
UNCLASSIFIED

ADAPTIVE TRACKING USING APPLICATION-LEVEL QoS (U)

Raymond K. Clark and Yun Zhang

(U) Abstract

(U) This paper describes an advanced technology
demonstration (ATD) that applied utility-based schedul-
ing to produce an adaptive, distributed tracking com-
ponent appropriate for consideration by the Airborne
Warning and Control System (AWACS) program. This
tracker was designed to evaluate application-specific
Quality of Service (QoS) metrics to quantify its track-
ing services in a dynamic environment and to derive
scheduling parameters directly from these QoS metrics
to control tracker behavior. The prototype tracker was
initially implemented on the MK7 operating system,
which provided native utility-based processor scheduling.
More recently, it has been implemented as a real-time
Java (i.e., RTSJ) application. In each implementation,
the prototype updates all of the tracked-object records
when the system is not overloaded, and gracefully de-
grades when it is. The prototype has performed ex-
tremely well during demonstrations to AWACS opera-
tors and tracking system designers. Quantitative results
are presented for both the MK7 and RTSJ implementa-
tions.

I. (U) Introduction

(U) Many currently deployed computer systems are
insufficiently adaptive for the dynamic environments in
which they operate. For instance, the AWACS Airborne
Operational Control Program, which includes the track-
ing system, has a specified maximum track-processing
capacity. If the tracker processes data in FIFO order,
it fails to process later data if its processing capacity
is exceeded. Since sensor reports generally come in the
same order from one sweep to the next, it is likely that,
under overload, sensor reports from a specific region will
not be processed for several consecutive sweeps. This
is a potentially serious problem because there is no in-
herent correlation between important regions of the sky
and the arrival order of sensor reports.
(U) This situation, while undesirable, is handled by

skilled operators, who recognize that some data are not
being processed and take remedial actions (e.g., reduc-
ing the gain of a sensor or designating portions of the
sky that do not need to be processed). While these

R. K. Clark and Y. Zhang are with The MITRE Corporation,
Bedford, MA 01730. E-mail: {rkc, yzhang}@mitre.org.

manual adaptations reduce the tracker workload, they
are not ideal. Reducing sensor gain might cause smaller,
threatening objects to go undetected.
(U) Injecting more intelligence into the tracker could

avoid such compromises. The US Air Force Research
Laboratory at Rome (NY), The MITRE Corporation,
and The Open Group Research Institute undertook a
joint project to explore that approach. Among other
things, the project produced an Advanced Technology
Demonstration (ATD) featuring a notional, adaptive
AWACS tracker.
(U) The ATD tracker “processes the right tracks

at the right time” by appropriately managing the re-
sources needed for track processing. The prototype up-
dates all tracked-object records when it has sufficient
resources, and gracefully degrades otherwise. A sin-
gle underlying mechanism automatically provides this
degradation, despite its manifestation as a succession
of qualitative operational changes: First, more im-
portant tracks receive better service than less impor-
tant tracks while all tracks continue to be maintained.
Under severe, sustained, resource shortages less im-
portant tracks are lost before more important tracks.
Moreover, the tracker automatically delivers improved
service whenever more resources become available—in
essence, tracker performance gracefully degrades and
gracefully improves without direct human intervention.

II. (U) Adaptivity, Utility-Based Scheduling,

and Quality of Service

(U) Military planners have observed that “you never
fly the same mission twice,” implying that flexibility
and evolvability are important design characteristics.
With that in mind, we employed a relatively straight-
forward approach to adaptivity for this project—
decomposing an application (or a set of applications)
into component computations, which are then assigned
application-specific utilities reflecting their individual
contributions to the overall mission. By scheduling
computations to maximize the accrued application-
specific utility, the overall system can perform a given
mission well.
(U) While application decomposition with appropri-

ate utility assignments assists in effectively accomplish-
ing a specified mission, application effectiveness could
be further increased by employing feedback to directly

1
UNCLASSIFIED

UNCLASSIFIED

drive its behavior. To do this, application-specific fig-
ures of merit (that we refer to as Quality-of-Service
(QoS) metrics) are specified at design-time, and eval-
uated or estimated dynamically at run-time in order
to monitor—and subsequently control—overall applica-
tion operation. Section IV discusses this in some depth
for the AWACS ATD, where the adaptive tracker uses
feedback based on QoS metrics for individual tracks to
determine the allocation of processing resources for cur-
rent track processing.

III. (U) The Tracking Problem

(U) Surveillance radar systems are an important class
of real-time systems that have both civilian and military
uses. These systems consist of components for sensor
processing, tracking, and display. In this study we con-
centrated on the tracking component, which receives
sensor reports—the output produced by the sensor-
processing component—and uses them to detect objects
and their movements [1]. Each object is typically rep-
resented by a track record. Sensor reports arrive at a
tracker periodically, and each report describes a poten-
tial airborne object. The number of sensor reports can
vary from radar sweep to radar sweep, and some sen-
sor reports represent noise or clutter rather than planes
or missiles. When new sensor reports arrive, a tracker
correlates the information contained in the sensor re-
ports with the current estimated track state to update
the track records that represent the tracking system’s
estimate of the state of the airspace.
(U) A typical tracker comprises gating, clustering,

data association, and prediction and smoothing stages.
Gating and clustering splits (gates) the problem data
into mutually exclusive, collectively exhaustive sub-
sets of sensor reports and track records, called clus-
ters. Data association then matches the cluster’s sen-
sor reports with its track records. The final stage of a
tracker—prediction and smoothing—computes the next
position, velocity and other parameters for each object
using its track history and the results of data associa-
tion.

A. (U) Adaptive Tracking

(U) The motivating problem was the (mis)behavior of
the tracker under overload, which can be intentionally
caused by an enemy. Since, under overload, all of the
incoming data cannot be processed, the project’s goal
was to allow the tracker to do a better job of selecting a
subset of incoming data that could feasibly be processed
by allowing scheduling decisions that had previously

been made at design time to be deferred until run time.
There were two major changes: processing was divided
into smaller-grained units of work that could be sched-
uled independently and concurrently; and utility-based
design principles were employed to determine appro-
priate scheduling parameters for those individual work
units.
(U) Given a multithreaded design, with a separate

thread assigned to perform each association compu-
tation, and an underlying scheduler that attempts to
maximize accrued utility, the adaptive tracker design
problem is reduced to a straightforward question: Can
scheduling parameters be selected for tracks and clus-
ters that reflect the utility associated with their pro-
cessing?
(U) Considerable effort was devoted to answering

that question for the ATD. Fortunately, at about this
time, the tracking community was independently en-
couraged to think in terms of “selling” track informa-
tion to customers—that is, operators and decision mak-
ers. That point of view helped make the notion of
establishing the application-specific utility of a track
quite natural. In fact, the project developed a set of
QoS metrics for individual tracks. These per-track QoS
metrics, described in Section IV-B, directly determine
the scheduling parameters for a cluster, which, in turn,
affect the future QoS metrics of each component track.

IV. (U) Utility-Based Design

(U) AWACS can perform a number of different mis-
sions: e.g., it can manage logistics such as refueling,
perform air-traffic control, or carry out general surveil-
lance. In order to maximize the depth of this initial
work, we applied the principles of utility-based design
to a single mission. Because of its general usefulness
and intuitive simplicity, a surveillance mission was cho-
sen for the ATD.
(U) When flying a surveillance mission, AWACS op-

erators attempt to monitor all airborne objects in a
large region. Once an object has been identified, the
tracker follows its progress (i.e., “tracks” it). The more
closely the tracker’s estimate of an object’s position and
heading agree with reality, the better.
(U) Moreover, once the tracker has identified a track,

it should not “drop” it erroneously. A track is dropped
if it is not updated for a number of input sensor cycles.
While this is inevitable if no new sensor input is received
for the track, the project focused on cases where sensor
input is received, but is not processed.

2
UNCLASSIFIED

UNCLASSIFIED

A. (U) Adaptive Tracker Behaviors

(U) A key step to producing an adaptive tracker was
to develop a specification of its desired behavior—in
particular, its behavior under overload. This specifica-
tion occurred in two phases. The first phase described
a high-level policy, but did not address tradeoffs that
could arise when attempting to satisfy conflicting pol-
icy objectives. For example, the high-level adaptive
tracker should preferentially process tracks that (a) are
in danger of being dropped, (b) the user has identified
as “important,” (c) have poor state (position and ve-
locity) estimates, (d) are maneuvering, (e) potentially
pose a high threat, or (f) are moving at high speed.
(U) The second phase refined this high-level policy

by addressing conflicting policy objectives. In gen-
eral, project members could identify these conflicts, but
needed expert assistance to determine the proper reso-
lutions (i.e., tradeoffs).

B. (U) QoS Metrics for Tracks

(U) Policy refinement required the definition of QoS
metrics. Where the high-level policy could usefully de-
scribe behaviors for more and less important tracks,
or make a distinction between more and less accurate
track positions, the implementation of that policy re-
quired precise specification of these terms. The project
settled on three QoS metrics that could quantify track
processing:
• (U) Timeliness: the total elapsed time between the
arrival of a sensor report and the update of the corre-
sponding track record.
• (U) Track quality (TQ): a traditional measure of the
amount of recent sensor data incorporated in the cur-
rent track record. TQ is incremented or decremented
after each scan and ranges between zero (lowest qual-
ity) and seven (highest quality). If TQ falls to zero, the
track is dropped.
• (U) Track accuracy: a measure of the uncertainty of
the estimate of the track’s position and velocity.
(U) In addition to these QoS metrics, each track was

dynamically assigned to one of two importance classes.
A track could be deemed more important for a number
of reasons, including designation by an operator, flying
in an operator-designated region, or posing a significant
threat to the AWACS platform.

C. (U) Quantified Adaptations

(U) Based on these classes, project members refined
the high-level adaptive tracking policy by focusing on

High/Low
Importance

Track Accuracy
High Low

Track
Quality

High
(5-7)

Medium
(3-4)

Low
(1-2)

10

53

30

700

910

5500

20

65

40

800

1000

6000

 Unclassified

Fig. 1. (U) Track Utilities
as a Function of Track QoS
Metrics

Time

Utility

 Unclassified

Fig. 2. (U) Utility Func-
tions for Association Compu-
tations

specific tradeoffs involving pairs of track QoS metrics
or track importance. Several such pair-wise rankings
were merged to form a total ordering of the cases (with
numeric values) as a function of track quality, track
accuracy, and track importance.
(U) At that point, tracking experts helped quantify

the relative utilities of the bins. We also examined sev-
eral cluster scenarios “by hand” to assign overall utili-
ties and perform fine tuning. Figure 1 shows the set of
valuations (“bins”) that were employed for our demon-
strations, which are described briefly in Section VIII.
(U) Once the bins had been assigned utilities, the

translation to utility-based scheduling parameters was
straightforward. Each time constraint describes the
application-specific utility (in this case, the bin value of
the cluster) of completing the designated computation
as a function of time. For association computations, all
of the time constraints had a similar shape (see Fig-
ure 2), which specified that “sooner was better than
later.”

V. (U) Prototype Implementations

(U) Several prototype implementations have been
produced to date. The initial implementation was
based on The Open Group Research Institute’s MK7
operating system [6][7], which offered native support
for utility-based scheduling. That implementation per-
formed well; results are presented in Section VIII.
(U) More recently, the Real-Time Specification for

Java (RTSJ) [2] has been undertaken under the auspices
of the Java Community Process. It brings real-time
capabilities to the Java programming environment,
including selected provisions for advanced scheduling
policies. While no implementation of utility-based
scheduling has appeared to this point, such a schedul-
ing policy can be hypothesized. In anticipation of this
possibility—and to take advantage of the ubiquity and
portability of Java—an RTSJ implementation of the
adaptive tracker was produced.

3
UNCLASSIFIED

UNCLASSIFIED

(U) Two of the prototype implementations are de-
scribed briefly in the following sections. Results pro-
duced by the prototypes are described in Section VIII.

VI. (U) The MK7 Prototype

(U) The adaptive ATD tracker builds on several fea-
tures of the underlying operating system, The Open
Group Research Institute’s MK7 [6][7], which provides
a number of standards-based facilities as well as a set
of unique capabilities designed to support distributed,
real-time applications.
(U) Beyond traditional real-time support (e.g., pre-

dictable execution times, preemption, priority schedul-
ing, instrumentation, and low interrupt latency), MK7
provides a number of advanced features. The MK7
microkernel, which has been explicitly developed to
support real-time applications, contains a scheduling
framework that simultaneously supports priority-based
and time-based scheduling policies. A utility-based
processor-scheduling policy called Best-Effort schedul-
ing [5][7], which accepts application (and system) time
constraints and schedules computations according to a
heuristic that attempts to maximize total accrued util-
ity, was particularly useful for the ATD. Notably, this
utility-based scheduling policy and the threads it sched-
ules co-exist with and interact with other parts of the
OS and application, including synchronizers, preemp-
tions, and “priority” modifications (e.g., priority inher-
itances and priority depressions).
(U) MK7 threads are distributed (or migrating)

threads[3][4], which move among the processes (i.e., MK
tasks) of a distributed system by executing RPCs while
carrying an environment that includes information like
the thread’s scheduling parameters, identity, and secu-
rity credentials.
(U) MK7 provides several standard interfaces—

including a highly standards-compliant UNIX interface
and the X Window System—that permit application
programmers to reuse existing code. Both distributed
threads and utility-based scheduling are provided as
generalizations or extensions of existing POSIX thread
functions—thus simplifying the programmer’s task con-
siderably.

VII. (U) The RTSJ Prototype

(U) The Real-Time Specification for Java (RTSJ) [2]
describes the requirements placed on conforming real-
time platforms. The adaptive tracker offered a mean-
ingful proof-of-concept application demonstration for
RTSJ platforms.

(U) The MK7 prototype is written in C and C++.
The RTSJ prototype was created by a two-step pro-
cess. First, the tracker was reimplemented in (generic)
Java. Then the prototype was modified to utilize criti-
cal RTSJ features. For instance, the RTSJ tracker uses
NoHeapRealtimeThreads (with priorities ranging from
1 to 29). In addition, it imitates utility-based schedul-
ing through the use of a dynamic, priority-based policy.
(Arguably, this approach is not generally applicable;
however, due to the nature of this specific workload,
the approach does apply in this case.)
(U) The RTSJ platform selected was based on QNX

RTP (real-time platform). It hosted the J9 Java vir-
tual machine (JVM), the beta Real-time Extensions
package, and the beta Personal Configuration package
from IBM’s subsidiary Object Technology International
[8]. The Real-time Extensions package provides the ini-
tial implementation of portions of the RTSJ for the J9
JVM. The Personal Configuration provides Java remote
method invocation (RMI) support that’s used by the
tracker. These packages were released through IBM’s
VisualAge Micro Edition product [9].
(U) In addition, a new component, called the Media-

tor, was introduced to act as a conduit to pass the sen-
sor data through Java RMI to the tracker under QNX
RTP.

VIII. (U) Prototype Results

(U) The MK7 prototype performed very well during
demonstrations to its target audience—AWACS oper-
ators and tracking system designers—most notably at
the Boeing AWACS Prototype Demonstration Facility.
Under “normal” (non-overload) conditions, the tracker
handled all tracks as expected and delivered high QoS
for all tracks. Overload conditions were simulated by
artificially tightening the deadlines for the completion
of association processing.
(U) Figure 3 shows results of the MK7 tracker for

a typical overload scenario. Batches of between ten
and 14 sensor reports arrived at the tracker, with one-
third of the tracks belonging to the more-important
track class. The Association Capacity axis indicates
the number of associations the tracker could usually
perform in the specified processing time limit, and the
Track Quality axis indicates the average TQ delivered
for each track-importance class.
(U) Figure 3 indicates that when the MK7 tracker

can only process about 33% of the input, the prototype
delivered essentially perfect TQ for the more impor-

4
UNCLASSIFIED

UNCLASSIFIED

 >11 10 9 8 7 6 5 4 3 2 1
Association Capacity

0

1

2

3

4

5

6

7

Track

Quality

more important
tracks (MK7)

less important
tracks (MK7)

more important
tracks (RTSJ)

less important
tracks (RTSJ)

 Unclassified

Fig. 3. (U) Average Track Quality as a Function of Associ-
ation Capacity

tant tracks, while delivering a reasonable (about 4.5)
TQ for the less important tracks. When the tracker
was further constrained so that it could only process
about 10% of the input, the prototype finally dropped
some tracks—from the less important track class. No
important tracks have been dropped during our demon-
strations.
(U) In addition, the demonstrations have shown that

the tracker also adapts when new resources are added.
In that case, which we demonstrate by loosening the
time constraints on association processing, the proto-
type automatically delivers approximately the maxi-
mum achievable QoS.
(U) The RTSJ tracker displays behavior similar to

the MK7 tracker, as shown in Figure 3. On average,
the two prototypes show essentially the same statistics
at a given association capacity. Examination of actual
associations performed at a given capacity level show
slightly more variation under the RTSJ prototype than
under the MK7 prototype.

IX. (U) Summary

(U) The AWACS ATD project produced an adaptive,
distributed tracker that was directly driven by Quality-
of-Service metrics. Based on a novel design and in-
corporating knowledge from experts in the field, this
tracker gracefully handles overloads, addressing a prob-
lem with currently deployed trackers and with trackers
under development. The tracker was demonstrated to
AWACS operators and tracker designers at Boeing in
September 1998 and received supportive feedback, par-
ticularly regarding its behavior under overload and the
operator interface.
(U) This project provides another worked example

in the area of utility-based scheduling and further en-
courages our confidence in this technology. The deriva-
tion of the QoS metrics for tracks provided valuable

insight into the nature and use of application-specific
QoS metrics in a new application domain. Finally, pro-
totype trackers have been constructed that can be used
for further experimentation and can host future exten-
sions. The MK prototype employed native support for
utility-based scheduling, while the RTSJ prototype im-
itated such scheduling based on a commercial product
that supports the initial draft of the RTSJ. The RTSJ
prototype displays encouraging behaviors and provides
initial evidence of the usefulness of RTSJ for this class
of applications.

(U) Acknowledgments

(U) The RTSJ prototype and many results in this
paper build on work previously performed by Pat
Hurley, E. Douglas Jensen, Arkady Kanevsky, Tom
Lawrence, John Maurer, Paul Wallace, Douglas Wells,
and Thomas Wheeler.

References

[1] Blackman, S.: Multiple-Target Tracking with Radar Applica-
tions. Artrech House, ISBN 0-89006-179-3 (1986)

[2] Bollella, G., Gosling, J., Brosgol, B., Dibble, P., Furr,
S., Hardin, D., Turnbull, M.: The Real-Time Specification
for Java. Addison-Wesley Publishing Company, ISBN 0-201-
70323-8 (2000) [http://www.javaseries.com/rtj.pdf]

[3] Clark, R.K., Jensen, E.D., Reynolds, F.D.: An Architectural
Overview of the Alpha Real-Time Distributed Kernel. Proc.
of the USENIX Workshop on Micro-kernels and Other Kernel
Architectures (1992) 127-146

[4] Ford, B., Lepreau, J.: Evolving Mach 3.0 to a Migrating
Thread Model. Proc. of the USENIX Winter 1994 Technical
Conference (1994)

[5] Locke, C.D.: Best-Effort Decision Making for Real-Time
Scheduling. Ph.D. Thesis, Dept. of Electrical and Computer
Engineering, Carnegie-Mellon University (1986)

[6] Wells, D.: A Trusted, Scalable, Real-Time Operating System
Environment. Dual-Use Technologies and Applications Con-
ference Proceedings (1994) II:262-270

[7] —: MK7.3 Release Notes. The Open Group Research Insti-
tute, Cambridge, MA (1997)

[8] —: Object Technology International [http://www.oti.com].
[9] —: IBM VisualAge Micro Edition.

[http://www.embedded.oti.com].

5
UNCLASSIFIED

