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Abstract

Software applications play a critical role in many work environments.  These applications may be general purpose,
such as word-processing and spreadsheet tools, or tailored to specific mission functions, such as systems for air-
traffic management and military “command and control” (C2).  End-user training is critical if these applications are
to be adopted and used effectively.  With OPTEMPO up, and training budgets under constant pressure to “do more
with less,” it is more important than ever to bring training to the users and enable them to learn whenever they have
time, wherever they may be.  One way to accomplish this is to embed a training system in the mission application
itself.  Such embedded training systems (ETSs) have been used to varying degrees throughout the military services,
and the United States Army has mandated the use of embedded training techniques for all new systems it procures.

Experience has shown that application-operation skills are learned best when trainees are given extensive “hands-
on”, interactive coached practice on the mission application to be used on the job.  Our research at MITRE focuses
on developing ETSs that approximate the advantages of one-to-one expert human tutoring through the use of intelli-
gent computer-assisted instruction (ICAI) techniques.  For ICAI-based ETSs to support interactive coached practice,
they must have some means of observing both the trainee’s actions on the mission application, and the application’s
response(s) to those actions, and also a way to take control of the mission application for the purpose of demonstra-
tion or to set up the initial environment for training.

To provide this service, MITRE has developed a technique called software instrumentation, whereby we non-
invasively modify the mission application’s computing environment (rather than the application itself) and thus gain
the required forms of access for our ETS.  We discuss this general technique and our implemented software instru-
mentation tools for X-Windows and standalone Java applications.
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INTRODUCTION

Software applications play a critical supporting role in
most military work environments.  These applications
may be general purpose, such as word-processing and
spreadsheet tools, or tailored to specific mission func-
tions, such as systems for airspace management or
military command and control (C2).  End-user training
is critical if these applications are to be adopted and
used effectively in the field.  With OPTEMPO up, and
training budgets under constant pressure to “do more
with less,” it is more important than ever to bring
training to the users and enable them to learn whenever
they have time, wherever they may be located.  One
way to accomplish this is to embed a training system in
the mission application itself.  Such embedded training
systems (ETSs) have been deployed to varying degrees
throughout the military services, and the United States
Army has mandated the use of embedded training tech-
niques for all new systems it procures (Sherman, 2000).
(Although we say the training system is “embedded” in
the mission system, we generally mean that the mission
system and the training system are distinct, interop-
erating software packages running in the same com-
puting environment, and resident on the same computer
workstation.)

Experience has shown that software-operation skills are
learned best when trainees are given extensive “hands-
on”, interactive coached practice on the mission appli-
cation to be used on the job.  Our research at MITRE
focuses on developing ETSs intended to approximate
the effectiveness of one-to-one expert human tutoring
through the use of intelligent computer-assisted in-
struction (ICAI) techniques.  We believe that artifi-
cially-intelligent ETSs will be able to coach novice
users to expertise, and do so quickly, conveniently, re-
liably and, for sufficiently large student populations, at
lower cost per student than human-led methods.

Can ICAI Replace Human Instructors?

In any discussion of ICAI systems, the question inevi-
tably arises of whether such systems can effectively
replace human instructors.  ICAI systems certainly
promise a number of advantages.  First, they can be
available at any time, and deployed anywhere.  Second,
they can produce consistent and measurable positive

learning outcomes.  Third, they can optimize their in-
structional services to best fit the needs of each learner,
whereas human instructors in classroom settings are
forced to teach to the mythical average student, thus
leaving some students to struggle while others are in-
sufficiently challenged.  Fourth, by optimizing their
instruction, ICAI systems offer training services that are
significantly more engaging and motivating than con-
ventional presentation-oriented Computer-Based In-
struction (CBT), and often can help students achieve
desired training results in markedly less time than class-
room approaches permit.

Despite these advantages, over the near term at least,
replacement of human instructors with ICAI systems is
neither desirable nor likely.  Expert instructors bring
unique knowledge, skills and experience to the learning
process, and can motivate and mentor students in ways
both subtle and profound, well beyond the capabilities
of current and emerging ICAI methods.  Yet this
teaching expertise comes at a stiff cost: contrary to the
adage that “those who can, do; those who can’t, teach”,
expert instructors are typically experts in the subject
matter, and the time they spend teaching others, how-
ever personally rewarding it may be, is time taken away
from doing what they do best.

Rather than replacing expert instructors, we see ICAI
systems as complementing them when they are avail-
able, and providing a helpful substitute when they are
not.  In their complementing role, ICAI systems can
serve as “force multipliers” for expert instructors.  For
example, in a classroom setting, students can work in a
self-paced manner with an ICAI system while the in-
structor is free to observe and provide one-to-one sup-
port as needed in areas where the system’s instructional
ability is limited or inadequate.  During periods when
instructors are unavailable, the ICAI system still can
provide valuable learning support.

ICAI—A Highly Interactive Approach to Training

ICAI systems have two key features from which their
instructional advantages are derived: interactivity and
adaptivity.  (A high degree of interactivity is partly
what distinguishes ICAI approaches from commercial
CBT delivery systems.)  ICAI systems focus on helping
students learn by doing.  Students perform realistic



practical exercises with coaching and feedback from the
ICAI system.  During these exercises, students interact
with appropriate problem-solving tools and with the
ICAI courseware (e.g., to request help or advice).  For
example, the LISP Tutor (Anderson et al., 1989)
teaches computer programming using the LISP lan-
guage; students write LISP programs in a text editor,
while the tutoring component corrects their syntax and
debugs their algorithms.  As another example, the
Sherlock tutoring system (Katz et al., 1992) teaches
device troubleshooting; students attempt to diagnose
and repair a simulated piece of test equipment while the
tutoring component coaches them on their diagnostic
technique.

ICAI system interactivity is supported by sophisticated
student modeling algorithms, which develop detailed
assessments of students’ learning progress and
achievements, based on continuous observation of their
problem-solving activity during practical exercises.
ICAI systems use their student models to adapt their
instruction to best fit each student’s learning needs.
This adaptation may involve both course sequenc-
ing—selecting and sequencing lessons and exercises to
keep students challenged and working in their “zone of
proximal development” (Vygotsky, 1978)—and strate-
gic alterations of instructional behavior, such as in-
creasing or reducing direct coaching support, or allow-
ing students more freedom to explore (and learn from)
unproductive problem solving approaches.

In ICAI systems, interactivity and adaptivity work hand
in hand.  Interactivity provides the tutoring component
with many opportunities to observe students in detail as
they apply knowledge and skills to specific problem-
solving tasks.  These observations feed the development
of the system’s student model, which drives the sys-
tem’s instructional adaptations.

Supporting Interactivity and Adaptivity in ETSs

For ICAI systems to observe students while they per-
form practical exercises, the problem-solving tools
must be able to report, more or less in real time, each
problem-solving step performed by the student.  Ritter
and Koedinger (1995) have argued that problem-
solving tools need to be observable, inspectable, and
scriptable if they are to be used as teaching tools by an
ICAI system.  They define a software product as ob-
servable if it is able to report to an external application
all actions taken by the user.  They define software as
inspectable if it is able to respond to requests for infor-
mation about its internal state, and scriptable if it can
execute all available command functions from an exter-
nal application as if they were invoked by the user.

In ETSs that employ ICAI methods, the mission appli-
cation itself serves as the problem-solving tool, and
thus it needs to be observable, inspectable, and script-
able.  Unfortunately, few military software applications
today are engineered to expose suitable interfaces to
external systems such as ETSs.  (Indeed, few software
applications in general are so engineered; Microsoft’s
suite of office-automation applications are among those
that have extensive interfaces supporting interaction
with external applications.)  To overcome this obstacle,
MITRE has developed a technique called software in-
strumentation, whereby we non-invasively modify the
mission application’s computing environment (rather
than the application itself) and thus gain the needed
forms of access for our ETS.  In this paper, we discuss
this general technique and describe our implemented
software instrumentation tools for X-Windows and
standalone Java applications.  We conclude with some
examples of how we are applying software instrumen-
tation techniques to develop ICAI-based embedded
training system prototypes.

SOFTWARE INSTRUMENTATION

The mechanisms that provide observation, inspection
and scripting services can be thought of as comprising a
distinct software layer, which we call the application
interface layer.  Thinking of these services as forming a
layer allows us to ask whether the layer is part of the
mission application, or external to it.  In Ritter and Ko-
edinger’s tool-tutor model, this layer is implemented
internal to the problem-solving tool.  That is, the tool
incorporates a programming interface that allows exter-
nal applications to subscribe to reports of user actions
on the tool, to issue queries on tool state variables, and
to execute tool functions.  When integrated into the
tool, the interface layer permits communication be-
tween the tool and an external tutoring application to
occur in the language of the tool.  For example, a
spreadsheet tool might report user actions in terms of
operations like “inserting” and “updating” of “rows”,
“columns”, and “cells”.  Tutoring applications could
refer to individual cells by their row and column ad-
dresses.

Building an interface layer into a problem-solving tool
requires a significant amount of engineering labor
above and beyond the design and implementation of the
tool’s core functionality and user interface.  In today’s
competitive market, this work gets done only if a com-
pelling business need exists.  Even when such a need
exists (e.g., for office-automation tools), the lack of
standards in this area leads to a situation in which inter-
faces differ greatly across both tools and vendors.



We have been investigating an alternative approach,
namely, implementing the application interface layer as
an independent component external both to the mission
application and to the tutoring application (in our case,
an ETS).  Our technique is based on the idea of ex-
ploiting software “hooks” in the mission application’s
computing environment, which we will discuss shortly.
This approach has two advantages: (1) it has the poten-
tial to apply to any mission application that runs in the
computing environment, and (2) the interface exposed
would be consistent across all monitored applications.
The disadvantage is that communication between the
mission application and the ETS can no longer occur in
application-specific terms, since the requisite knowl-
edge resides only inside the application.  Instead, the
communication takes place in more generic terms of
user-interface gestures and states, like inserting text into
an edit field, clicking a button, or selecting a menu op-
tion.  This level of description, however, has been suffi-
cient to enable our prototype ETSs to provide detailed
guidance down to suggestions of specific user-interface
gestures.

In the following subsections, we describe prototype
software instrumentation tools that MITRE has devel-
oped for X-Windows applications under Unix, and for
standalone Java applications.  We conclude with a dis-
cussion of some industry trends that promise to make
software instrumentation services ubiquitous in the
computing industry.

Software Instrumentation for X-Windows Clients

To understand how software instrumentation of X-
Windows applications can be accomplished, it is neces-
sary first to understand a bit about the X-Windows
system itself.  X-Windows is a portable, network-
transparent windowing system that has become the base
technology for the implementation and management of
graphical user interfaces for software applications run-

ning in multitasking computing environments such as
Unix (Mansfield, 1993).  X was created at the Massa-
chusetts Institute of Technology, and early development
was sponsored by the Digital Equipment Corporation
and International Business Machines.  Since the release
of X-Windows Version 11 (X11) in 1987, the standard
has been further developed by the MIT X Consortium,
the X/Open group, and most recently by X.Org, an in-
dustry consortium of hardware and software vendors
committed to maintaining and enhancing the X-
Windows platform.  All major vendors of Unix systems
(e.g., Compaq, Hewlett-Packard, IBM and Sun Micro-
systems) supply a version of X as part of their base op-
erating system software.

X-Windows applications (commonly referred to as “X
clients”) are built on several service-providing layers,
some of which are provided standard with X-Windows
software releases, others of which are provided by
third-party vendors.  This layered architecture is illus-
trated in Figure 1.

The lowest layer of X-Windows services is the core X
protocol library, also called Xlib.  This layer provides
basic mechanisms for accessing displays and attached
devices such as the keyboard and mouse, and for man-
aging multiple, independent and possibly overlapping
regions of screen “real estate” called windows.  It sup-
ports a standard protocol for inter-process communica-
tion over a network between the client and a special
system process called the X Server.  The X Server car-
ries out the client’s requests for window-based opera-
tions on the display screen, and passes back to the client
notification of all hardware events such as mouse ac-
tions and keypresses.  Xlib services are neutral by de-
sign to the “look and feel” of the client application, i.e.,
the appearance and operation both of the visual “deco-
rations” used to move, resize, iconify, and otherwise
control windowed applications, and of the suite of inter-
face elements that comprise an application’s GUI.

Figure 1:  Layered Architecture of X Clients



The concept of an interface element—also called a wid-
get—is introduced at the Toolkit Intrinsics layer, also
called Xt.  This layer provides a collection of functions
that may be used to define classes of widget types (such
as buttons, menus, checkboxes, and so forth) and spec-
ify their appearance and behavior.  It is important to
understand that this layer does not actually define a
particular set of widget types, but rather provides only
the mechanisms need to define widget types.  These
mechanisms are implemented through appropriate sets
of calls to Xlib services.  Both the Xlib and Xt layers
are part of the X-Windows standard, and are imple-
mented as external function libraries to which client
applications are linked.

Collections of widget types sharing a common look and
feel are called widget toolkits.  These toolkits are cre-
ated by calling services provided by Xt.  Although there
are no truly standard widget toolkits, the Motif widget
toolkit, originally created by the Open Software Foun-
dation (OSF) and now licensed by The Open Group,
has become a de facto industry standard.  Motif is in-
cluded by most Unix platform vendors in their base
operating system releases, and is widely used through-
out industry.

A software developer’s X-client (e.g., a military com-
mand and control application) typically constructs and
manages its GUI by directly calling upon the services
of a widget toolkit such as Motif.  These calls to the
widget toolkit are translated into calls to Xt services,
which in turn call upon Xlib services.

Assuming one had access to the source code of any of
these service layers, it would be technically possible to
add programming instructions to them and thus effec-
tively intercept the stream of GUI-management service
calls.  This is the approach to X-Windows software
instrumentation we are pursuing.  To prove this con-
cept, we have developed a software instrumentation
tool called WOSIT—Widget Observation, Scripting
and Inspection Tool.

WOSIT

It turns out that a sample implementation of the X-
Window system is maintained as open-source software
by X.Org.  The latest release of the X-Windows sample
implementation is X11 Release 6.6, which can be
downloaded free of charge from the X.Org website
(X.Org, 2001).  This implementation contains source
code for Xlib and Xt.  Although the proprietary imple-
mentations of X provided by Unix platform vendors
may vary in quality and efficiency, because X has been
standardized to support interoperability, all commercial
implementations provide the same collection of services
and conform to the same functional interfaces.  Now

consider what this means for an X client running in,
e.g., Sun’s Solaris operating environment using Sun’s
implementation of X.  Because of the standardization of
the X protocol, it is possible to substitute X.Org’s open-
source version of Xlib or Xt in place of Sun’s proprie-
tary implementations, with no significant impact on the
X client’s operation.  Moreover, given the standard
practice of dynamically linking X client applications
with required system libraries (including the X libraries
that implement Xlib and Xt), it is possible to make this
switch transparently to the client itself, without access
to the client’s source code, and without recompiling or
relinking the executable image.  (Statically linked cli-
ents will require relinking, but will not need to be re-
compiled.)

WOSIT is an X client application that runs independ-
ently of the mission application.  It works by modifying
the X-Windows environment in which the mission ap-
plication operates, and thereby gains access to all the X-
Windows functions that the mission application itself
can perform.  WOSIT can intercept widget state-change
notifications, query widget states, and even generate
widget events (e.g., button clicks) as though they were
performed by the user.  It alters the X environment by
substituting a modified version of Xt for the standard
version supplied by the computing platform vendor.
For dynamically linked applications, this substitution
occurs at runtime.  MITRE has released WOSIT to the
public; it may be downloaded free of charge from
MITRE’s website (WOSIT, 2001).

The modified version of Xt required by WOSIT extends
the X standard in two ways: (1) it adds a general-
purpose rendezvous mechanism (Xtea—for Xt “exter-
nal agent”) enabling WOSIT to discover WOSIT-
compatible X clients running in the environment and
establish a direct communication channel with them,
and (2) it defines a protocol called RAP—the Remote
Access Protocol—that WOSIT uses to issue requests to
and receive responses from the applications to which it
connects as an external agent.  Both Xtea and RAP
were originally developed at Georgia Tech as part of
the Mercator research project (Edwards, Mynatt & Rod-
riguez, 1993; Mynatt & Edwards, 1992), and were later
revised by Will Walker at Digital Equipment Corpora-
tion.  Both Xtea and RAP have been publicly released,
and MITRE has since made a number of bugfixes and
extensions to them as part of the WOSIT development
effort.

WOSIT Services

Once WOSIT has established a RAP connection to the
X client to be monitored, it exposes a simple text-based
message interface of its own using network sockets.  In



essence, WOSIT serves as a piece of “middleware” that
mediates between an application to be monitored (such
as a military command and control application) and one
or more service-provider applications (such as an ETS).

WOSIT’s most useful service is its ability to observe
and report the details of user actions involving the wid-
gets in a monitored application’s GUI.  Each time
WOSIT notices that a GUI widget has undergone a sig-
nificant state change, it sends a descriptive message to
all connected service providers.  Figure 2 illustrates a
sequence of observation messages issued by WOSIT.

Each line in the figure reports a single widget event on
the GUI of the monitored application.  The first token
(outside the parentheses) indicates the kind of widget
that was manipulated by the user; the first line, for ex-
ample, indicates that a pull-down menu was used.  The
second token indicates the type of event that occurred,
e.g., a press event on a pull-down menu.  The third to-
ken indicates the window in which the event occurred
(using the text in the window’s title bar), and the fourth
uniquely identifies the widget within that window.  The
fifth argument indicates whether the event was initiated
by the user or by the system, and the sixth is a time-
stamp in seconds counting from the time WOSIT began
operating.  So the first line in the figure reports that the
user pressed the “Open…” item in the “View” menu, in
a window titled “State Tools”, and did so five seconds
after WOSIT began running.  Should a message contain
additional arguments beyond the timestamp, these pro-
vide additional information unique to the event type.
For example, the penultimate line in the figure reports
that the user selected the item “tango2.view” from a list
widget identified as “F_List” (file list), which was
contained in the “Select File” window, and performed
nineteen seconds after WOSIT began operating.

As the figure illustrates, WOSIT uses symbolic labels
to refer to both windows and widgets.  Whenever pos-
sible, WOSIT uses the text from windows and widgets
for their labels.  WOSIT ensures that these labels are
constant across executions of the monitored application
(assuming the structure of the GUI remains unchanged),
and unique within each window.

WOSIT provides extensive support for inspection.
Using its inspection services, WOSIT clients may issue
a wide variety of queries pertaining to an application’s
GUI, including these:

• list the currently open windows;
• list the widgets contained in a specific window;
• report the current value of a widget (e.g., the con-

tents of a text field, or the on/off state of a radio
button);

• report the size and location of a widget.

WOSIT’s support for scripting is currently limited.  We
have implemented one demonstration capability: the
ability to cause selected widgets on the GUI of the
monitored application to flash briefly (in order to draw
the user’s attention to them).

Full details on WOSIT, including a User’s Manual, is
available from the WOSIT website (WOSIT, 2001).

JOSIT

JOSIT is a variation on the WOSIT theme, an imple-
mentation of the GUI instrumentation concept for
standalone Java applications (as opposed to applets
running within a web browser).  It differs in the details
of its implementation, but provides the same services
(observation, inspection, and scripting) using the same
communication methods and protocols.  The hooks that
JOSIT exploits are provided by Sun Microsystem’s
accessibility API.

Like WOSIT, JOSIT has been publicly released and can
be downloaded free of charge from the JOSIT website
(JOSIT, 2001).  Interested readers are referred to the
website for complete details on JOSIT, including exten-
sive documentation.

Related Trends in Industry

Recent Federal regulations require agencies of the
United States Government to provide accessible Elec-
tronic and Information Technology (E&IT) products to
their employees who are individuals with disabilities, as
well as to ensure that individuals with disabilities who
are members of the general public have access to

menu(press,”State Tools”,”View;Open...”,user,5);
scroll(set,”Select File”,”directory_scroll”,user,9,”13”);
scroll(set,”Select File”,”file_scroll”,user,11,”10”);
list(select,”Select File”,”Dir_List”,user,13,”training”);
list(select,”Select File”,”F_List”,user,19,”tango2.view”);
button(press,”Select File”,”OK”,user,24);

Figure 2:  WOSIT Observation Stream



agency products comparable to that of individuals
without disabilities (Access Board, 2000).  A crucial
feature of the rules is that they both mandate Govern-
ment compliance, and provide avenues for affected
individuals to seek recourse through civil litigation.
Consequently, the Federal rules are acting as a “big
stick” driving the E&IT industry, in concert with ven-
dors of assistive technology, to offer accessible prod-
ucts.  Both Microsoft and Sun have undertaken high-
visibility efforts to develop new designs and technolo-
gies that will make their products broadly accessible to
individuals with disabilities (Microsoft, 2001; Sun Mi-
crosystems Corporation, 2001), and many other vendors
are following suit, making significant investments in
accessible product design.

For individuals with low vision or blindness, assistive
technology is crucial for them to make effective use of
modern information systems.  A common assistive de-
vice for visually-impaired individuals is a “screen
reader”, a software application which converts visual
displays into descriptive spoken-language utterances
(using commercial speech-synthesis technology).  For
individuals with various forms of physical impairment,
voice-navigation tools enable them to navigate displays
and manipulate software applications.

It turns out that assistive technologies such as screen
readers and voice-navigation systems need at least the
same forms of access to GUI state and event informa-
tion that tools like WOSIT and JOSIT provide.

Driven by the urgent need to meet Federal accessibility
requirements, industry is rapidly moving towards a set
of emerging technical standards that promise to make
GUI instrumentation services ubiquitous.  For example,
Microsoft’s Active Accessibility effort aims to support
a model in which “applications, referred to as servers,
provide information about the contents of the computer
screen [… and] Accessibility aids, referred to as clients,
use Active Accessibility to obtain information about the
user interface of other applications and the operating
system” (Microsoft, 2001).  Sun has provided extensive
support for designing and building accessible Java ap-
plications (Meloan, 2000), and the GNOME Accessi-
bility Project is actively developing accessibility sup-
port for the next-generation window-oriented graphical
desktop environment for Unix and Linux platforms
(GNOME, 2001).  Although the details of the interfaces
differ, these accessibility-support mechanisms are pro-
viding WOSIT/JOSIT-like observation, inspection, and
scripting services.

Today, adding GUI instrumentation to a complex soft-
ware application can only be done using niche tools like
WOSIT and JOSIT, or by employing costly application-

specific methods.  This, we believe, has severely re-
stricted the opportunities for widespread development
and deployment of intelligent embedded training sys-
tems.  As support for E&IT accessibility matures, we
believe that the associated operating-system services
will become widely available, thereby removing a ma-
jor impediment to the widespread development of em-
bedded training tools.

Summary

This section introduced and described the concept of
software instrumentation, and presented in detail a
technical approach to instrumenting the GUI of an X-
Windows client application.  We described WOSIT, a
prototype instrumentation tool for X clients, and JOSIT,
a related tool for use with standalone Java applications.
We concluded with a discussion of industry trends that
promise to make GUI instrumentation services widely
available.

In and of themselves, neither WOSIT nor JOSIT are
embedded training tools.  Rather, they are critical ena-
bling technologies for “intelligent” embedded training
systems, ETSs that employ ICAI techniques to provide
highly interactive and adaptive training support to users
of complex software applications.  In the next section,
we discuss two ETS prototypes we have developed that
take advantage of the GUI instrumentation services
provided by WOSIT and JOSIT.

EMBEDDED TRAINING SYSTEM
PROTOTYPES

As we have suggested, GUI instrumentation is a key
enabling technology for ICAI-based ETSs.  Using the
WOSIT instrumentation tool, we have created a simple
ETS demonstration prototype called the Active Check-
list, which we describe next.

Active Checklist

Checklists are useful job aids, particularly when work-
ers are expected to follow approved, validated problem-
solving procedures.  These checklists, when they exist,
typically are found in printed manuals.  Web technol-
ogy offers the potential for checklists to be widely de-
ployed in easy-to-use, browsable form, and indeed,
some military C2 systems are arriving with such web-
based checklists.  One problem with online checklists is
that users must navigate them manually, not only se-
lecting the appropriate checklist for their task, but also
keeping the checklist synchronized with their progress
in the task.  GUI instrumentation, combined with some
simple, well-understood artificial intelligence tech-
niques (task modeling and plan recognition), offers the
potential to develop active, “intelligent” checklist tools



that automatically track the problem-solving activities
of system operators and keep themselves synchronized
with the operators’ location in the task.

To prove this concept, we have developed a prototype
system having the architecture illustrated in Figure 3.
At the beginning of a procedure, the user selects a
checklist from the Checklist Browser, after which the
Active Checklist appears (shown on the right in the
figure).  The Active Checklist tool displays the prob-
lem-solving process in hierarchical form, as shown in
Figure 4.  When a step in the Checklist is selected, ex-
planatory text associated with that step is displayed in
the lower panel.  Icons beside each step indicate
whether the step is mandatory, optional, or for informa-
tion only.  As the user performs the procedures on the
mission application, WOSIT reports the activity to the

Active Checklist, which updates its display accordingly.
When a step is begun, the Checklist highlights it in
blue.  When a step is completed, the Checklist checks it
off and highlights it in green.  If a step is performed
incorrectly, the Checklist highlights it in red.  Steps that
have been skipped are easily identified by the absence
of markings and coloring.

How it works.  A detailed description is beyond the
scope of this paper.  The mission application (shown on
the left in the figure) is instrumented using WOSIT,
which reports user actions to the Task Recognizer.  The
Task Recognizer refers to two databases in the process
of tracking the user’s progress in the procedure: the
application model and the task model.  The application
model maps patterns of user-interface gestures (as
would be reported by WOSIT) to more abstract event

Figure 3:  Active Checklist Architecture

Figure 4:  Checklist Hierarchy



types called application commands.  For example, this
sequence of events:

1. User performs: menu press File->Open
2. System performs: window labeled “Open” appears.
3. User performs: select “myfile.doc” in File list.
4. User performs: button press Open.

could be mapped to an application command called
OpenFile.  Application commands define the basic
units of activity in a software application;  the user-
interface gestures are, in essence, the “words” that users
combine to create requests for action from the applica-
tion.  The application model is constructed using a
companion authoring tool, and need be done only once
per application (although maintenance may be required
if the application’s GUI is modified).

The task model defines tasks in increasing degrees of
abstraction, building upon application commands as
their foundation.  For example, the task model might
define the PrepareProject task as a sequence of appli-
cation commands: OpenProject, DisplayNavaids,
DisplayFixes , DisplayRunways,  LoadARTSData.
The task model is also constructed using a companion
authoring tool, suitable for use by subject-matter ex-
perts.

Training concept.  The Active Checklist can be used
either as a job aid or as a training tool.  When used as a
training tool, users may select from the checklist cata-
log a procedure they need to learn, then manually click
through each step displayed by the Checklist, perform-
ing each step as described.  The Checklist will auto-
matically update its display to indicate correct or incor-
rect completion.  Once a user has achieved basic famili-
arity with a procedure, they may practice it again, this
time with the Checklist iconified, i.e., active but off-
screen.  They may practice the procedure to the extent
they are able, while the Checklist tracks them in the
background.  If they get stuck, they can re-display the
Checklist, and it will be positioned where they currently
are in the procedure, with correct, incorrect and skipped
steps visually indicated.

The Active Checklist is a simple example of an ETS
that exploits GUI instrumentation.  It is relatively easy
to author new checklists for a given application.  The
learning support it provides, however, is limited.
Training effectiveness depends on user initiative and
motivation, as the tool provides only indirect tutoring
support.  To explore the design of ETSs that provide
significantly more tutorial benefit, we are currently
developing a more interactive embedded training agent,
described next.

Embedded Training Agent

A major obstacle to the design of effective training
systems is the design of the user interface. Many ICAI
systems require students to learn a specialized user in-
terface, which can place an unacceptable cognitive load
on a student who is already struggling to learn a new
subject.  This problem is particularly salient in the case
of embedded training because the task that the student
is engaged in learning is precisely the use of a complex
GUI.  Having to learn one user interface in order to
learn how to use another seems quite infelicitous.  (This
is another disadvantage of the Active Checklist ap-
proach.)  Natural language dialogue is an attractive po-
tential solution to the user interface problem for em-
bedded training because it allows students to interact
with the tutor in a familiar manner, thus reducing the
overall cognitive load.  The use of speech input and
output (made possible by the system’s ability to carry
on a dialogue) would further ease the burden of com-
munication.

With this in mind, we are developing an embedded
training agent that engages the student in a multi-
modal, mixed-initiative spoken natural-language dia-
logue, and pursues explicit instructional goals to pro-
vide individualized coached practice on realistic prob-
lem-solving exercises (Cheikes & Gertner, 2001).
Other motivations for using dialogue in our ETS in-
clude both the ability to implement a wider range of
instructional strategies than would be possible with a
structured user interface, and the ability to change
strategies smoothly by informing the student of what is
happening using natural language cues (e.g., “No, that’s
not quite right. Let’s try a different approach…”).  In
addition, the ability to refer to a model of the ongoing
discourse provides the agent with the opportunity to
adapt its tutoring to the discourse context.  The agent
can refer to the discourse model, which incorporates
both natural language utterances and GUI actions, to
help select an instructional strategy, to determine
whether its current strategy is succeeding or failing, and
to decide whether and when to change strategies.

To provide a discourse model for our tutorial agent, we
are using Collagen, an application-independent collabo-
ration management platform developed by the Mitsubi-
shi Electric Research Laboratory (Rich & Sidner,
1998).  Collagen provides tools for dialogue manage-
ment which, when given a task-specific recipe library,
will perform plan recognition, track the focus of atten-
tion in the tutor-student interaction, and maintain an
agenda of actions that could complete the plan.  In ad-
dition, Collagen provides interface elements to support
dialogue interaction between an agent and a user, in-



cluding optional support for speech recognition and
generation.

At this point, Collagen does not do any natural lan-
guage understanding, so the user is required to produce
utterances that can be interpreted as part of an artificial
discourse language (Sidner, 1994) that includes the
types of utterances people use when collaborating on
tasks.  The user can construct these utterances using a
structured interface provided by Collagen, or by
speaking in speech-enabled Collagen applications.
Collagen also provides facilities that allow pointing
gestures to be integrated with the agent’s repertoire of
communicative acts.

For the initial prototype of our ETS, we are working
with an application called TARGETS (Terminal Area
Route Generation, Evaluation, and Traffic Simulation),
a tool for designing new arrival and departure routes
into and out of airports.  TARGETS is a Java applica-
tion developed by MITRE’s Center for Advanced
Aviation Systems Development.  To use Collagen for
embedded training on TARGETS, we instrumented the
TARGETS application’s GUI using JOSIT.

Instrumentation enables a number of the tutorial be-
haviors of the Collagen agent.  First, using the observa-
tion capability of JOSIT, the embedded training agent is
able to track the student’s behavior on the application
interface, and integrate new actions into its model of the
current domain plan.  JOSIT’s inspection mechanisms
are used for two main functions: first, to determine the
location of elements of the TARGETS GUI on the
screen so that the agent can point to them with its mov-
able pointing hand, and second, to maintain a model of
the application state which the agent uses to determine
the applicability of potential actions.  Finally, the
scripting capability in JOSIT is used to allow the agent
to actually perform actions on the TARGETS interface.
This may be done to demonstrate a new procedure to
the user, as well as to change the application state to get
it ready for a new tutoring exercise.

CONCLUSIONS

This paper has described ICAI-based embedded train-
ing systems, and discussed a key enabling technology
called GUI instrumentation.  We have presented techni-
cal details on two GUI instrumentation tools called
WOSIT and JOSIT, which apply to X-Windows clients
and Java applications respectively.  Finally, we summa-
rized two demonstration prototypes we have created at
MITRE that illustrate how GUI instrumentation serv-
ices might be employed to support the delivery of
highly interactive training services to users of complex
mission applications.

The key conclusion of our work is that GUI instrumen-
tation makes intelligent, interactive ETSs technically
feasible.  We have shown how GUI instrumentation
may be added to a mission application without requir-
ing any supporting modifications to the application it-
self.  This means that mission applications may be
augmented with ETSs at any time, and that the ETSs
may be developed by any qualified, experienced third
party, not necessarily by the prime contractor of the
mission application.  This will become even more true
as accessibility-support services become widespread in
the computing industry.

Limitations

Although GUI instrumentation tools such as WOSIT
and JOSIT make ICAI-based ETSs possible, there re-
main technical limitations that may affect the ETSs
ability to provide detailed tutorial support on all aspects
of mission-system operation.

Recall that GUI instrumentation tools work by inter-
cepting system messages pertaining to GUI widget
states and behaviors.  What this means is that consum-
ers of GUI instrumentation data only obtain a surface-
level view of the mission application.  For example, a
GUI instrumentation tool cannot “see” into (i.e., di-
rectly access) any databases used by the mission appli-
cation; it can only see portions of those databases if and
when they are displayed somewhere on the applica-
tion’s GUI.

So-called “situation displays” pose a similar problem.
Situation displays are typically implemented using a
generic “canvas” widget.  The contents of the situation
display (e.g., multi-layered maps, imagery, etc.) are bit-
mapped renderings of entities known only to the appli-
cation itself.  A GUI instrumentation tool only has ac-
cess to the pixel-by-pixel representation of the situa-
tion; only the application knows that it is displaying,
e.g., imagery over Sarajevo with iconic indications of
recent ELINT emission collections.

User-settable preferences and configuration parameters
may also be inaccessible to GUI instrumentation tools if
they are not continuously displayed somewhere on the
application’s GUI (and most are not).  If these settings
have pervasive effects on the way the application oper-
ates, an ETS may have difficulty in interpreting user
actions properly if it lacks access to the settings.

Thus far we have found that we are able to work around
most of these limitations through clever instructional
design.  Since the purpose in using an ETS is to achieve
training goals, we can design our exercise scenarios in a
way that forces the trainee to reveal through their ac-
tions those elements of information that are inaccessible



to the GUI instrumentation tool.  It is also possible to
design the ETS to directly question the trainee as
needed.  Such questioning need not be intrusive, and
can even serve instructional objectives, such as having
the trainee explain their actions in order to verify they
understand the relevant concepts.

It remains an open question whether GUI instrumenta-
tion as described in this article can truly support all the
needs of ICAI-based ETSs, and ongoing MITRE re-
search is investigating this issue.  We suspect, however,
that even if a “hybrid” solution should be required, in
which GUI instrumentation is combined with applica-
tion-specific modifications, GUI instrumentation would
still dramatically reduce the overall cost of enabling
embedded training as compared to the cost of imple-
menting a complete, application-specific set of inter-
faces internal to the mission application.
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