A Method for Assessing the Reusability of Object-
Oriented Code Using a Validated Set of Automated
Measurements

Fatma Dandashi

Mitre Corporation
7515 Coleshire Dr.
McLean, VA 22102-7508
1.703.883.7914
Dandashi@mitre.org

ABSTRACT

A method for judging the reusability of C++ code
components and for assessing indirect quality attributes
from the direct attributes measured by an automated tool was
demonstrated. The method consisted of two phases. The first
phase identified and analytically validated a set of
measurements for assessing direct quality attributes based
on measurement theory. An automated tool was used to
compute actual measures for a repository of C++ classes. A
taxonomy relating reuse, indirect quality attributes, and
measurements identified and validated during the first part
of this research was defined. The second phase consisted of
identifying and validating a set of measurements for
assessing indirect quality attributes. A case study of the
feasibility of applying direct measurements to assess the
indirect quality attributes was conducted. The comparison
and analysis of indirect quality attributes measured by
human analysis with direct quality attributes measured by
the automated tool provided empirical evidence that the two
sets of quality attributes, direct and indirect, do correlate.

Keywords

Direct quality attribute measurements, indirect quality
attribute measurements, empirical study.

1. INTRODUCTION

Considerable progress has been made in identifying and
developing static, quantitative measurements for software
developed using procedural programming languages [10, 12,
18, 19, 20, 29, 31, 32]. Quantitative measurements of
software quality for functionally structured software have
been extensively studied using these measurements [13, 14,
17, 22, 23, 39, 40, 42, 45]. Some of these measurements have
been the subject of numerous critics [15, 16, 36, 37, 41, 49].
Quantitative measurements specific to Object-Oriented (OO)
components have also been identified by various researchers
[1,2,3,6, 8, 24, 26, 33, 38]. Quantitative measurements for

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC 2002, Madrid, Spain
© 2002 ACM 1-58113-445-2/02/03...$5.00

David C. Rine

George Mason University
4400 University Drive
Fairfax, Virginia 22030-4444
1.703.993.1530 ext. 3-1546
drine@cs.gmu.edu

indirect quality attributes, such as adaptability,
completeness, maintainability, and understandability have
not been thoroughly investigated, or rigorously validated.
To date, some studies of limited scope have been conducted
to show that relationships exist between the two collections
of attributes, direct and indirect [28].

During our research, we identified and analytically validated
a set of static, syntactic, directly measurable quality
attributes of C++ code components at the class (macro) and
method (micro) levels [11]. Our goal was to identify and
validate a set of measurements that can be used as effective
assessors of indirect quality attributes and predictors of the
overall quality and reusability of C++ code components.
This objective was achieved through the derivation of a
taxonomy and a method that was applied to estimate indirect
quality attributes such as understandability and
maintainability. This paper describes the measurements
identified and analytically validated, the empirical study, the
measurement taxonomy, the defined method, and the results
obtained.

2. DEFINITIONS

Software product quality is the degree to which software
possesses a desired combination of attributes. The term
“quality software” is generally understood to embody
software product attributes such as adaptability,
completeness, maintainability, and understandability [43].
Some of these quality attributes are subjective in nature,
difficult to measure, and some are in conflict with each other
(e.g., completeness, and understandability). We propose that
the degree to which a software product possesses certain
quality attributes may be indirectly assessed using a set of
directly measurable quality attributes. The following
definitions are for terms that were used throughout this
paper.

An attribute is a feature or property of an entity (e.g., size of

a class or duration of class testing) [15]. Attributes are
directly or indirectly measurable:

Direct attribute measurements of a code component are
measurements for attributes that can be defined purely in
terms of the elements that make up the syntax or behavior of
the component [15].

Indirect attribute measurements of a code component are
measurements for attributes that cannot be defined directly
in terms of the elements that make up the syntax or behavior
of the code component. Measurements of an indirect
attribute involve the measurement of one or more direct
attributes [15].

3. MICRO LEVEL MEASUREMENTS

Micro level measurements are measurements for attributes
that are collected at the method level. The measurements of
McCabe’s Cyclomatic Number (MCC) [29], which is a
function of the number of nodes and edges in a flowgraph of
the code; Halstead’s Volume [18], which is a function of the
number of operators and operands; the number of Physical
Source Statements (PSS) (excluding blanks and comments);
and the Depth (of nesting statements, where a nesting level of
one is assigned to the first statement in a method), were used
in this study.

A measure for each method in a class was collected for each of
the above measurements using the automated tool PC-Metric
[46]. To arrive at a measure for the whole class, the highest
collected measure was used as representative of the
corresponding class measure. If one method in a class
exceeds the desired quality threshold for a measurement,
then the class’s quality as a whole is affected by the quality
measure of this method.

4. MACRO LEVEL MEASUREMENTS

At the macro level, Bieman [2] cites and discusses OO metrics
that are similar to ones developed by a widely referenced
work by Chidamber and Kemerer [8] which contains a
definition of six measurements for C++ code. The
Chidamber and Kemerer measurements of Weighted Methods
per Class (WMC), Depth of Inheritance Tree (DIT), Number of
Children (NOC), Response For a Class (RFC), Coupling
Between Objects (CBO), and Depth of Inheritance Tree (DIT)
Lack of Cohesion in Methods (LCOM), were used in this
study. These OO-specific measurements were also collected
using PC-Metric [46].

5. ANALYTICAL RESULTS

Several researchers have published properties to validate the
correctness and meaningfulness of software complexity
measurements [4, 27, 47]. Some of these properties have
been criticized and proved to be incomplete, insufficient, and
sometimes contradictory [5, 7, 15, 25, 30, 34, 48, 49, 50].
Critiques of the Chidamber and Kemerer measurements have
also been published in the literature [9, 21]. The approach of
validating the measurements analytically before applying
them to software code components ensures that the results
obtained are based on sound measurement theory. Zuse [48]
provided definitions and properties for scales and an
analytical validation for the four micro-level measurements
used in our study. Based on the same Zuse properties, we
analytically validated the Chidamber and Kemerer macro-
level measurements [11]. The analysis validated that WMC,
DIT, and NOC measurements are ratio scale measurements,
while RFC, CBO, and LCOM are ordinal scale measurements.

Briand et al [4] published a set of properties for the
validation of OO measurements. These findings are not
inconsistent with our validation except in the case of RFC,
CBO, and LCOM (Briand et al state that RFC and CBO are
ratio scale measures since they satisfy their properties of size
and coupling, and the LCOM measurement could not be
classified according to their framework.). The RFC, CBO, and
LCOM measurements were classified as ordinal scale
measures in our study. The LCOM measurement was not
utilized in the empirical study because it was not a good
indicator of the quality of software. Therefore, our results are
still valid under the Briand at al properties. The analysis

conducted during this research effort was aimed solely at
providing a theoretical basis for determining the scale of
each measurement, thereby identifying the type of operations
that are valid on these measurements (e.g. additivity for ratio
scale measurements). Briand, et al offered an additional
dimension by classifying the measurements according to
length, size, complexity, etc. This aspect of their work will
be discussed further in future work.

After analytically validating the direct attribute
measurements, an empirical study was conducted to gauge
indirect quality attributes defined by the National Institute
of Standards and Technology (NIST) [35]. The report
prepared by NIST researchers identified 10 indirect quality
attributes for a software product based on extensive research
into the available literature. The attributes are: 1)
adaptability, flexibility, expandability, 2) completeness, 3)
correctness, 4) efficiency, 5) generality, 6) maintainability, 7)
modularity, 8) portability, 9) reliability, and 10)
understandability. The focus of the NIST report was on
providing measurement information for determining the
reusability of software. Our survey was designed to provide
us with an assessment of these software quality attributes.
The study results are listed in the next section.

6. EMPIRICAL CASE STUDY
DEFINITIONS AND VALIDATION

Our objective was to present evidence that will allow us to
reject the null hypothesis:

H°: For C++ code components taken from the Object-
Oriented Particle-In-Cell ~ Simulations (PICS) problem
domain, there is no relationship between direct software
quality attribute measures collected using automated tools,
and a group of indirect software quality attribute measures
collected via a survey instrument.

And to accept the Alternative Hypothesis:
Hl: C++ code components taken from the PICS problem

domain, that meet direct software quality attribute
measurement thresholds, also possess certain indirect
software quality attributes collected via a survey instrument.

6.1 Survey Instrument Construction

To empirically validate the research hypothesis, a survey
instrument was designed and a survey was conducted to
gather data about the PICS indirect quality attributes. Using
a repository of PICS C++ code components, the survey was
used to assess the degree to which the code components
possess the indirect software quality attributes identified by
NIST [35].

To achieve our objective, we identified a taxonomy that
relates direct measurements to the set of indirect quality
attributes (see Figure 1). The nature of the abstract level
connection at Point A is explored further, and the validity of
the taxonomy is demonstrated via the case study discussed
in subsequent sections of this paper.

Measurements

“Adaptability

Maintainability
Understandability

Figure 1: Taxonomy of indirect and direct quality
attributes that can be used to assess the reusability of
software components

6.2 The Population

In this study, we were trying to obtain objective measures for
indirect quality attributes by using experts in the field,
whose collective responses comprise these measures. We
used repeated applications of the survey instrument to
collect responses. The responses were used as measures of
the quality of the code components.

A first application of the survey instrument, where the
respondents were the authors of the PICS code, was
conducted to avoid analysis problems and pitfalls that might
lead us to conduct an invalid study and draw invalid
conclusions. Some lessons learned from carrying out the
first application of the survey instrument were:

e Eliminating the quality attribute Reliability from the
survey. This was done because reliability is an attribute
that can only be estimated by actually running the
software several times with a variety of test data and
then inspecting the defects uncovered or the number of
times that the code terminates normally with the
expected output.

e The number of statements per each indirect attribute was
reduced because the survey was deemed too long.

The subjects chosen to participate in the second application
consisted of two groups. The first was made up of C++
moderated newsgroup readers. A call for survey participation
was posted in the newsreader for the C++ newsgroup.
Interested individuals responded by indicating their interest
in completing the survey. A copy of the survey was then e-
mailed to them individually, and most completed and e-
mailed back the survey. The second group was made up of
students in a graduate level Software Engineering class of
mostly software professionals that was being offered at a
local university. More control variables were introduced to
group these respondents, such as the level of C++ experience,
GUI and/or scientific computation programming experience
levels. During this second phase, we concentrated on a
validation of our survey instrument by relating the group of
statements that were designed to gauge each indirect quality
attribute. We accepted as valid for measurement all the
closely related responses that were gathered during this
survey application. This resulted in a third phase study of
only those indirect software quality attributes that were
validated by the second phase. These were adaptability,
completeness, maintainability, and understandability. We
also concluded from the second survey application of the

survey instrument that our C++ GUI code components were
not useful study variables since this code was compiler and
platform dependent. We narrowed our case study to the PICS
problem domain. The third phase of the case study is
detailed in the next section. The complete analysis of the
responses appears in another work by these same authors
[11].

7. CASE STUDY PROCEDURE

The procedure that was followed to conduct the empirical
study consisted of:

1. Collect the indirect attribute measurements (via the
survey instrument) for a PICS class from a respondent
with experience in C++ and the problem domain, and use
the responses with the most frequency for each set of
statements as a measure of the indirect attribute.

2. Repeat this step using several experienced C++
programmers with similar experience in programming
scientific computation applications. Each programmer
is asked to evaluate a different class, thus obtaining
indirect attribute measures for several classes.

3. Collect correlation coefficients for the values obtained
via the survey instrument and the values obtained for
that class via the automated tools.

4. Use the results obtained to predict a measure for
reusability.

Our objective was to present evidence that will allow us to
reject the null hypothesis, and to accept our Alternative
Hypothesis. Twenty-five (25) surveys were handed out,
sixteen (16) were completed and returned. Each indirect
attribute was gauged via the survey by a collection of 4-6
statements. The most frequent response given by a
respondent from the collection of responses applicable to a
particular attribute was chosen as the overall class-attribute
value. The data collected for this last phase of the study
appears in another work by these same authors [11].

8. EMPIRICAL CASE STUDY RESULTS

Figure 2 below shows the summarized data (one value per
indirect attribute) for every PICS class that was included in
the last phase of the case study. Higher values indicate lower
abilities (e.g., the responder who completed a survey for the
class DADIXY believes that the class exhibits very low
maintainability potential, shown below as a 5 rating). In
general, the line graphs are consistent with each other, in that
every attribute exhibits the same trend as the other attributes
for the same class. That is, when one attribute is high for one
class, the other attributes for the same class are also high.
This data supports our choice to use these four indirect
attributes.

Figure 3 consists of line graphs that plot the collected direct
attribute measures for each class used in this case study.
Higher values are indicative of lower quality. Figure 3 shows
values for the four non OO-specific direct measurements:
McCabe’s Cyclomatic Complexity, Halstead’s Volume, in
addition to a count of the number of physical source
statements and the depth of nested statements. The four
measurements have traditionally been classified as
measuring different dimensions of code component quality
[4, 17].

Adaptability
Completeness

Maintainability

Understandability

CLASSNAME

Figure 2: Plot of class indirect quality attribute measures
collected via the survey instrument

However, we observe that for the PICS classes chosen for this
case study, the four measures go up or down in tandem. We
cannot conclude that they measure the same attributes.
However, we can corroborate the intuitive premise that if the
size of a software code component (as measured by PSS, for
example) is large, then the other three collected measures
follow suit. Regardless of the measurement classification
(size, complexity, etc.), a large number of physical source
statements usually also results in a larger number of nodes
and edges (representing if, do, and while statements), and a
larger Volume. It does not necessarily follow that the
nesting depth of a large component would also be large (that
is, we may have a code component that consists of a large
number of simple statements). However, based on the
measures collected here for MCC, V, PSS, and Depth, we
observe that a high source line count is usually accompanied
by high measures for MCC and V, nested depth of statements.

We also observe that the OO-specific measurements do not
exhibit the same kind of measure agreement (see Figure 4).
This may be a reflection of the kinds of attributes that are
being measured via these two groups of measurements. We
conclude that the OO-specific measurements measure
unrelated attributes, whereas volume, PSS, MCC and Depth,
are closely related size measures of the static, syntactical
aspects of the software artifact.

The indirect attribute values collected via the survey
instrument for the PICS classes also exhibit similar trends
(Figure 2). This is also significant in that we are now able to
draw conclusions about the appropriateness of these indirect
attributes chosen for the last phase of our study, and their
usefulness in predicting the overall reuse potential of a
software artifact.

9. INTERPRETATION OF THE RESULTS

Using the statistical package SPSS [44], we computed
correlation coefficients between every direct quality attribute
measures collected for every class included in our case study,
and the measures collected for the indirect quality attributes
obtained via the survey instrument.

80

60

McCabe's Cyclomatic
40

Complexity

NVOLUME

o

Value

Depth of Nested

Statememts

%, %, %, %, %, % %, %, %0,
80 O, s, iy ey, U, K, 0, O oy, Y)
e, %, %, B G %, X lp@//@

CLASSNAME

Figure 3: Plot of the direct quality attribute measures
collected via PC-Metric

The correlation coefficients indicate that indirect quality
attribute measurements (adaptability, completeness,
maintainability, and understandability) are proportional to
some of the direct quality attribute measures (namely MCC,
Volume, PSS, Depth of Nested Statements, and WMC). We
observe that as the measures for the direct attributes increase,
so do the adaptability measures (lower values are “good”
values).

20

.

\ 1 _—

'

'

4 '

1 o —NWMC
'

10 W M

= TMagnified DIT

=== Magnified NOC

NRFC

)
=
§ Coupling Between
0 Objects
% by b b O % O O % %, Oy Oy Sy Ly
6%,@% %%o% ;O%QO}{;:%O o;%)/&»/o, o;%’b 2, /(_\/@%;o%éé%)
s % AL
R AR ” Y, o 4
CLASSNAM

Figure 4: Plot of the direct quality attribute measures
collected via PC-Metric

There is no strong relationship between the DIT and NOC
measures and indirect quality attributes. We can observe that
as DIT and NOC increase, (higher levels of inheritance), the
adaptability, completeness, maintainability, and
understandability (as perceived by a respondent), of a PICS
class decrease. This is in general agreement with other
researchers’ evidence [8] supporting the statement that
increasingly high levels of inheritance, while theoretically
increasing initial development-reuse levels, make the
classes:

1. increasingly difficult to adapt (and subsequently
difficult to reuse), as these high inheritance levels imply
an increasing degree of specialization in terms of the
objects they represent.

2. more dependent on other inherited classes (more
difficult to reuse than stand-alone or self-contained
components).

3. less maintainable as stand-alone software artifacts in
that their proper maintenance (perfective, adaptive or
corrective) may require the modification of increasing
numbers of inherited classes.

4. less understandable as stand-alone software artifacts, in
that their understandability may require the analysis of
increasing numbers of inherited classes.

In summary, the data collected for the indirect quality
attribute adaptability, completeness, maintainability, and
understandability supports our research hypothesis that
direct attribute measures may be used to deduce the
adaptability, completeness, maintainability, and
understandability of a PICS class.

The correlation coefficients for adaptability, completeness,
maintainability, and understandability versus RFC and CBO
respectively are interpreted next. There does not seem to be a
very strong relation between RFC and CBO measures and
indirect quality attribute measures, as perceived by our
respondents. We observe a weak trend (i.e. one that is not
consistent for every class chosen for this study) that shows
that indirect quality attribute measures increase when the
RFC and CBO measures decrease. A class exhibits less
indirect quality attributes as the coupling between the class
in question and other classes decreases. Upon further
examination of the kinds of classes that were chosen for the
study, we observed that relations between RFC, CBO, and the
four indirect quality attributes (adaptability, completeness,
maintainability, and understandability) reflect the following
class characteristics. As a class grows and becomes more
self-contained, relying on its own methods to execute all
functionality, coupling between such a class and other
classes decreases, thus resulting in lower RFC and CBO
measures. At the same time, the respondents found such a
class to be, in general, less adaptable, less complete, less
maintainable, and less understandable. This is in agreement
with an intuitive analysis of OO software components:
classes that contain large numbers of methods, while less
reliant on methods in other classes, are generally perceived
to be of lesser quality than smaller, simpler classes. In
general, OO classes with a large number of methods and
attributes are more difficult to adapt, maintain, and
understand, and are perceived to be less complete (i.e. they
implement functionality that does not belong in the class).

In the next section, a relation and a method for gauging the
reusability of C++ code components will be discussed.

10. QUALITY ATTRIBUTE ESTIMATION
METHOD

Based on the results observed during the case study, two
rules are formulated:

1. The measures collected for Complexity, Volume, PSS,
Depth, and WMC are proportional to the levels of
adaptability, completeness, = maintainability, and
understandability of the class.

2. The measures collected for NOC, DIT, RFC, and CBO, are
inversely proportional to the levels of adaptability,

completeness, maintainability, and understandability of
the class.

These rules were used in the following quality attribute
estimation method. Given a C++ class we can,

1. Collect the direct attribute measures of Complexity,
Volume, PSS, and Depth via an automated tool. For each
class we use, we will get separate Complexity, Volume,
PSS, and Depth measures for every method in that class.

2. Collect the direct attribute measures of WMC, NOC, DIT,
RFC, and CBO via an automated tool.

3. Use the highest measure collected for each of the
methods as the class measure. For example, if a class
consists of 3 methods, and the Complexity measures
collected are equal to 2, 4, and 3 respectively for each of
the methods, then the overall class Complexity measure
is 4.

4. Based on the direct quality attribute measures obtained,
assign a measure representing the indirect quality
attributes, to the class in question. For this measure, use
one of the estimator values: Very High, High, Average,
Low, Very Low. An estimator value for the indirect
quality attributes: adaptability, completeness,
maintainability, and understandability should conform
to the following relations. Each is directly proportional
to the direct quality attribute measurements MCC, V,
PSS, Depth, and WMC; and inversely proportional to the
measurements DIT, NOC, CBO, and RFC. Since our case
study has shown that these four indirect attributes are
related to each other, an assigned measure, based on the
direct attribute measures collected, represents the class’s
potential for adaptability, completeness,
maintainability, and understandability. This assigned
value may also be used as an estimator of the potential
for the reusability of the class.

11. SUMMARY AND CONCLUSION

During a previous study [11], we proposed that software
engineers and practitioners may use indirect quality attribute
measurements as assessors of reusability. The validity of the
measurements was demonstrated via an empirical study
conducted on C++ code components from the PICS problem
domain. This paper reported on that work which included:

1. An identification of a set of measurements for OO code
components that measure static, syntactic attributes of
the code.

2. An analytical validation of the scale types, and their
permissible transformations for measurements for OO
code components. The objective was to identify and
classify, according to a group of properties, the scale
type for each of these measurements. The validation of
the scale types provided a proven theoretical foundation
for the analysis of the collected measures. In addition,
some of the weaknesses in the published literature were
exposed.

3. The collection of simple non-parametric correlation
coefficients to explore relations between the various
quality attribute measures.

4. ldentification of a set of relations that map directly
measurable software quality attributes to another set of
quality attributes that can only be measured indirectly.

5. An empirical study, and a validated method for the
estimation of the reusability of C++ code components.

Based on this study, we concluded that reuse of a C++ code
component, may be estimated from four indirect quality
attributes: adaptability, completeness, maintainability, and
understandability. A quantitative value for reuse potential
for such a code component, may be gauged by automatically
collecting measures for the direct attributes of: McCabe’s
Complexity, Halstead’s Volume, The number of Physical
Source Statements (PSS), The Depth of nested statements,
Weighted Methods per Class (WMC), Depth of Inheritance
tree, Number of Children (immediate descendants only),
Response for a class (RFC), Coupling Between Objects
(CBO).

Future research includes plans to re-apply the survey
instrument to new OO code components to further verify the
applicability of this reuse estimation method to new problem
domains and to other OO languages. The goal is to verify
that the method validated during this research may be
applied for the reliable certification of OO software code
components, and to facilitate their reuse in a product-line
manufacturing process.

12. REFERENCES

[1] Bieman, J. 1991, "Deriving Measures of Software Reuse
in Object-Oriented Systems," TR CS-91-112, Colorado
State University.

[2] Bieman, J. 1995a, "Metric Development for Object-
Oriented Software," Software Measurement, Austin
Melton, ed., International Thomson Computer Press,
London, UK, 75-92.

[3] Bieman, J. and J. Xia Zhao 1995b, "Reuse Through
Inheritance: A Quantitative Study of C++ Software,"
Proc. ACM Symposium on Software Reusability (SSR
‘95), Seattle, WA, 47-52.

[4] Briand, L. C., S. Morasca, and V. R. Basili 1996,
"Property-Based Software Engineering Measurement,”
IEEE Transactions on Software Engineering, 22(1), 68-
85.

[5] Briand, L. C., S. Morasca, and V. R. Basili 1997,
"Response to: Comments on Property-Based Software
Engineering Measurement: Refining the Additivity
Properties,” IEEE Transactions on Software
Engineering, 23(8), 196-198.

[6] Briand, L. C., J.W. Daley & J. K. Wust 1999, "A unified
Framework for coupling Measurement in Object-
Oriented Systems," IEEE Transactions on Software
Engineering, 25(1), 91-121.

[7] Cherniavsky, J. C., and C. H. Smith 1991, On Weyuker’s

Axioms for Software Complexity measures, IEEE
Transactions on Software Engineering, 17(6), 636-638.

[8] Chidamber, S. and C. Kemerer 1994, A Metrics Suite for
Obiject-oriented Design, IEEE Transactions on Software
Engineering, 20(6), 476-493.

[9] Churcher, N. I., and M. J. Shepperd 1995, Comments on
A Metrics Suite for Object-oriented design,

Correspondence in IEEE Transactions on Software
Engineering, 21(3), pp. 263-265.

[10] Conte, S.D., H.E. Dunsmore, & V. Y. Shen 1986, Software
Engineering Metrics and Models, Benjamin/Cummings,
New York.

[11] Dandashi, F. 1998, A Method for Assessing the
Reusability of Object-oriented Code Using a Validated
Set of Automated Measurements, Ph.D. Dissertation,
SITE, George Mason University, Fairfax, VA.

[12] Davis, J.S. and R.J. LeBlanc 1988, A Study of the
Applicability of Complexity Measures, IEEE
Transactions on Software Engineering, 14(9), 1366-
1372.

[13] Dhama, H. 1995, Quantitative Models of Cohesion and
Coupling in Software, J. Systems Software, Vol. 29,
Elsevier Science Inc., NY, NY, 65-74.

[14] Evangelist, W.M. 1983, Software Complexity Metric
Sensitivity to Program Structuring Rules, Journal of
Systems and Software, 3, 231-243.

[15] Fenton, N. 1994a, “Software Measurement: A Necessary
Scientific Basis,” IEEE Transactions on Software
Engineering, 20(3), 199-206.

[16] Fenton, N., S.L. Pfleeger, & R.L. Glass 1994b, Science
and Substance: A Challenge to Software Engineers, IEEE
Software, 11(4), 86-95.

[17] Fonash, P. 1993, Metrics for Reusable Code
Components, Ph.D. Dissertation, SITE, George Mason
University, Fairfax, Virginia.

[18] Halstead, M. 1977, Elements of Software Science,
Elsevier North Holland, New York, NY.

[19] Hansen, W.J. 1978, Measurement of Program
Complexity by the Pair (Cyclomatic Number, Operator
Count), ACM SIGPLAN Notices, 13(3), 29-33.

[20] Henry, S. and D. Kafura 1981, Software Structure Metrics
Based on Information Flow, IEEE Transactions on
Software Engineering, 7(5), 510-518.

[21] Hitz, M., and B. Montazeri 1996, Chidamber and
Kemerer’s Metrics Suite: A Measurement Theory
Perspective, Correspondence in IEEE Transactions on
Software Engineering, 22(4), 267-271.

[22] Jensen, H.A. and K. Vairavan 1985, An Experimental
Study of Software Metrics for Real-Time Software, IEEE
Transactions on Software Engineering, 11(2), 231-234.

[23] Kafura, D. and G.R. Reddy 1987, The Use of Software
Complexity Metrics in Software Maintenance, IEEE
Transactions on Software Engineering, 13(3), 335-343.

[24] Karunanithi, S. and J. M. Bieman 1992, Candidate Reuse
Metrics for Object-oriented and Ada Software, TR CS-92-
142, Colorado State University.

[25] Kitchenham, B. A., S.L. Pfleeger, and N. Fenton 1997,
Reply to: Comments on Toward a Framework for
Software Measurement Validation, IEEE Transactions
on Software Engineering, 23(8), 189-189.

[26] Lake, A., & C. Cook 1992, A Software Complexity Metric
for C++, TR 92-60-03, Computer Science Dept., Oregon
State University, Corvallis, OR.

[27] Lakshmanan, K. B., S. Jayaprakash, & P. K. Sinha 1991,
Properties of Control-Flow Complexity Measures, IEEE
Transactions on Software Engineering, 17(12), 1289-
1295.

[28] Li, Wei & S. Henry 1993, Object-Oriented Metrics that
Predict Maintainability, J. Systems Software, Elsevier
Science Publishing Co, 23, 111-122.

[29] McCabe, T. J. 1976, A Complexity Measure, IEEE
Transactions on Software Engineering, 2(4), 308-320.

[30] Morasca, S., L.C. Briand, V. R. Vasili, E.J. Weyuker, & M.
V. Zelkowitz 1997, Comments on Toward a Framework
for Software Measurement Validation, IEEE
Transactions on Software Engineering, 23(8),187-188.

[31] Myers, G.J. 1977, An Extension to the Cyclomatic
Measure of Program Complexity, ACM SIGPLAN Notices,
12(10), 61-64.

[32] Offutt, A. J., M. J. Harrold, & P. Kolte 1993, A Software
Metric System for Module Coupling, J. Systems
Software, Vol. 20, Elsevier Science Publishing Co. Inc.,
New York, NY, 295-308.

[33]Ott, L. M., J. M. Bieman, B.-K. Kang, & B. Mehra 1995,
Developing Measures of Class Cohesion for Object-
Oriented Software, in Proc. Annual Oregon Workshop on
Software Metrics (AOWSM 95), 1995.

[34] Poels, G. and G. Dedene 1997, Comments on Property-
Based Software Engineering Measurement: Refining the
Additivity Properties, IEEE Transactions on Software
Engineering, 23(3), 190-195.

[35] Salamon W.J. and D.R. Wallace 1994, Quality
Characteristics and Metrics for Reusable Software
(preliminary Report), US DoC for US DoD Ballistic
Missile Defense Organization, NISTIR 5459.

[36] Schneidewind, N.F. 1992, Methodology for Validating
Software metrics, IEEE Transactions on Software
Engineering, 18(5), 410-422.

[37] Schneidewind, N.F. 1993, Report on the IEEE Standard
for a Software Quality Metrics Methodology, ACM
Software Engineering Notes, 18(3), A95-A98.

[38] Sheetz, S. D., D. P. Tegarden, & D. E. Monarchi 1991,
Measuring Object-Oriented System Complexity, Proc.
1% Workshop on information Technologies and Systems.

[39] Shen, VY., T-J Yu, S.M. Thebaut, & L.R. Paulsen 1985,
Identifying Error-Prone Software-An Empirical Study,
IEEE Transactions on Software Engineering, 11(4),
317-323.

[40] Shepperd, M. 1988, A Critique of Cyclomatic
Complexity as a Software Metric, Software Engineering
Journal, 3(2), 30-36.

[41] Shepperd, M. & D.C. Ince 1994, A Critique of Three
Metrics, J. Systems Software, Volume 26, Elsevier
Science Inc., NY, NY, 197-210.

[42] Shooman, M. L. 1983, Software Engineering: Design
Reliability and Management, McGraw Hill Inc., NY, NY.

[43] Sommerville, 1. 1996, Software Engineering, Sixth
Edition, Addison-Wesley Publishing Company,
Reading, Massachusetts.

[44] SPSS Inc. 1997, SPSS 7.5 for Windows, Chicago, IL.

[45] Stark, G., R.C. Durst, & C.W. Vowell 1994, Using Metrics
in Management Decision Making, IEEE Computer, Vol.
27, No. 9, 42-48.

[46] Versaw, L. 1989, PC-METRIC - A Measuring Tool For
Software, The C Users Journal, 8(1).

[47] Weyuker, E.J. 1988, Evaluating Software Complexity
Measures, IEEE Transactions on Software Engineering,
14(9), 1357-1365.

[48] Zuse, Horst 1990, Software Complexity: Measures and
Methods, Walter de Gruyter publishers, Berlin, Germany.

[49] Zuse, Horst 1993, Support of Experimentation by
Measurement Theory, H. Rombach, V. Basili, and R.
Selby, Editors, Experimental Software Engineering
Issues, (Lecture Notes in Computer Science, Volume
706), Springer-Verlag, New York, NY, 137-140.

[50] Zuse, Horst 1997, Reply to Property-Based Software
Engineering Measurement, IEEE Transactions on
Software Engineering, 23(8), 533-533.

