
Enabling resource sharing in language generation: an abstract reference
architecture

L Cahilly, C Dorany*, R Evansy, R Kibbley, C Mellishz, D Paivay, M Reapez, D Scotty, N Tippery

yInformation Technology Research Institute, University of Brighton, Lewes Rd, Brighton, UK
zDivision of Informatics, University of Edinburgh, 80 South Bridge, Edinburgh, UK

rags@itri.brighton.ac.uk
http:/www.itri.brighton.ac.uk/projects/rags

Abstract
The RAGS project aims to develop a reference architecture for natural language generation, to facilitate modular development of NLG
systams as well as evaluation of components, systems and algorithms. This paper gives an overview of the proposed framework, describ-
ing an abstract data model with five levels of representation: Conceptual, Semantic, Rhetorical, Document and Syntactic. We report on
a re-implementation of an existing system using the RAGS data model.

1. The RAGS enterprise
The primary goal of the RAGS project (Cahill et al.,

1999a) is to develop a ‘reference architecture’ for applied
natural language generation (NLG) systems. The aim
is to produce an architectural specification which reflects
mainstream current practice and provides a framework for
the development of new applications and new components
within NLG systems. The architecture is also intended to
facilitate evaluation of NLG components, algorithms and
systems. To achieve these goals, such an architecture has to
be sufficiently conventional to be relevant to developers of
existing systems, but also sufficiently generic and detailed
to be useful as a resource for novel approaches.

One of the distinctive properties of natural language
generation when compared with other language engineer-
ing applications is that it has to take seriously the full range
of linguistic representation, from concepts through to mor-
phology, or even phonetics. Any processing system is only
as sophisticated as its input allows, so while a natural lan-
guage understanding system might be judged by its syntac-
tic prowess – even if its attention to semantics, pragmatics
and underlying conceptual analysis is minimal – a genera-
tion system is only as good as its deepest linguistic repre-
sentations. This has particular implications for evaluation
of NLG systems: it is hard to think of evaluation exercises
along the lines of the MUC tasks (Hirschman and Chin-
chor, 1997) for information extraction, for instance, where
the inputs consist of naturally-occurring text and the out-
puts are precisely specified by the evaluators. There is no
general agreement on how inputs for NLG systems should
be specified, nor on how output texts can be evaluated.

2. Pipelines and beyond
Generation systems, especially end-to-end, applied gen-

eration systems, have, unsurprisingly, much in common.
Reiter (Reiter, 1994) proposed an analysis of such systems
in terms of a simple three-stage pipeline:

* Now at the MITRE Corporation, Bedford, MA, USA,
cdoran@mitre.org.

Content Determination - deciding the content of a mes-
sage, and organising the component propositions into
a text tree;

Sentence Planning - aggregating propositions into clausal
units and choosing lexical items corresponding to con-
cepts in the knowledge base, including referring ex-
pressions (RE);

Linguistic realisation which takes care of surface details
such as agreement, orthography etc.

This was presented as a “consensus” model, based on
a survey of 5 existing systems and partly motivated on en-
gineering grounds in that a strict pipeline requires a mini-
mal number of interfaces. More recently the RAGS project
attempted to repeat and extend the analysis, surveying a
set of 19 applied systems (Paiva, 1998; Cahill and Reape,
1998). A component tasks analysis was undertaken exam-
ining where in each system each of a set of core linguis-
tic tasks was situated. That set was: lexicalisation, aggre-
gation, rhetorical structuring, referring expression genera-
tion, ordering, segmentation and coherence1. It was found
that, while most systems did implement a pipeline archi-
tecture, they did not implement the same pipeline – differ-
ent functionalities occurred in different places and in dif-
ferent orders in different systems. For instance, different
systems situate the lexicalisation task in Content Determi-
nation, Sentence Planning or Realisation. Or one functional
task may be distributed among different modules: in the
CGS system (Mittal et al., 1998), the task of generating re-
ferring expressions is distributed among the Text Planner,
Lexical Choice and the Referring Expression module itself.
To accomodate the results of this survey, we find it more
appropriate to specify the architecture in terms of the above
set of functions and a number of distinct levels of represen-
tation, which between them support the range of implemen-
tations observed, including pipelines as well as other more
complex control regimes.

1More details about the assumed definitions of these tasks can
be found in (Cahill and Reape, 1998; Cahill et al., 1999b).



The central pillar of our proposed architecture is a data
model, in the form of a set of declarative representations
for the various levels of linguistic representation in genera-
tion. That is, the functional modules are defined entirely in
terms of the datatypes they manipulate and the operations
they can perform on them. On top of such a model, more
specific process models can be created, in terms of con-
straints on the order and level of instantiation of different
types of data in the data model. One might then produce
a ‘rational reconstruction’ of the pipeline model, but other
process models would be equally possible. We argue that
by providing a common notation for the representations, it
will be possible for generation systems to ultimately share
both datasets and processing modules. Although it is not
our intention to impose standards on anyone, we expect that
the widespread adoption of (at least) an agreed set of repre-
sentations will benefit the whole generation community by
permitting sharing of resources as well as easier evaluation
of both whole systems and modules within systems.

We assume five levels of representation: Conceptual,
Semantic, Rhetorical, Document and Syntactic, each of
which may have abstract (provisional) and concrete (fi-
nalised) variants. These representations are intended to
be theory-neutral and various different formalisms may be
used, some of which are mentioned below.

I. Conceptual Structure is defined only indirectly
through an API via which a knowledge base (providing the
content from which generation takes place) can be viewed
as if it were defined in a simple KL-ONE (Brachman and
Schmolze, 1985) like system.

II. Semantic Structure may be represented using a for-
malism such DRT (Kamp and Reyle, 1993) or SPL (Kasper,
1989), and is the level at which inferences may be defined.
It may be useful to distinguish an Abstract Semantic level,
which might include pointers to conceptual entities as argu-
ments of semantic predicates in place of terms with seman-
tic content.

III. Rhetorical: a rhetorical structure tree with relations
in a formalism such as RST (Mann and Thompson, 1987)
at the nodes and pointers to semantic representations at the
leaves. Abstract Rhetorical Structure may differ from
the final structure in various ways: the relations may be
selected from a more restricted, generic, set, or it may be a
disjunction of semantically equivalent structure.

IV. Document Structure in its concrete form will con-
tain all formatting information needed to print or display
a document, coded in some formatting language such as
HTML or LaTeX. The RAGS scheme only considers Ab-
stract Document Structure, where text-level (Nunberg,
1990), layout and position features are specified without
commitment to any particular formatting system.

V. Syntactic Structure may be described in a variety
of formalisms, such as HPSG, LFG etc. RAGS is only
concerned with Abstract SyntacticStructure, a high level
syntactic representation (largely) independent of particular
syntactic theories, covering for instance head-complement
relations. We believe that most current reusable realisers
take as their input some combination of semantic and ab-
stract syntactic representations.

Note that Abstract Conceptual, Concrete Syntactic and
Concrete Document levels of representation are considered
outside the remit of the current enterprise. Note also that
this model is intended to be permissive rather than prescrip-
tive: there is no implication that the structures should be
built in the order listed above, that one structure should be
complete before another one can be initiated, or even that
all levels should be instantiated in any particular system.
To the contrary, we envisage that systems will make use of
mixed and partial representations.

Given the above set of representations, we have defined
the syntactic and semantic requirements of the formalisms,
XML DTDs to aid the representation of the formalisms in
an easily sharable format and example implementations of
the representations. We anticipate being able to define the
functionality of existing systems in terms of these represen-
tations. For example, a lexicalisation module might receive
as input (at least) a set of abstract semantic structures and
return a set of lexicalised abstract syntactic structures. The
input/output requirements of operations impose some lim-
its on how these can be ordered, but the intention is that
the data model should reflect fairly uncontentious minimal
constraints. It should be possible to derive most existing
architectures by further specialising the data model and im-
posing extra ordering constraints. For instance, many sys-
tems do not clearly distinguish conceptual from semantic
information. For these systems one simply assumes addi-
tionally that conceptual structures and semantic structures
are one and the same thing. Such a data model allows the
definition of a network of possible operations that take us
from an initial input to a final output.

3. Inter-module communication
Systems using the RAGS model will communicate with

one another by sending RAGS representations, possibly in-
volving mixed and partial structures, to one another. The
most straightforward way that two modules can commu-
nicate is if they are written in the same programming lan-
guage and they agree on how RAGS representations are im-
plemented in that programming language. In that case, the
two modules can operate in the same address space and one
can simply pass pointers to the other. If the two modules
are implemented in different languages, or if they are run-
ning on different machines, then it is possible to communi-
cate by sending representations in a textual form via some
communication medium. The RAGS project is producing
code code that supports sending data in XML using sockets,
together with code for parsing and generating XML from
standard programming language representations.

Alternatively, one may wish to have a central server
with which all modules communicate. Clients written in the
same programming language and running on the same ma-
chine as the server can then communicate using program-
ming language specific mechanisms. Otherwise each client
module could have a two-way communication channel with
the server, implementing a particular query/response in-
terface. Here we briefly describe a particularly general
model of inter-module communication based around mod-
ules communicating with a single centralised repository of
data called the whiteboard (Calder et al., 1999; Mellish



et al., 2000). A whiteboard is a cumulative typed relational
blackboard:

� typed and relational: because it is based on using a
representation scheme consisting of

– a set of objects, organised into types: objects may
be tree structures at one of the five levels of rep-
resentation, sub-trees or individual nodes;

– a set of binary relations, organised into types:
relations include realises, linking a more
abstract structure to a less abstract version,
revises (see below) and coreference;

– a set of arrows, each indicating that a relation
holds between one object and another object.

� a blackboard: a control architecture and data store
shared between processing modules; typically, mod-
ules add/change/remove objects in the data store,
examine its contents, and/or ask to be notified of
changes;

� cumulative: unlike standard blackboards, once data is
added, it can’t be changed or removed. So a structure
is built incrementally by making successive copies of
it (or of constituents of it) linked by revises links.

The use of a central server is just one option for inter-
module communication and is not an essential part of the
RAGS architecture. The RAGS project has implemented
a “whiteboard” server as part of the case study reported in
Section 5.

4. Examples of data structures
In this section we show examples of the types of data

structures referred to above. We concentrate on the re-
sources needed to generate Rhetorical Representations,
(RhetReps), and for purposes of exposition we disregard
the distinction between abstract and concrete variants2.

<?xml version="1.0"?>
<!-- RhetRep DTD -->

<!ELEMENT RhetRel EMPTY>
<!ATTLIST RhetRel name CDATA #REQUIRED>

<!ELEMENT RhetRep
(SemRep | (RhetRep RhetRep+))>

<!ATTLIST RhetRep relation CDATA #REQUIRED>

<!ELEMENT SemRep ANY>

The above is a complete XML document specifying a
DTD called RhetRep. The first line identifies the docu-
ment as an XML document. RhetRep defines the element
RhetRel for declaring rhetorical relations. It is an empty
element with a required name attribute. The main body de-
fines RhetRep as containing either a Semantic Representa-
tion (SemRep) or at least two RhetReps.

2Note that the DTD presented does not handle multiple or
mixed or partial representations and that the representation of se-
mantics is over- simplified for expository purposes.

The example shown below represents a sample of text
from a museum domain (example (1)) using this DTD.
Note here the DOCTYPE specification references the above
DTD assumed to be stored in the file “RhetRep.dtd”.

(1) Jessie M. King, who lived and worked in London, de-
signed this Arts and Crafts brooch. She also designed
the necklace we saw in Case 14.

<?xml version="1.0"?>
<!DOCTYPE RhetRep SYSTEM "RhetRep.dtd">

<RhetRel name="background"/>

<RhetRep relation="background">
<RhetRep relation="background">
<RhetRep>
<SemRep prop="designer(j-9999,King01)"/>
</RhetRep>
<RhetRep>
<SemRep prop="workplace(King01,London)"/>
</RhetRep>
</RhetRep>
<RhetRep>
<SemRep prop="designer(j-8888,King01)"/>
</RhetRep>
</RhetRep>

The example representations shown above might be au-
tomatically transformed from XML into a simple Prolog
clause form, resulting in structures such as:

RhetRep:
background(

background(
designer(j_9999, king01),
workplace(king01, london)

),
designer(j_8888, king01)

).

5. A case study: Caption Generation System
As a proof of concept, we have chosen an existing ap-

plied NLG system and reimplemented it according to the
RAGS data model and whiteboard. (The reimplementation
is reported more fully in (Mellish et al., 2000).) This reim-
plementation involved two stages: a reinterpretation of the
system in terms of the data model and a reimplementation
of the system using a whiteboard implementation in which
the aim was to attempt to reuse the existing code wherever
possible. The system chosen for this exercise was the Cap-
tion Generation System (CGS) (Mittal et al., 1998). CGS is
a system developed at the University of Pittsburgh, which
takes input from a graphics presentation system and gen-
erates captions for the graphics. A specimen of generated
text is shown below:

(2) These two charts present information about house
sales from data-set ts-1740. In the two charts, the y-
axis indicates the houses. In the first chart, the left
edge of the bar shows the house’s selling price whereas
the right edge shows the asking price.



The system consists of the following modules organised in
a pipeline: Text Planner, Ordering, Aggregation, Center-
ing, Referring Expression and Lexical Choice. The text it-
self is produced by the FUF/SURGE realiser (Elhadad and
Robin, 1992). The CGS system was chosen because of its
apparently relatively simple, modular, pipelined architec-
ture. Despite this apparent simplicity however, it turned out
that the build up of levels of information does not directly
correspond with module boundaries, as illustrated in Fig. 1.

Module
Text Planning

Ordering
Module

Aggregation
Module

��
��
��
��
��
��
��

��
��
��
��
��
��
��

II IVI III V

��
��
��
��
��
��
��

��
��
��
��
��
��
��

II IVI III V

Centering 
Module

Referring
Expression

Module

Lexical 
Choice
Module

��
��
��
��
��
��
��

��
��
��
��
��
��
��

II IVI III V

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

II IVI III V

FUF

SAGE

CGS architecture RAGS representations

II IVI III V

II IVI III V

II IVI III V

Figure 1: A RAGS view of the CGS system. I = concep-
tual, II = semantic, III = rhetorical, IV = document, V =
syntactic.

For instance, some semantic (II) information is pro-
duced by the Text Planning module, and more work is done
on this by Aggregation, but the semantic level of represen-
tation is not complete and final until the Referring Expres-
sion module has run. Also, for instance, at the point where
the Ordering module has run, there are partially finished
versions of three different types of representation. It is clear
from this that the interfaces between the modules are more
complex than could be accounted for by just referring to
the individual levels of representation of RAGS. The abil-
ity to express combinations of structures and partial struc-
tures was fundamental to the reimplementation of CGS.
The core modules of the CGS system were successfully
reimplemented while adhering to the RAGS data model de-
scribed above.

6. Conclusion
The CGS reimplementation was accomplished with-

out any need to introduce new levels of representation or
change the way the existing levels were defined, though it
was necessary to make extensive use of partial and mixed
representations.

It is envisaged that the architecture described above will
permit much wider sharing of both modules (i.e., code that
performs specific linguistic tasks) and resources (e.g., input
data, lexicons, grammars etc.) within the NLG commu-
nity. Although the survey of applied systems demonstrated
that different systems tend to split the linguistic tasks differ-
ently, as well as scheduling them differently, the nature of
the RAGS architecture allows interfaces to individual mod-
ules to be defined in generic terms. This will allow a re-
searcher attempting to develop, for instance, an aggregation
module to define the required input and output data struc-
tures in such a way that it can be slotted into any system
that provides the necessary input data structures at virtu-
ally any stage of its processing, provided that the output
data structures are compatible with the data structures re-
quired by subsequent modules of the system. It may appear
that these requirements are nevertheless too restrictive, but
it is easy to envisage a situation where an existing module
could be enclosed in a “wrapper” that converts the actual in-
put and output structures for that module into the structures
required by the rest of the system. The RAGS datatype
defintions allow this level of specification.

The next stage in the exploitation of the RAGS archi-
tecture is to test resource sharing more thoroughly by de-
veloping two end-to-end systems which will reuse selected
modules from the CGS system, together with modules from
other existing applied systems and newly developed mod-
ules. It will then be possible to test the capability of inter-
changing modules and datasets between the three systems.

Acknowledgements
This work is supported by the UK EPSRC under

grant references GR/L77041 (Edinburgh) and GR/L77102
(Brighton).

7. References
Brachman, R. and J. Schmolze, 1985. An overview of the

KL-ONE knowledge representation system. Cognitive
Science, 9:171–216.

Cahill, Lynne, Christy Doran, Roger Evans, Chris Mel-
lish, Daniel Paiva, Mike Reape, Donia Scott, and Neil
Tipper, 1999a. Towards a Reference Architecture for
Natural Language Generation Systems. Technical Re-
port ITRI-99-14, Information Technology Research In-
stitute (ITRI), University of Brighton. Available at
http://www.itri.brighton.ac.uk/projects/rags.

Cahill, Lynne, Christy Doran, Roger Evans, Chris Mellish,
Daniel Paiva, Mike Reape, Donia Scott, and Neil Tipper,
1999b. In Search of a Reference Architecture for NLG
Systems. In Proceedings of the 7th European Workshop
on Natural Language Generation. Toulouse.

Cahill, Lynne and Mike Reape, 1998. Component tasks
in applied NLG systems. Technical Report ITRI-
99-05, ITRI, University of Brighton. Obtainable at
http://www.itri.brighton.ac.uk/projects/rags/.

Calder, Jo, Roger Evans, Chris Mellish, and Mike Reape,
1999. “Free choice” and templates: how to get both at
the same time. In “May I speak freely?” Between tem-
plates and free choice in natural language generation,
number D-99-01. Saarbrücken, pages 19–24.



Elhadad, M. and J. Robin, 1992. Controlling content real-
ization with functional unification grammars. In Aspects
of Automated Natural Language Generation, Lecture
Notes in Artificial Intelligence, 587. Berlin: Springer-
Verlag, pages 89–104.

Hirschman, Lynette and Nancy Chinchor (eds.), 1997.
MUC-7 Proceedings. Science Applications International
Corporation. See www.muc.saic.com.

Kamp, H. and U. Reyle, 1993. From discourse to logic:
Introduction to model theoretic semantics of natural lan-
guage, formal logic and discourse representation theory.
Dordrecht; London: Kluwer.

Kasper, Robert T., 1989. A flexible interface for
linking applications to PENMAN’s sentence generator.
In Proceedings of the DARPA Workshop on Speech
and Natural Language. Philadelphia. Available from
USC/Information Sciences Institute, Marina del Rey,
CA.

Mann, William C. and Sandra A. Thompson, 1987. Rhetor-
ical structure theory: A theory of text organization.
Technical Report RS-87-190, USC Information Sciences
Institute, Marina Del Rey, CA. Also appears in Livia
Polanyi, editor, The Structure of Discourse, Ablex, Nor-
wood, NJ, 1987.

Mellish, Chris, Roger Evans, Lynne Cahill, Christy Doran,
Roger Evans, Daniel Paiva, Mike Reape, Donia Scott,
and Neil Tipper, 2000. A Representation for Complex
and Evolving Data Dependencies in Generation. In Pro-
ceedings of ANLP-NAACL2000. Seattle.

Mittal, V. O., J. D. Moore, G. Carenini, and S. Roth,
1998. Describing complex charts in natural language: A
caption generation system. Computational Linguistics,
24(3):431–468.

Nunberg, Geoffrey, 1990. The Linguistics of Punctuation.
CSLI Lecture Notes, No. 18. Stanford: Center for the
Study of Language and Information.

Paiva, Daniel, 1998. A survey of applied natu-
ral language generation systems. Technical Report
ITRI-98-03, Information Technology Research Insti-
tute (ITRI), University of Brighton. Available at
http://www.itri.brighton.ac.uk/techreports.

Reiter, Ehud, 1994. Has a consensus NL generation archi-
tecture appeared and is it psycholinguistically plausible?
In Proceedings of the Seventh International Workshop on
Natural Language Generation. Kennebunkport, Maine.


