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ABSTRACT  
 
Binary-offset-carrier waveforms have autocorrelation 
functions containing multiple peaks, thus leading to 
potential tracking ambiguities.  We have developed a 
discriminator that is monotonic over the entire range of 
delays where the correlation function has significant 
support; thus eliminating ambiguities.   
 
The price paid is the need for additional gates, some loss 
in sensitivity, and some additional computations. 
 
INTRODUCTION  
 
It is now well known that the binary offset-carrier (BOC) 
waveform proposed [1] for the future Global Positioning 
System (GPS) has a correlation function containing 
multiple peaks with magnitudes that are nearly equal to 
the magnitude of the central peak, as is evident from 
Figure 1.  This means that a signal tracker can lock onto 
the wrong peak, thus producing a tracking error.  Fine and 
Wilson [2] have devised a novel approach known as 
“bump-jump” to remove this ambiguity.  Their approach 
compares the outputs in very-early and very-late gates 
with the prompt gate output to determine if the prompt 
gate is tracking the largest peak; if not, the tracker jumps 
to the largest of the other two gates and repeats the 
procedures until the prompt gate has the largest output.  In 
this report, we will present an alternative approach that is 
in some sense a variant of the bump-jump method.  Our 

approach uses samples of the correlation function at 2N 
different times, and then forms an appropriate 
discriminator that removes all ambiguities.  In particular, 
we are able to derive a discriminator that is monotonic 
over the entire range of delays where the correlation 
function has significant support.  That is, that 
discriminator is monotonic over an interval of 
approximately 336ns. 
 

 
Figure 1.  Absolute Value of Filtered BOC 

Autocorrelation Function 
 
THEORY OF OPERATION 
 
The classic early-late gate discriminator that is used for 
conventional correlation functions has the error function  
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where is usually either 1 or 2,  is the spacing 
between the early and late gates, (the prompt gate has 
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0=D and evaluates ( ) )nR τ and ( )τR is the cross 

correlation function.  A typical plot of E2(τ) in the noise-
free limit is shown in Figure 2 for the correlation function 
shown in Figure 1. 
 



The discriminator in Equation (1) is sensitive to signal 
amplitudes, and in order to remove this sensitivity the 
normalized discriminator  
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is often used, but this again has multiple ambiguities for 
the BOC. 
 

 
Figure 2.  E2 Error Function for Two Tap Discriminator 
 
The method we propose to eliminate the multiple 
ambiguities caused by the BOC correlation function is a 
variant of the classical approach presented in Equations 
(1) and (2).  We propose to use more than two samples of 
the cross correlation function.  In particular, we replace 
Equation (1) by 
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and Equation (2) is replaced by 
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Our goal is to choose the coefficients  so as to 
obtain an error function that is linear with the form 

( )ma

( ) αττ =nE or ( ) αττ =nS  for ,11 TT <<− τ  

whereα is an arbitrary constant and  is the region of 

support of the correlation function 

12T

( ).τR  From Figure 1 

we see that .5.31 TT ≈   
 
Let us first concentrate on the ( )τnE  error function.  We 
can derive the desired coefficients by minimizing the 
mean square error between ( )τnE  and .ατ   That is, we 
minimize 
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where we can choose α such that  
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Let us define the vectors 

 ( ) ( ) ( )[ ]N2a...2a1aaT =   (7) 
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Then, it is readily shown that δ  is minimized if the 
coefficient vector satisfies  a

 ga 11 −Φ=
γ

    (9) 

where 

 τdRR
T

T

T

T
nn∫

−

=Φ
1

112
1

   (10) 

 ( ) τττ dR
T

g
T

T
n∫

−

=
1

112
1

   (11) 

and 
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Using the coefficients obtained in Equation (9), one can 
readily calculate the error function ( )τnE  for any 

and  ,, Nn .D
In Figure 3, we show the 2  error function using 16 taps 
for three different tap spacings.  A similar response was 
achieved using 14 taps, but 12 taps were not sufficient to 
achieve the goal of a linear, monotonic response for 

E

.T5.3<τ  
 
We would like to achieve a monotonic response with 
fewer that 14 or 16 taps.  Therefore, we have also 
considered the  discriminator defined in Equation (4). nS



Unfortunately, there is no simple method to determine the 
coefficients,  that produce the minimum mean 

square error between 

( ),na
( )τnS  and  so we choose the 

 coefficients as  

,τα
( )ma

 
( ) ( ) 1,1 =−+= mNNmma β to  N

( ) 1,11 +=−−+−= NmNNmβ  to  (13) N2
 
where β is an arbitrary constant.  The values of ( )ma  in 

Equation (13) are asymmetric and give ( ) ,00 =nS  as 

required.  In Figure 4, we show the  error function for  2S
2−=β  when 10 and 12 taps are used.  Note that using 

12 taps for an 2−d =β  gives a monotonic error 

function over the entire range T5.3  wh≤τ ere ( )τR  
has significant support (A similar conclusion is true for 

.  Thus, the  discriminator can achieve our 
goal using only 12 taps. 

1−=β 2S

 

 
Figure 3.  E2 Error Function when 16 Taps are Used 

 

 

Figure 4.  S2 Error Function when 10 or 12 Taps are Used 
and  2−=β

 
Thus, we have shown that a 12 tap S2 discriminator or a 
14 tap E2 discriminator can achieve our goals in the 
absence of noise.  In the next section, we consider how 
noise affects the estimate of delay. 
 
SENSITIVITY LOSS 
 
Although we have derived a monotonic error function, we 
now demonstrate that we pay a price in loss of sensitivity, 
relative to the classical two-tap discriminator.  If we 
include the effects of noise, it is possible to show [3] that 
the standard deviation σ of the time-of-arrival error is  
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where S/N is the signal-to-noise ratio at the correlator 
output, T=48.88ns and values of K are presented in Table 
1. 
 

Table 1.  Values of the  and  Sensitivity 
Coefficients 

2S 2E

 
Type Number of 

Taps 
K  

2S  2 0.35 

2S  12 1.32 

2E  14 3.5 

 
 
From the results in Table 1, we see that the 12 tap 2S  
discriminator is 3.77 times less sensitive than the 2 tap 

2  discriminator, and the 14 tap 2Ε )  discriminator is 
even less sensitive.  This is the price paid for the 
monotonic behavior of the 12 tap S2 and 14 tap 2

S

Ε   
discriminators.  This suggests we could combine the 12 
tap  discriminator (or the 14 tap )) with a 2 tap  

(or 
2S 2Ε 2S

2Ε ) discriminator to get the best of both worlds: 
unambiguous behavior plus good sensitivity at 0=τ  (at 
the prompt gate).  For example, we could use the 12 tap 

 discriminator to get us to the correct correlation peak 

and the 2 tap 
2S

2Ε  or  discriminator for the “fine 

tuning”.  For this procedure the gates at 
2S

175.0±=Tt  
are the conventional early and late gates, whereas the 



gates at 575.1,225.1,825.,525.0 ±±±±=Tt  and 
 are multiple very early and very late gates. 925.1±

 
It should be noted that the relatively large value of K  in 
Table 1 for 14 tap  discriminator suggests that a better 

design procedure (than requiring that 
2E

( ) αττ =2E ) 

would be to require in Equation (5) that ( ) τα=τ 12E  

for T<τ  and ( ) τατ 22 =E  for ,T>τ  where 

.21 αα >   The results of this design are shown in Figure 

5.  This design reduces the sensitivity factor K  from 3.5 
to 2.5. 
 

 
 
Figure 5.  Comparison of Linear and Piecewise Linear E2 

Errors 
 

We next need to determine the signal-to-noise ratio one 
can expect, and if it is sufficient to avoid the 
aforementioned errors.  The carrier-to-noise ratio in dB-
Hz is given by 
 

 ( ) LFkTGP
N
C

os
o

−−−+= 10log10  (15) 

 
where  received power ( )   receive 

antenna gain in satellite direction,          Boltzmann’s 
constant, K,  receiver noise figure and 

=sP ,dBW =G
=k

o293=T =F
=L  loss.  Suppose the minimum value of received 

power for the BOC at L1 is   If the receiver 
antenna has a cosine power pattern, then its average gain 
over the region from above the horizon to zenith is 
approximately 1dBi.  If the receiver noise figure is 4dB 
and the losses are 2dB, then from Equation (15) we see 
that the minimum value of 
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     The signal-to-noise ratio after one integrate-and-dump 
cycle is ,oo NTC  where  integration interval.  

The phase lock loop integrates  of these 
cycles, so the output signal-to-noise ratio is 
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where BL loop bandwidth 
 
If Equation (16) is used in (14), we obtain the results in 
Table 2 for the tracking accuracy for some typical loop 
bandwidths when C/N0 = 42 dB. 
 
Table 2.  Tracking Accuracy of 12-TAP  and 14 Tap 2S

2Ε Discriminators 
 

)(HzBL  τσ  (ns) 
for  2S

(nsτ )σ  for 
linear  2E

( )nsτσ for 
piecewise – 
linear  2E

0.8 0.46 1.2 0.85 

3 0.89 2.3 1.6 

5 1.15 3 2.1 

8 1.45 3.5 2.7 
 
Thus, the 12-tap 2  tracker or the 14-tap 2  tracker can 
typically achieve accuracies on the order of 1 to 3 feet.  If 
smaller accuracies are required then a 2-tap adjunct 
discriminator must be used. 

S E

 
SENSITIVITY TO CODE DISTORTION 
 
We have evaluated the effect of uncorrected dispersive 
errors on the performance of the  and 2  trackers 
developed here.  The details are omitted, but the results 
are summarized in Table 3.  Based on the results in Table 
3, we require that the group delay in the receiver be 
equalized, so that the maximum group delay errors are 
less than 3 ns across the operating band. 

2E S

 
We also examined the effect of ionospheric dispersion on 
the trackers.  The ionosphere has a negligible impact. 
 

 
 
 

 



Table 3.  Effect of Dispersive Errors on  Error 
Function 

2E

 

Type Effect on Slope Effect on Null 
Location 

Amplitude – 
Linear 

Increase None 

Amplitude – 
Quadratic 

Decrease None 

Amplitude – 
Cubic 

None None 

Amplitude – 
Sinusoidal Ripple 

None None 

Group Delay – 
Linear 

None None 

Group Delay – 
Quadratic 

None May be 
Significant 
unless Error 

<3ns 

Group Delay – 
Cubic 

None None 

Group Delay – 
Sinusoidal Ripple 

None May be 
Significant 
unless Error 

<3ns 
 
SUMMARY 
 
We have demonstrated that by a judicious choice of the 
number of taps, tap spacing and tap coefficients we can 
synthesize a tracker that is monotonic over the entire 
range of delays where the BOC autocorrelation function 
has significant support.  This allows one to track BOC 
Autocorrelation maximum to an accuracy of order of 0.5 
to 3 nanoseconds (depending on loop bandwidth) and 
without fear of the tracker moving in the wrong direction 
or stalling in a local minimum.  If finer accuracy is 
needed, 2-taps at  where can be 
added. 

,T/t δ±= 25.0≤δ
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