
1

Coordinating Desired Accessibility versus  Desired Restrictions in
Distributed Object Systems

Arnon Rosenthal
The MITRE Corporation

arnie@mitre.org  781-271-7577

Abstract

This work aims to provide administrators with services for managing permissions in a
distributed object system, by connecting business-level tasks to access controls on low
level functions. Specifically, the techniques connect abilities (to complete externally-
invoked functions) to the access controls on individual functions, across all servers. Our
main results are the problem formalization, plus algorithms to synthesize least privilege
permissions for a given set of desired abilities. Desirable extensions and numerous
research issues are identified.

Keywords:   Access controls, distributed object management, security, business tasks

1 The Problem
This work aims at providing administrators with services for coordinating accessibility
versus protection in a distributed object system, shown in Figure 1. Such systems can be
seen as collections of diverse types of servers — object middleware, database managers,
and specialized application systems.  Each server hosts one or more interfaces, consisting
of functions that can be invoked. The code that implements the function may invoke
other functions, in the same or other servers.  We consider only requests made through
these server-controlled interfaces — we do not look under the covers  to see other
information flows among programs running within a server.



2

1.1 Goals
Our aim is to reduce the labor and the skills for security administration in distributed
object computing (d. o. c.). It is part of a grand challenge for distributed systems  security
— to make security administration so easy that ordinary organizations will do it well. The
specific goal is to produce theoretical underpinning that can guide development of a
security administrator s assistant. Our theory (if implemented in tools) would allow
administrators to see how access controls on function invocation connect to abilities to
involve all the functions needed to complete a work task. Tools could then provide
automated analysis and synthesis.

The need for abilities to accomplish work is modeled as running functions to completion,
unhindered by access controls. The process of balancing task accessibility versus
resource protection is particularly difficult, because ability needs span many invocations,
and access controls deal with single ones. Distributed object systems introduce further
difficulties, with different server characteristics and spans of control.

We first discuss some strategies for automated synthesis, based on the execution model
and the principle of least privilege . Our synthesis takes the desired abilities as a
constraint. It then seeks to impose the tightest access controls on each function consistent
with 1) those abilities and 2) the capabilities of each server. In work not presented here,
we provide a theory for analysis, to determine the abilities that stem from an arbitrary set
of access permissions.

1.2 The Problem and the Services to Be Provided
Our work provides models that automatically maintain connections between

App Servers

DBMSs, files

Legacy apps

Figure 1:  A Typical Distributed Object System:
Many Interfaces, Many Stakeholders



3

• Servers  access control policies  — predicates that limit the incoming requests that a
server will invoke (i.e., begin to execute). Functions and data that are subject to such
limitations are called protected by this access control system. (Isolation mechanisms
in programming languages and operating systems are outside our scope.)

• Abilities to complete work: These describe the ability to complete a function that
represents the automated processing needed for some business task. Completion
requires that each onward call satisfy the access policy of the servers that execute it.

Administrators will supply ability predicates that answer questions like the following:
• Who can hire an employee into the Engineering department?
• Who can mark financial software as tested ?
• Who can update Accounts Payable with amounts over $1000?
• Who can discharge which patients, for what reasons (i.e., can run

Discharge(Patient_Id, Date, Reason, Bill_Id, DoctorName) )?
• Who can issue a particular SQL request to the database information about Boston

employees?
Ability and access control predicates will typically be defined over request arguments,
request context (user, time issued), and database contents. Access control predicates
might also reference the call stack. For example, the database might grant access to EMP
and DEPT to certain users only for requests made in the course of executing the function
HireEmployee(Name, Dept, Salary) with Salary<$100,000.

Figure 2 shows a system s security specifications. For various functions within the
servers, administrators specify required abilities (giving lower and perhaps upper
bounds); they also may specify upper bounds on the permissions that may be granted.
Our theory aims to support tools that would specify the desired access controls on
invocations — of a form the function s server can enforce, and such that abilities and
controls respect the appropriate bounds.



4

A policy specified in terms of one interface may be enforced by access controls on other
interfaces. For example, a policy that allows Compensation Analysts to run the Analyze
Salaries  application on Permanent Employees could potentially be implemented in at
least three ways. One could enforce the policy only on the call to AnalyzeSalaries; one
could have the database restrict access to views of the underlying data; or one could
enforce in both places.

We impose no restrictions on how an organization distributes the authority to make
policies. Administration tools should be able to handle several modes: one global
administrator; one administrator for each server; or one administrator for all functions in
each business area (e.g., Finance), regardless of server boundaries. For controls over the
act of delegation, see [Sand99, Rose00, Glad97].

1.3 What Do Systems Do Now?
Today s multi-tier systems do enforce security, but in ways that are far from adequate.
None of them (to our knowledge) has tools that can determine what abilities would stem
from access restrictions on all the servers involved in a user transaction. Instead, one
often sees reliance on just one of the servers. Or else separate administration within each
server, and no effective means of coordinating their policies. Below, we describe two
common practices today, and explain why they are often not satisfactory.

Clients

App Servers

DBMSs,
Files

Legacy apps

Specify desired abilities (lower bounds for business;upper bounds for security)

Access controls to be enforced on invocation:  Can invoke a method or table only if a
predicate holds.   (Abilities require onward calls to succeed also).

Figure 2: Specify where convenient. Enforce where convenient



5

1.3.1 Middleware Provides All Controls
In many systems, the database is told to accept any request that the middleware has
approved. The middleware security may be basic (e.g., predicates just on the user and the
function name) or may include a rule engine that provides a powerful language for
expressing access controls [Net00]. These engines can be close to the original point of
invocation, and can be replicated relatively cheaply.

A prerequisite for this approach is that other resource owners be willing to trust the
middleware; it is less likely to suit architectures where middleware spans several
enterprises. Even within an enterprise, this approach has serious limitations, which make
it rather low assurance. Failure modes include:
• Careless administration: The middleware policy maker may not be very concerned to

protect the database s resources.
• Unanticipated behaviors.  Administrators may misjudge the accesses a function may

make. The cause may be rare circumstances, or Trojan horses maliciously inserted.
• Spoofing: Someone may tamper with the approved request en route to the database.

(Many techniques are available to reduce this threat, but some risk remains.)

For all these reasons, it may be preferable to have multiple lines of defense. Instead of
give free rein to middleware-approved functions , we want the tightest permissions that
(1) allow function executions that implement the approved abilities, and (2) that the
DBMS server can enforce.

1.3.2 Database Provides All Controls
Another typical pattern is to rely on database access controls. Testing values of stored
data can be easier and more efficient in the DBMS. Also, data owners can enforce their
own restrictions locally, if they do not trust the middleware, or they wish to continue
using controls that are already specified. But giving the DBMS full responsibility has
three categories of disadvantages:
§ One sometimes wants to give extra privileges to trusted functions. Business functions

increasingly run in the middleware, but today s DBMSs recognize trusted functions
only if they run in the database (i.e., database view or stored procedures). Fortunately,
the credentials/PKI features being added to DBMSs for authenticating users also will
apply to authenticating functions [Oracle00].

§ Enforcement at the DBMS is not on the request the client generated, but rather on a
request descended from the client method. This distance makes it harder to frame an
understandable error message.

§ One wants to push processing to stateless middleware objects, rather than to the
database. As workload increases, one can easily add processors that hold copies of
stateless middleware services. A database is not so cheaply replicated, because one
must constantly ship updates among the copies.



6

1.4 Scope Limitations
It can be impossible to predict a function s behavior. If one cannot bound the calls a
function will make; hence, one cannot guarantee that any set of permissions provide the
ability to run the function to completion. We focus, though, on tractable cases that skilled
administrators routinely handle.

Due to time constraints, we make some serious simplifying assumptions. We believe that
most of them can be removed (and that they delineate an important research program).

• We treat the system as a static collection of interfaces, functions, and access control
predicates. Later researchers will need to add mechanisms for change. Since many
distributed object systems are  24 x 7, changes will occur even while functions run
(and not every function is enclosed in a transaction).

• We consider that it s not a security administration problem if the application fails
(e.g., if the application voluntarily decides to signal failure, or its code crashes). For
us, ability is taken just as adequate access privileges .

• Fault tolerance (i.e., a function s ability to do its job despite failure of some of its
onward calls) will not be considered.  However, one could get better bounds if one
understood which exceptions could be tolerated.

• We have not yet established upper bounds that guarantee that a resource cannot be
too widely accessed. We believe they can be obtained by reversing the direction of
bounds used in guaranteeing abilities.

• Our permissions aim to provide the least privileges, i.e., to be the tightest possible
subject to having the desired abilities. However, definitions and theorems remain to
be formalized.

• Enforcement strategies  assurance and performance require detailed attention.
• While our theory allows arbitrary calling patterns, our algorithms assume that the

function call graph is acyclic, numbered so that fi can call fj only if i<j.

Despite the limitations, the work still is rather general. We make no assumptions about
the programming model used within a function s implementation, nor about argument-
passing mechanisms, nor whether function calls must return before the caller resumes
operation. The model does not constrain concurrency or isolation; it tacitly places all
isolation and coordination logic (e.g., private versus shared storage, transaction
management) as part of the function s semantics.

1.5 Contributions of this Work
In Section 1 we motivate the problem, and in section 2 we formalize the Execution
model, which describes how requests execute as part of a distributed object computing
system. Together, these sections extract the problem from the morass of real world issues,
and describe the services desired.

Our aim is to open up the multifaceted problem to work by specialists in each facet.
Security policy experts can describe the forms of predicates that are most needed for
interesting policies. Experts in code and data flow analysis can find predicates that relate
the states of a function and its onward calls. Datalog experts can provide techniques for



7

handling graphs with cycles [Ull88].Experts in security services of middleware and
DBMSs can implement additional predicate types, e.g., on the call history. And security
management experts can build tools that exploit synthesis and analysis to simplify
administration.

Next, Section 3 provides algorithms to synthesize minimal  permissions that will
guarantee the desired abilities. For now, we synthesize based on the principle of least
privilege . That is, we impose the tightest access permission predicates from which we
can infer that the desired abilities will be present. We conjecture several lemmas about
tightness of the synthesis. The final section sketches an agenda for the necessary
additional research.

2 Execution Model

2.1 The Basic Models: Machine and Function Call
The entire system (including its input stream) is seen as a deterministic state machine.  Its
foundation rests with low level (atomic) operations. Synthesis and analysis use a higher
level of abstraction (function execution). Access controls are specified as Boolean
predicates to be applied at function invocation.

The system state is the product of the states of all the memory locations, including
ordinary memory, control memory (e.g., call stacks, return codes, scheduling
information), security memory (e.g., access predicates, user credentials), and the
sequence of future input values. The machine executes sequentially and deterministically,
consuming one input (usually null) at each step. The state describes the system so
thoroughly that it fully determines future execution.

Within this machine, we will next define a higher layer of abstractions for function calls
and returns. System software will give programmers additional abstractions (e.g.,
concurrently-executing threads, transactions, user credentials) that guide execution, but
these are not explicit in our model.

The function layer views execution in terms of functions described in the server
interfaces. Callstates are states of the machine that correspond to a function call; a
callstate S that invokes function f will often be denoted Sf . The model shows callstates,
access predicate evaluation, function execution, and function return states. We are
particularly interested in the (onward) callstates generated during call execution, and in
whether the call execution is able to invoke them. Beyond these glimpses, we will
abstract away the execution logic.

The semantics are: When the function f is invoked, its access predicate1 is evaluated
instantaneously, using data in the callstate. If the result is true, the server creates a call

                                                  
1 The predicate has no side effects on the system state. An extended model might allow actions to write to
the log, or to attach information to the user s request, as in [Net00].



8

execution and begins executing the function; if false, the next (and only) step from this
call is the return event with return code failed . Useful work is assumed to correspond to
completion of a call execution.

The function layer connects to the basic machine as follows: Machine states are
partitioned into three categories: ordinary, function callstates, and function return.  Calls
and returns refer only to server-managed functions, not to internal code. A call is active
beginning at its call event and up through its return (if the return exists). At call and
return, the argument values are just parts of the system state that the functions may
reference. A unique outermost call-execution encloses everything; the call System() has
one instance, with neither Invoke nor Return steps.

Each machine execution step (including each invocation and completion) is part of
exactly one call-execution. Steps from different active executions can interleave,
scheduled by mechanisms outside our model.

In the function execution trace illustrated below, execution begins with a system call to
function f1 (call execution Ca), and a later call from system to f2 (call execution Cb), which
invokes f3 (execution Cd). Cb continues executing and interleaves its calls with callee Cd.
The code of the various executing functions determines (below the level of our model)
what the next state shall be, and what function s execution is associated with that step.
Ordinary operations which are not distinguished by the function call model are all
denoted o.

Our algorithms traverse a function call graph, which has a node for each function, and an
edge from f to g if f can call g. For lower bounds, it suffices to work with f a superset of
the actual call graph. For example, simple tools might identify calls to functions g1, g2

in the code that implements f. This paper considers only acyclic graphs. Nodes with no
input edges will be called sources, and nodes without outputs will be called sinks.



9

The next definition is crucial: Given a callstate Sf we define its onward callset (or just
callset(Sf) to be {call states associated with the execution of f, when f is invoked in Sf }

We note several important properties of these definitions:
• The callset includes only direct calls from the code of f, not calls from f s callees.

One obtains it by understanding the code of f, not the callees.
• Sf contains all information relevant to the execution of f.
• The callstates in the onward callset(Sf) are equally well defined, so behavior can be

examined transitively.

The administration process confronts function code in just one place -- to describe (or
bounds) the onward callset.2 The means of obtaining such bounds are outside the model,
left to experts who understand the reverse engineering, the language used to implement
each function, and the mechanisms (private storage, transactions) used to separate
different function executions.

2.2 The Model for Deriving Abilities
We focus on abilities, and their derivation from permissions. The key question is Do the
access controls permit all onward calls associated with this call s execution?  This leads
us to the basic rule, which will drive the rest of the paper.

Basic Rule:  If you have the permission to invoke f and have the ability to complete
everything directly called by f, then you have the ability to complete f. (And vice versa)
                                                  
2 Callset bounds are useful for purposes beyond security. For example, one may wish to load a mobile
platform with all the resources that will be accessed by critical services running on it.

Call-Execution to which Operation Executed         Identifier of Call- Execution
    this step belongs Created by This Step

[sys] f1  <Ca>
[Ca] o
[sys] o
[sys] f2  <Cb>
[Cb] f3  <Cd>
[Cd] o
[Ca] return
[Cb] o  /* model lets execution interleave with Cd */
[Cd] o
[Cd] return
[Cb] return



10

The Basic Rule simply restated the definitions and the execution model. From the verbal
statement, we get a formal recursion, a Boolean equality for each callstate.

(1)   ability(S) = accessPredicate(S) ∧ (∧{ability(Xj) | Xj in callset(S)} )

This formula can be interpreted as describing the ability to complete from a particular
state S. But a more interesting interpretation is that it defines a predicate on callstates.
Next, we add the externally specified ability requirements that drive synthesis. Let
externallyDesiredAbility(S) denote a predicate that tells the minimum ability desired for
each callstate.3 Then

(2)     ability(S) ≥ externallyDesiredAbility(S)

Theorem:  Expressions 1-2 have a unique least fixed point (which we call their solution.)

Proof Sketch: A theoretical construction of the fixed point will be presented. Since
externallyDesiredAbility(S)˚≤˚ability(S) and (from the definition, or from (1))

ability(S)˚≤ åccessPredicate(S), we initialize accessPredicate and ability to

externallyDesiredAbility, for every state. Then repeatedly apply (1) to derive additional
desired abilities, for each state, ad infinitum. To apply the expressions, derive additional
abilities for each callstate S, and OR  those with the previously known ones. At each
step, the ability predicates and access predicates are nondecreasing. The union of all
iterations  results gives a fixed point. To show uniqueness, we intersect all predicates that
are fixed points. This is a fixed point, and is the unique least possible one.
QED

Our algorithms will often yield access predicates that are an upper bound on the solution.
Suppose we know the access predicate assigned to each function (refered to as accPreds).
Equation 1 plus accPreds again has a least fixed point, called derivedAbilities(accPreds).

A similar treatment appears possible if one wants to protect resources by imposing upper
bounds on what callstates might be invoked, or might be able to complete. (If partial
execution can damage a resource, then one can forbid invocation).  That is, one would
create upper bound inequalities for externallyLimitedAbility and externallyLimited
Permissions. Now there appears to be a greatest fixed point, showing the greatest abilities
consistent with the protections. An extension would be to allow mixes of both types of
inequalities; in such situations, administrators will need help in detecting and resolving
inconsistencies.

We now know how to analyze any single state, by traversing the call graph onward from
that state.  But administrators cannot examine all states individually, nor can they iterate
ad infinitum. The next section chooses new predicates to describe collections of states,
and uses whatever bounds on callsets are available. To avoid being mired in complex
algorithms, we handle only the acyclic case.
                                                  
3 To avoid self-referential definitions, we assume that externallyDesiredAbility and accessPermission
predicates do not reference {access predicates}. A weaker condition, monotonicity, would suffice.



11

3 Synthesizing Access Permissions to Provide Abilities
We now exploit the Basic Rule to synthesize access permissions based on the principle of
least privilege. For each computational step, we grant the least access permissions
(tightest predicates), for which we can demonstrate that externally-desired call executions
will complete. For example, we do not give blanket privileges to all middleware-
approved function calls; we would give permission only on the database objects which
the functions ought to access, and only for calls onward from the approved middleware
functions.

The subsections below synthesize permission predicates of different sorts, to meet the
goals above. Section 3.1 presents the general algorithm, and Section 3.2 discusses the
simplest special case. Section 3.3 allows more information about functions  behavior.
Section 3.4 raises the general problem of producing predicates within the capabilities that
a server is offering.

3.1 Synthesizing Permissions to Guarantee Abilities
A little theory will be needed before the algorithm can be presented. Consider any
function g with an externally desired ability predicate pg. We treat a predicate as
synonymous with a set of states, using whichever notation is locally more convenient.
Suppose that there exists a callstate Sg satisfying pg such that g or one of its callees
generates a call to f (i.e., a call to f is a descendent of the call from Sg).  Then we say f is
needed for g[pg].

Suppose f can call fi. Define the call-mapping function, denoted cm<f, fi>(Sf) and
abbreviated cm(Sf), to be the mapping that yields the callstate Sfi produced from Sf.

4 Let
pf denote the predicate that identifies all the abilities desired for f.

The synthesis algorithm lets desired abilities propagate along an edge, deriving a
predicate that accepts every fi callstate that is reached from a desired callstate for f. This
can be expressed as saying that fi  must complete for {states in the image cm<f, fi>(pf)}≡
{Sfi | ∃ a callstate Sf that satisfies pf and such that Sfi is in callstates(Sf)}. This set (or its

indicator predicate) is denoted exactPropagatedDesires(f,˚fi).

Unfortunately, the call mapping function may not be known in a tractable form that we
can apply to the desired set of states. Fortunately, any predicate that is an upper bound on
the exact propagated desires will lead to sufficient permissions. By definition, for each
fiεcallstates(f), the predicate (f is parent(fi) in callstack) holds. (Recall that the callstack is

part of the state.) We can thus seek upper bound predicates of the form (f is parent(fi) in
callstack) ∧(any other upper bound). We call the second conjunct the specific propagated

desires, denoted sprop.

                                                  
4 If fi is not called by the call executed from Sf, then cm<f, fi>(Sf) is undefined. If there are multiple calls to fi,
then we add superscripts to distinguish them; for readability, we do not show this case.



12

Pragmatically, we want sprop(f, fi) to be as tight as possible, to be simple to manipulate
in larger expressions, and enforceable by servers. True is always a legal choice, if we
cannot infer a tighter bound. Later subsections will explore situations where helpful
upper bounds (other than true) can be inferred for sprop. Servers  limited enforcement
abilities are considered after all desired predicates have been calculated.

The synthesis algorithm traverses the call graph from sources to sinks, always respecting
the calling order. Administrators express application requirements by specifying a lower
bound predicate, denoted externallyDesiredAbility(f), for ability to complete each
function in the call graph. The (total) desired ability to complete fi is its computed by OR-
ing its externallyDesiredAbility with the needs propagated from all its parents.



13

Simplified Synthesis Algorithm:  Determine sufficient permissions

In externallyDesiredAbility(f): An ability predicate for each function f
Out accessPermissions(f): A permission predicate for each function f, such that the

system with these permissions will exhibit all the externally desired abilities.
Out desiredAbility(f):  The ability predicate obtained with the above permissions.

Postcondition: For all f,  the access predicates are set such that
                               the ability to complete f ≥ externallyDesiredAbility(f)

For each function x    /* Initialize each node*/
desiredAbility(x) = externallyDesiredAbility(x)

/* traverse top down, from sources to sinks  */
Visit each non-source node f in graph order

/* Create permissions so the accumulated desired calls can be invoked */
accessPermission(f) = desiredAbility(f)

For each fi in fnCallset(f)   /* fi permissions must allow f to complete */
     /*  propagate the abilities that the parent requires */
Determine a specific propagated predicate, denoted sprop(f, fi)
     desiredAbility(fi) = [(f is parent(fi) in callstack) and sprop(f, fi)] OR

desiredAbility(fi)

For each f
Round up accessPermission to a predicate that the server for f can enforce.



14

Main Theorem The above algorithm yields sufficient access permissions. That is, for
each f, externallyDesiredAbility(f) ⊆ derivedAbilities(accPreds)

Proof:
It will be sufficient to prove (by induction) two hypotheses about the algorithms  results:
• Invocation:     For each needed  call, we have permission to invoke the call.
• Completion:    For each needed  call, we can complete f.

Proof of Invocation hypothesis: To see that invocations will succeed, perform induction
top down (from calls to source nodes).

For every node, the DesiredAbility is initialized to its own externally desired ability, and
changed only to make it less restrictive, by OR-ing in additional predicates5. Source
nodes receive only external calls, so when the accessPredicate receives this value, it
suffices. To complete the induction, we now prove that the access predicate will allow
invocations needed for other functions to complete.

Consider a non-source node fi that is needed v[pv] for some predecessor v. Let f denote
fi s immediate predecessor on a call path from v. f precedes fi in the traversal, so (by
inductive hypothesis) its access predicate allows f to be invoked on any state needed for
v[pv]. When the algorithm traversed the edge from f to fi, the term OR d into
desiredAbility (and from there, to accessPermission) accepted all callstates of fi reached
from the desired states of f. QED

Proof of Completion hypothesis: To see that execution will succeed in completing, we
now do induction in the reverse direction. First consider sink nodes, which have no
onward calls. The previous induction proved that they could indeed be invoked, on any
needed calls. Since they have no onward calls, they can complete. The base case holds.

Now consider a needed invocation for a non-sink node f. By the invocation hypothesis
established above, f can be invoked.  By inductive hypothesis, each of its callees is later
in the graph, and hence can complete. Thus, the call to f is able to complete. QED

Discussion:  The algorithm is based on determing callstates and, based on them,
choosing an upper bound sprop. The conjectures below state first, that tightening the
analysis helps reduce the unnecessary abilities and access permissions, and second, that
the algorithm does as well as is possible, based on the analysis.

We say that the code analysis1 is tighter than analysis2 if callsets(analysis1) ⊆
callsets(analysis2) and sprop(analysis1) ⊆ sprop(analysis2). Let accPreds(analysisi) and

derivedAbilities(accPreds(analysisi)) denote the results of the algorithm using analysisi.

                                                  
5 Since externallyDesiredAbility predicates do not reference descriptions of access predicates, establishing
an access permission does not cause other predicates suddenly to fail.



15

Conjectured Theorem: If analysis1 is tighter than analysis2, then the system is at least as
secure, in that for all f, accessPredicates(analysis1) ⊆ accessPredicates(analysis2) and

derivedAbilities(accPreds(analysis1)) ⊆  derivedAbilities(accPreds(analysis2)).

Conjectured Theorem  Assuming that the analysis results are the tightest possible, then no
tighter set of access predicates can be found. (That is, for any tighter set of access
predicates, there are functions with the indicated callsets whose needs would not be met.)

3.2 A Simple Tractable Case

We say a desired ability predicate p is preserved(f, fi) if whenever f calls fi, p(Sf) ⇒
p(cm(Sf)). That is, the steps between callstate(f) and the step invoking fi do not reduce the
truth of p. Predicates such as user identity, and time of day are typically preserved. In
such cases, we assign desiredAbility(f) to sprop(fi)

Observation:  If desiredAbility is preserved(f, fi), then sprop has indeed been assigned an
upper bound, i.e., exactPropagatedDesires(f,˚fi)˚⊆̊sprop = desiredAbility(f)

The next theorem, proved by a simple induction, may be helpful in verifying that more
complex desiredAbility expressions are preserved.

Theorem:  Suppose each of p1, , pk is (f, f )-preserved. Let B(x1,  xk) be a
(nonnegative) Boolean expression using just ∧ and ∨. Then B(p1, , pk) is (f, f )-

preserved.

3.3 Synthesis Ideas for More Difficult Cases
This section identifies some properties that are less restrictive than preserving all desired
abilities, but still justify usefully restrictive sprop predicates. Proofs are omitted for lack
of space. We suspect that we have just scratched the surface of exploitable cases.

Exploiting Conjuncts. First, suppose we can express the desired ability predicate
pf˚= p̊easy ∧ phard, where the first conjunct is preserved(f, fi). We can then set sprop= peasy.

Exploiting Disjuncts. Suppose callstates(f) can be partitioned as q∨q  where both q and

q  are preserved(f,˚fi). Suppose that pf is preserved(f,˚fi) on executions from states
satisfying q. Then we can set sprop = (q ∧ pf) ∨ q .

Motivating Example: Let ApproveCredit denote the function below. The predicate q is
Amount˚≤˚1000 ; q  is Amount˚>˚1000 ; both are preserved by ApproveCredit.

Function  ApproveCredit(Customer, Amount, customerDesirability)
If Amount > 1000  then unanalyzable_update_to_customerDesirability



16

CreditDecision(Customer, customerDesirability)
<additional code, including function calls>

Suppose the desiredAbility predicate for ApproveCredit is pf = (user is creditAnalyst and
customerDesirability˚<˚17). This is preserved when Amount˚≤˚1000. The resulting actual

?? predicate propagated for CreditDecision is
((pf  ∧ Amount≤1000) ∨ Amount>1000)    ∧ (ApproveCredit is parent in callstack).

Exploiting Easy, Localized Transformations: Suppose that preservation does not hold,
but we understand how cm<f,fi> alters the portion of memory referenced in pf.
Specifically, we require that the call mapping from f to each child fi be invertable, and
that cm-1 be known.

To handle such transformations, we set sprop to be:
                       (some member of cm-1(Sfi) satisfies desiredAbility(f)

Proof: Suppose Sf satisfies desiredAbility(f) and Sfi is in cm(Sf). Then by definition,
Sf ε̊˚cm-1(Sfi). Hence the disjunct is satisfied for calls from f to fi. QED

Motivating Examples:
• Replace a name by a code, and use it as an argument to a subsequent call. (For

example, Massachusetts becomes MA, as a 1:1 function).
• Convert arguments to UPPERCASE and use the converted form as an argument to a

subsequent call. (a many:1 function)
• A Name is mapped to one of several social security numbers, based on factors that we

cannot predict (a 1:many relation)
• A value is held constant (the trivial case).
We conjecture that the technique can be extended further, e.g., to conditional mappings
and to deriving a cell of Sfi from a different cell value in Sf.

3.4 Adapting Synthesis to the Servers’ Limitations
We now recall our high level picture that approximates how distributed object systems
(including DBMSs, webservers, object servers, ) are often organized. Functions are
grouped into interfaces; each interface resides in some server. An invocation request
(abbreviated request) can be sent from any running process inside or outside the
protected system.
Sometimes we cannot directly impose the predicates we want. Difficulties may stem from
limitations within a server (e.g., a limited language for expressing predicates, or refusal to
make the callstack available), limitations on interserver communication (e.g., inability to
pass credentials), or efficiency concerns (manifested as a policy that forbids remote
calls).
When it is not possible for a server to enforce the desired permissions, then one selects
some predicate enforceable by the server. That is, one rounds up. It is easy to prove:



17

Theorem:  If one rounds up the permissions produced by the synthesis algorithm, the
derivedAbilities do not decrease, and hence still suffice.

4 Summary and Conclusions
Permission administration will become increasingly important, as organizations deploy
multi-tier and peer-to-peer distributed systems. Their cross-organizational issues will
greatly increase the need for detailed security administration. Metaphorically, the desired
control requires gauges that provide information, knobs to turn, and intelligence to
choose settings for the knobs. Unfortunately, the gauges and knobs in such systems will
soon outstrip administrators  capacity to use them well. Our research aims to give them
automated tools that increase this capacity.

In this report, we have formalized several of the important issues, and provided partial
solution techniques. The area seems theoretically rich, with room for major improvement
in what we have done. Assurance and performance seem major open issues.

Market demand lies in the future, but there will be several years  lead-time in developing
theory and then tools. It seems the right time to begin building a research base so the
tools can be principled and powerful.

5 References

[ISO99] ISO X3H2, SQL 99 Standard, section 4.35.

[Oracle00] Oracle 8i DBMS Reference Manual,
http://technet.oracle.com/docs/products/oracle8i/doc_index.htm

[Glad97] H. Gladney, Access Control for Large Collections , ACM Trans. Information
Systems, Vol. 15, No. 2, April 1997, pp. 154-194.

[Net00]  Netegrity Site Minder http://www.netegrity.com/

[Ros00] A. Rosenthal, E. Sciore, View Security as the Basis for Data Warehouse Security ,
CAiSE Workshop on Design and Management of Data Warehouses, Stockholm, 2000.
Also available at http://www.mitre.org/resources/centers/it/staffpages/arnie/

[Sand99] R. Sandhu, V. Bhamidipati, Q. Munawer, The ARBAC97 Model for Role-
Based Administration of Roles , ACM Trans. Information and System Security, Vol. 2,
No. 1, Feb. 1999, p 105-135.

[Ull88] J. Ullman, Principles of Database and Knowledge-Base Systems, vol 1. Computer
Science Press, Rockville Md.


