the bandwidth B is such that the amplitude and phase variations relative to band center can 



 

 

 
be approximated by the first two terms in their Taylor series expansions.  The quantity ap is the 
total amplitude deviation across the bandwidth B and bp is the total phase variation. 
 

Now, if we assume the jammer power spectrum is white, substitute Equation (7) into 
Equation (4) and then use Equation (4) in Equation (2), we obtain after considerable 
manipulation 
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where ,  and JNRp is the unadapted jammer-to-noise ratio in channel p 
at midband, defined as 
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The last term on the right hand side of Equation (8) shows the effect of mismatch between 

Channels 1 and 2, and indicates how closely the channels must be matched so that the residue 
after adaptation is not significantly greater than .  In particular, we require that 2σ
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When Equation (10) is satisfied, it is evident from Equation (8) that the residue after adaptation 
will be of order , unless the jammer/antenna configuration is such that JNR1 >> JNR2, or 
equivalently, 

2σ
),,0(),,0( 21 φθ⋅>>φθ⋅ gg αα .  Thus, we have demonstrated that it is possible to 

cancel a broadband jammer without using spatially-separated antennas or temporal degrees of 
freedom. 

 
It is also important to calculate the response at angles other than the angular location of the 

jammer, because we need to know whether desired incoming signals can be detected (i.e., we 
need to ensure that the null doesn’t extent over all angles).  Therefore, let us compute the 
response to a signal with a polarization vector α′  at an angular location ),( φ′θ′  that is different 
from the jammer location.  The response is 
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We now consider the narrowband limit and ignore noise.  In this case, ),,0(Av pp φ′θ′⋅′= gα , for 
p = 1,2, where A is a constant that is proportional to the signal strength.  Then, if we use this 
expression for vp, along with Equation (6), in Equation (11), we find 
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From Equation (12), we see that if αα =′  and φ=φ′θ=θ′  ,  the response is zero (i.e., a pattern 
null), but that a desired signal incoming at the same angular location ( )φ=φ′θ=θ′  ,  as the 
jammer, but with a different polarization state )≠′ αα(  is not cancelled completely.  
Furthermore, desired signals with the same polarization state )=′ αα(  but different locations 

 are also not cancelled.  Thus, only signals at the same location and polarization 
state as the jammer are nulled (down to the noise floor).  However, signals at the same location, 
but with a different polarization state than the jammer are not completely nulled, and may be 
detectable depending on their strength.  Of course, for targets at other angles ( )

( φ≠φ′θ≠θ′  , )

φ≠φ′θ≠θ′  ,  and 
polarization states  there is clearly no nulling. )≠′ αα(
 
III.  General Case 
 

Now let us discuss the general space-time polarization array shown in Figure 1, where there 
are N dual-polarized antennas, each with a K tap adaptive FIR filter*.  Let us define a weight 
vector 
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where  is the weight applied to time tap k, port p (p = 1, 2) of antenna element n.  Then, 
the output of the array can be written as 
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with  equal to the voltage at time tap k of port p of antenna element n.  The question we 
now answer is:  “How should we compute the weight vector to be applied?  There are many 
possible algorithms.  In Section 2, we employed the simplest of all interference cancellation 
algorithms:  we simply minimized the output power of the array, without placing any constraints 

)k(xnp

 
*  As discussed in Reference 19, the purpose of the time taps is to compensate for dispersive effects, such as 

interference multipath and also to allow for cancellation of narrowband interferers (i.e., frequency nulls in 
addition to spatial nulls). 



 

 

 
on the pattern gain in the direction of a desired signal (e.g., a GPS satellite).  Because the desired 
signal is well below the noise floor (before processing) this approach is acceptable, but we can 
never be sure a priori what gain will be present in the direction of the desired incoming signal.  
Thus, one considers constrained algorithms.  Below, we summarize a few, including the 
generalization of the simple “power minimization” algorithm.  In Reference 19, we discuss and 
quantitatively compare the performance of these and multiple other potential algorithms. 
 

a.  Power Minimization 
 

Let us first generalize the simple power minimization algorithm.  Suppose the weight on the 
center tap of antenna element 1 is constrained to equal unity, and all other weights are left 
flexible.  This constraint can be written as  where  and the unity 

element in  occurs at (K + 1)/2, assuming K is odd.  Because the desired signal is well below 
the noise floor, the output y = wTv of the array is primarily interference.  Consequently, the 
interference power is 
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If we now minimize the interference power PI, subject to the constraint , then using 
Lagrange multipliers, we find 
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where µ is a normalization constant and 
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Specific expressions for the components of the covariance matrix R will be presented later. 
 

b.  Minimum Mean Square Error 
 
In this approach, we minimize the mean square error between the desired signal sd(t, θ, φ) 

that would be received by an antenna (matched to the signal polarization) from a satellite at a 
specified angular location  and the output  of the adaptive array.  That is, we 
minimize 
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where v is defined by Equation (15) and w is defined in Equation (13).  We recall that 
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where  is the interference plus noise and  is the signal that appears at time tap k, on 
port p of antenna element n.  Note that  and  are statistically independent, so that 
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If we use Equation (20) in Equation (19) then minimize E with respect to w we find 
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where R is defined in Equation (18), 
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Note that, because GPS satellites usually transmit psuedorandom codes, s(t) is a random 
quantity, so the expectation is required in Equation (22).  For deterministic signals,  
Equation (21) reduces to the result in Reference 10. 
 

The one problem with the above approach is that a different weight vector is required for 
each GPS satellite (i.e., for each  specified).  Thus, if Q satellites are in view, we require Q 
adaptive filters, and this makes the process computationally intensive.  We can achieve a 
suboptimum result using a single weight vector by considering the next approach. 
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c.  Minimum Mean Square Error Averaged Over Hemisphere 
 
In this approach, we minimize the mean square error averaged over the upper hemisphere (or 

some portion thereof), as given by 
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where .  In this case, we find φθθ=Ω ddsind
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In practice, it has been found that, while the solution in Equation (21) gives significantly better 
output signal to noise ratios after adaptation than does power minimization, the solution in 
Equation (25) gives only marginally better performance than power minimization. 
 
IV.  Covariance Components 

 
In this section, we generalize the result in Equation (4) to calculate the covariance component 

.  Let us define [ )t(v)t(vE *
mqnp τ+ ] ),,f(np φθg  as the vector voltage gain of element n when 

port p is excited.  Also, define Hnp(f) as the frequency response of this channel and G(f) as the 
frequency response of the front-end filter used on all channels.  Then if there are NJ interferers 
with polarization states  located at angular positions jα ( )jj,φθ , the voltage received on port p of 
element n 
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where xnp(t) is the noise voltage on port p of element n.  Because the desired signal is generally 
well-below the noise floor, it is not included in Equation (27).  If all interferers are statistically 
independent and statistically stationary, then the component 
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interferer j, the frequency variable f has been suppressed in g, G, H, ρ(τ) is the normalized  



 

 

 

autocorrelation function of the noise,  is the noise power and δ is the Kronecker delta.  Note 
that the last term in Equation (28) is valid if both ports on each element are linearly-polarized or 
circularly polarized, but not for arbitrary elliptical polarization, because then the noise in two 
different ports of the same element is partially correlated. 
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It is also possible to include mutual coupling in Equation (28) by using the antenna scattering 

matrix.  However, the details are cumbersome, and will be omitted here, although some of our 
later results will include mutual coupling effects. 

 
V.  Numerical Evaluations of Effectiveness 
 

In this section, we evaluate the effectiveness of a planar array of dual-polarized elements.  
The first measure we will consider is the interference-plus-noise-to-noise ratio after adaptation, 
as given by 
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where wH is the conjugate transpose of w, RN is the noise component of R.  A second measure is 
the signal-to-interference-plus-noise ratio after adaptation, as given by 
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where ( )T*

SS SSER = , and the vector ),(S φθ  is given by Equation (23).  For all results to follow, 
we will assume that the weight vector is calculated using simple “power minimization” (see 
Equation (17)) and also perfect channel match (i.e., Hnp = 1 in Equation (28)), so that the 
calculations represent a “best case” performance.  Because the channel match is assumed perfect, 
we will not require adaptive time taps (unless the bandwidth is very large), so most of the results 
to follow will assume K = 1 in Equations (13), (15), etc. 
 

Let us first evaluate the performance of a single dual-polarized antenna.  We choose a square 
microstrip patch that lies in the z = 0 plane in Figure 2 with both ports 1 and 2 linearly polarized 
in the x and y directions, respectively.  In Figure 3, we show the interference-plus-noise to noise 
ratio when there are up to three linearly (with randomly-oriented polarization vector) or 
circularly-polarized, broadband interferers (B = 24 MHz) randomly located in azimuth in an 
elevation band 0° to 20° above the horizon with each interferer producing an interference-to-
noise ratio of 40 dB on each antenna element.  Each point in Figure 3 is the average of 200 
interferer locations and polarization direction (for the case of the linearly-polarized interferers).  
Mutual coupling between the x and y antenna ports is quite small (as verified by measurement)  



 

 

 

 
 

Figure 3.  Performance of One Dual-Polarized Antenna 
 
and has been ignored.  From Figure 3 it is evident that the polarization canceller works very well 
in cancelling a single broadband interferer, but fails for two or more randomly-located 
interferers, as expected. 

 
Of course, as mentioned earlier, just cancelling the interference is not sufficient.  We also 

need to be able to see desired signals.  In order to study this problem, we consider a typical GPS 
application.  We wish to determine the fraction of the sky (upper hemisphere) where a GPS 
satellite signal will exceed a specified threshold in the presence of an interferer.  Suppose an 
overhead satellite radiates a power such that a power Pr = -157.2 dBW is received by an isotropic 
antenna in the absence of any interference.  Then this satellite will produce a carrier-to-noise 
ratio in a microstrip patch with a 3 dB gain G at zenith, a noise figure F = 4 dB and a loss  
L = 2 dB of 
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where k = Boltzmann’s constant and To = 290°K.  For GPS systems, lock is lost when 
interference causes the carrier-to-noise ratio (C/No) to fall below specified thresholds.  For 
conventional GPS systems that track only the GPS code (called State 3) the threshold is  
16.5 dB-Hz if the GPS receiver is mounted on a quasi-static platform and 23 dB-Hz if the 
receiver is mounted on a dynamic platform, such as a high-performance aircraft.  There are also 
high-precision GPS systems that actually track the carrier phase (called State 5).  These lose lock 
if C/No falls below 18.5 dB-Hz for quasi-static platforms and 28 dB-Hz for dynamic platforms.  
We will now present some results for GPS satellite availability in terms of C/No. 
 

We consider a single broadband (24 MHz) interferer located randomly in azimuth (0° to 
360°) and elevation (0° to 20°), and then use Monte Carlo techniques to find the probability that 
a GPS satellite located randomly in the upper hemisphere (minus a 10° elevation mask at the 
horizon) will produce a signal that exceeds a specified carrier-to-noise ratio in a single dual-
polarized antenna.  The results of this simulation are shown in Figure 4.  The ordinate is the 
probability (which we define as satellite availability) of exceeding the value of C/No on the 
abscissa.  From Figure 4, we see that even in the presence of a fairly-strong, broadband interferer 
(J/N = 40 dB), there is a 0.95 probability that we will be able to maintain dynamic State 5 lock 
on any GPS satellite in the upper hemisphere (minus a 10° elevation mask at the horizon).  This 
is indeed excellent performance, and demonstrates only a small loss in system performance 
relative to the interference-free case (for the interference-free case the satellite availability in 
unity for C/No = 28 dB-Hz). 

 
Next consider two dual-polarized square, microstrip antennas lying with the z = 0 plane, with 

a spacing of one-half wavelength between the phase centers of the two antennas.  This array now 
has three adaptive degrees of freedom.  Broadband interferers (24 MHz) are now placed 
randomly in azimuth in an elevation band of 0° to 20° above the horizon.  The interferers may be 
either circularly polarized or linearly polarized with a random polarization vector 
( , where ψ = random (0,2π)).  The performance of this array is shown in  ψφ+ψθ sinˆcosˆ
Figure 5.  Each point in that figure is the average of 200 jammer realizations.  As expected*, up 
to three* broadband interferers can be cancelled down to and below the noise floor, but four or 
more broadband interferers overwhelm the array. 

 

                                                 
*  We also studied the case of one broadband noise jammer with dual independent, orthogonal polarizations plus a 

second randomly located linear or circularly polarized jammer.  This combination is equivalent to three jammers, 
and was cancelled by the pair of dual polarized antennas.  However, two jammers, each with independent 
orthogonal polarizations are equivalent to four jammers and were not cancelled. 



 

 

 
 
 
 
 
 
 
 
 

 
 

Figure 4.  Availability in the Presence of One Broadband Jammer 



 

 

 

 
 

Figure 5.  Performance of Two Dual-Polarized Antennas 
 
It is interesting to note that the results for the interference-to-noise ratio after adaptation are 

relatively insensitive to the spacing between the dual-polarized element.  That is, we obtain 
nearly the same (I + N)/N when the spacing d was equal to one quarter of a wavelength and one 
third of a wavelength as we did for one half wavelength.  This is not true, however, for the 
signal-to-interference-plus-noise ratio, because closely spaced antennas produce a broader null 
on each jammer.  This point is illustrated in Figure 6 where we show the single satellite 
availability for different separations d between the dual-polarized antennas.  Note that as the 
separation decreases, the availability degrades. 

 
The array with two dual-polarized antennas appears to be a potential possibility for a robust 

hand-held GPS receiver.  In a non-dynamic environment State 5 lock can be maintained for C/No 
of only 18.5 dB-Hz and State 3 lock can be maintained for C/No of only 16 dB-Hz.  Upon 
referring to Figure 6, we see that the probability of availability is nearly 0.95 even for separations 
as small as one-quarter wavelength, which at the L1 frequency (1.575 GHz) used by the GPS 
system is only about 2 inches.  Thus, as long as mutual coupling doesn’t lead to any significant 
problems, we can speculate that up to three broadband jammers can be cancelled using a  



 

 

 

 
 

Figure 6.  Availability in the Presence of Three Broadband Jammers 
 
handheld GPS receiver (of course, the penalty is that each of the four elements must have its own 
receiver) with two dual-polarized antennas.  Of course, two dual-polarized antennas are no better 
at cancelling three jammers than an array of four linearly-polarized antennas; they just occupy 
less real estate. 

 
Next, let us consider four dual-polarized antennas (eight elements total).  The dual-polarized 

antennas are located in the z = 0 plane (0,0), (0,d), (d,0), (d,d), where d is equal to one-half 
wavelength at midband.  The increase in the noise floor (caused by the interferers) after 
adaptation versus the number of broadband jammers is shown in Figure 7.  Each point is the 
average of 200 realizations of jammers with a random linear polarization located randomly in 
azimuth from 0° to 360° and randomly in elevation from 0° to 20° above the horizon.  The 
results for the case when all jammers are circularly polarized were nearly identical, and thus not 
shown.  Mutual coupling has again been ignored, and time taps were not employed. 

 
When five adaptive time taps (K = 5) were placed behind each element, the increase in the 

noise floor in Figure 7 was reduced to nearly 0 dB for six jammers and to less than 1 dB for  



 

 

 

 
 

Figure 7.  Performance of  Four Dual-Polarized Antennas 
 
seven broadband jammers, but for eight broadband jammers the increase in noise floor was again 
quite large.  Thus, based on the results in Figures 3, 5, and 7, we conclude that an N-element, 
dual-polarized array can cancel NJ broadband interferers, where  

 
 1-2N ~ NJ . (32) 

 
 

However, depending on interferer strength and system operating bandwidth, an adaptive filter 
with K > 1 time taps may be required behind each port in order to drive the interference below 
the noise floor. 
 

The satellite availability for the array of four dual-polarized, square microstrip patch 
antennas is shown in Figure 8 for the cases of 1, 3, 5, and 7 broadband, randomly-located* 
                                                 
*  That is, randomly located in azimuth in the elevation band 0° to 20° above the horizon. 



 

 

 
interferers, each with a random linear polarization.  We note that even when seven interferers are 
present, there is a significant probability of maintaining State 5 lock on a GPS satellite. 

 

 
 

Figure 8.  Availability for Four Dual-Polarized Antennas 
 
It is interesting to estimate the effect of mutual coupling on array performance [20-21].  In 

order to do this we neglected the frequency dependence of the mutual coupling, and 
approximated the voltage coupling between the x-directed ports of different antennas by 

, where ( λkiexp2.0 ψ ) )2,0( randomk π=ψ λ .  This corresponds to –14 dB of coupling, which is 
slightly stronger than the values calculated in Reference 21.  Similarly, for the voltage coupling 
between the y-directed ports of different antennas, we used ( )λkiexp2.0 γ , where 

)2,0( randomk π=γ λ .  The voltage coupling between the x port of one antenna and the y port of 
another was approximated by ( )λkiexp05.0 τ , where )2,0( randomk π=τ λ .  Finally, we ignored 
the coupling between the x and y ports of the same antenna. 

 



 

 

 
The increase in the noise floor after adaptation for the array of four dual-polarized square, 

microstrip patches is shown in Figure 9.  In order to stress the array, J/N has been increased to  
50 dB/jammer/element.  Each point is the average of 600 realizations of jammer locations, 
polarizations and mutual coupling coefficient phases (ψ,γ,τ).  Based on this ultra simple model, it 
appears that mutual coupling has little effect on performance when the simple “power 
minimization” algorithm is used.  We expect that its effect would be greater if we removed the 
assumptions that (a) the channel match is perfect (because then mismatch in one channel would 
be coupled into another channel) and (b) the coupling coefficients are independent of frequency 
across the operating band. 

 

 
 

Figure 9.  Performance of Four Dual-Polarized Antennas 
 
VI.  Discussion 

 
We have demonstrated numerically that by combining dual-polarization with spatial and 

temporal degrees of freedom one can enhance the interference cancellation performance of an 
adaptive array without increasing its physical size.  A single dual-polarized antennas was shown 
to cancel one randomly-located and randomly-polarized broadband jammer, but it fails against 



 

 

 
two broadband jammers, even if both jammers have the same polarization state (e.g., both 
circularly polarized) but different locations.  However, two dual polarized antennas separated 
(center-to-center) by at least one quarter of a wavelength easily cancelled three, randomly-
located, broadband jammers near the horizon while simultaneously preserving the desired GPS 
signal space. 

 
We then generalized the results to conclude that N dual-polarized antennas can cancel 

approximately 2N-1 broadband interferers.  This result holds for arbitrary jammer polarization 
(linear, circular, elliptical), but does not hold for interferers that radiate independent, broadband 
noise on two orthogonal polarizations. 

 
There is one set of published [22] data that clearly verifies the theoretical performance 

predictions for the space-time-polarization canceller.  A square array of four microstrip patches 
has been constructed, with the center-to-center spacing between patches equal to one half 
wavelength.  In this array, the two ports of the first element were connected so as to give a single 
circularly-polarized port, but the other three elements each had two orthogonal (i.e., x and y) 
linearly polarized ports.  Thus, in this case, there are 6 degrees of freedom.  Jammers  
(J/N = 45 dB) were then synthetically placed between –10° to +30° in elevation and from  
–170° to +170° in azimuth, and the null depth calculated.  Null depth was defined as the ratio of 
the output power of the array to the input.  In Figure 10, we compare the results presented in 
Reference 22 with our calculations obtained using the methods described in Sections 3 and 4.  
Observe the excellent agreement, and that even with six jammers present, the effective null depth 
is more than 30 dB. 

 
Although in this paper we presented the analysis for the space-time-polarization (STP) 

canceller, a space-frequency-polarization (SFP) canceller works equally as well.  In the SFP 
canceller there is a Q point FFT (fast Fourier transform) behind each antenna port that bins the 
received voltages into Q frequency bins.  The interference is then cancelled [19, 23] 
independently in each frequency bin.  We have studied the relative processing efficiencies of 
both of these approaches, and the conclusion has been that in some situations STP is better and in 
others SFP is better. 

 



 

 

 

 
 

Figure 10.  Comparison of Theoretical Null Depth Predictions with Reference 22 
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