

Using Osprey for

Understanding Object-Oriented Software

MITRE-Sponsored Research
Project Number: 51MSR102-A3

Principal Investigator: Penny Chase

Task Lead: David Harris

Project Staff: Angel Asencio, Sam Cardman, Ellen Laderman,
 Suzi Lubar, Scott Mardis

Introduction
In the spring of 2000, we were asked to help with an assessment of object-oriented

software. A MITRE sponsor needed to assess the quality of a C++ and Java software
system. Specifically, the sponsor wanted to know if the software could be reused. This
need was typical of the many needs that motivate analyses of software. Examples

 1

SBORG
Text Box
Approved for Public Release; Distribution Unlimited
Case #04-0033

include maintenance questions, reuse questions, code upgrades, component integrations,
and analysis of hidden and explicit requirements.

We knew that commercial and open source resources for analyzing object-oriented
software were limited. There were few tools available that fully parsed C++ or Java and
these tended to be very expensive. Additionally, due to indirection caused by inheritance
and polymorphism, it is difficult for these tools to correctly compute data flow and
control flow.

Although the use of object-oriented languages is becoming pervasive, the indirection
mentioned above and the lack of suitable tools make analysis an imprecise, error-prone
art form. Thus, we recognized that the development of tools to understand object-
oriented software would be an important area for research and development.

The obvious candidates for understanding object-oriented software structures are
design patterns. Members of a design pattern community have developed best-practice
descriptions for creating object-oriented software. These descriptions are agreed upon
knowledge that bridges between software constructs, their rationale, and their
consequences for code quality. If we know that developers used a particular pattern
(intentionally or implicitly), we have a good idea of what forces (see those in the figure
as examples) influenced the artifact's designers and how they chose to harness those
forces in the design and implementation.

Forces influencing design

We developed a prototype software system named Osprey 1. To identify occurrences
of design patterns in the software, we developed 104 recognizers – declarative
descriptions of the constraints that must be met if one is to conclude that a pattern is
present in the code. Then, given a program to analyze, Osprey matches the relationships
among that program's structures and the pre-built design pattern templates.

 For example, the Adapter design pattern is used to adapt a new service to meet the
interface of a pre-existing set of services. One might have a set of services that works
with x-y coordinates, but the program needs to take advantage of a service that produces
results in distance-and-bearing coordinates. The way to achieve this is to use an adapter.
A key component of the Adapter pattern is that there must be some mechanism for the

1 Osprey stands for Object-oriented Software Pattern REcoverY

 2

adapter to know what is being adapted. Hence, Osprey identifies potential adapters that
know about other structures and change the results that are generated by these other
structures – in our example, changing distance-and-bearing results to x-y coordinates.

Adapter Pattern Template

With Osprey, analysts can look at programs in a more informed way. They are able
to make statements such as “The purpose of class A is to adapt the results produced by
class B in order to match the interface defined by class C.” They can also make
statements about code quality. We identified source code qualities (e.g. reliability,
evolvability,and performance) effected by the use of design patterns and added this
information to Osprey. For example, the presence of the pattern AbstractFactory
supports maintainability.

Osprey generates HTML documentation based on all of the analysis it does on the source
code. The generated documentation consists of:

 code-level reports (classes, methods),
 recovered design patterns,
 software quality and design rationale inferred from the use of patterns, and
 mappings from high-level expectations down to the source code that meets those

expectations.

Osprey provides a way for analysts to access data through design concerns and
design patterns. One page enumerates all the pattern participants for the pattern instances
in the code (see the figure below for a partial view of the design pattern recognition
results).

 3

Design Pattern Web-page

Using Osprey Output

Analysts can start with program structure, with design pattern instances, with
quality issues, with vulnerability concerns, or with design concepts. From any of these
starting points, analysts can navigate to design patterns and to color-coded source code
files. The table below lists the reports Osprey is able to generate, their category, a brief
description of their contents, and the source language(s) for which they are generated.

Analysts who want an in-depth understanding of how the program is structured
can start with design patterns. Analysts who wish to assess the software quality for
source selection, reusability, or interoperability can start with quality reports or perhaps
reports that show use of operating system services. Analysts who need to assess the
potential vulnerabilities of the code can start with any of a collection of vulnerability
reports.

 4

 Reports on the Source Code

Report Name Category Description Source
Language

Executive
Summary

Summary Summary of source code statistics and
major observations

All

Class Details Source Code Information and
Recovered Design Patterns

Class information including: methods,
inheritance, and pattern participation

C++, Java

Class Hierarchy Source Code Information Class inheritance hierarchy C++, Java
Class Instantiation Source Code Information Who creates a class and classes it creates C++, Java
Methods Source Code Information Properties of the program’s methods C++, Java
Struct Details Source Code Information Lists of structs defined in the program C
Procedures Source Code Information Properties of the program’s procedures C
Operating System
Calls

Source Code Information List of operating system calls C, C++

Pattern-based
Qualities

System Qualities Links to program quality information
based on pattern usage

C++, Java

Pattern
Alternatives

System Qualities Pattern impacts on program qualities and
alternative pattern suggestions

C++, Java

Inheritance Faults System Qualities Potential variable initiation flaws due to
polymorphism

C++, Java

Design Goals Design Analysis List of potential design goals and
supporting pattern usage

C++, Java

Design Facts and
Evidence

Design Analysis Facts about the source code design C++, Java

Design Index Design Analysis Index into pattern descriptions C++, Java
Potential
Vulnerabilities

Security Concerns Programming constructs that could lead
to security violations

C++, C

Vulnerabilities by
File

Security Concerns File security evaluation C++, C

Port Access Security Concerns List of ort numbers referenced in the
source code

C++, C

Vulnerable OS
Calls

Security Concerns List of vulnerable OS calls used in
program being analyzed

C++, C

Pattern Deviations Security Concerns Deviant implementations of design
patterns

C++, Java

Pattern Instances Recovered Design Patterns List of pattern instances C++, Java
Patterns within
File Structure

Recovered Design Patterns Pattern participation organized by file C++, Java

Pattern Diagrams Home Basic pattern descriptions C++, Java

Conclusions
Our research program makes progress in two areas of assisting analyst/users in

software understanding tasks. We developed recognizers that identify instances of

 5

software design pattern use in source code and we applied inference mechanisms to
recovered information in order to provide insight into the design process itself. We have
demonstrated the utility of design pattern recovery and the feasibility for automatic
recovery of design rationale and software qualities of object-oriented software.

Additional Information
 Osprey is available for use in analysis of software systems – either as a service we

provide or as a tool that can be used at your site.

Readers who would like to know more about Osprey technology may wish to read
"Relating Expectations to Automatically Recovered Design Patterns" by A. Asencio, S.
Cardman, D. Harris, and E. Laderman, published in the Proceeding of the Working
Conference on Reverse Engineering, Richmond, Virginia, 2002 and available from the
authors.

 We can be reached by email at osprey@mitre.org.

 6

