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Abstract

Previous work has shown the potential ad-
vantages of using endogenous fitness schemes
in classifier systems. The basic idea behind
endogenous fitness is to reinforce successful
system performance with “resources” that
rules need in order to reproduce. Instead of
storing explicit quantitative estimates of per-
formance, each rule has one or more reser-
voirs that are used to store resources. When
enough resources have been accumulated, a
rule utilizes some of its resources to reproduce
and the reservoir level is reduced accordingly.
This paper extends this concept to accommo-
date environments having delayed rewards.
Reinforcement learning techniques for solving
average-reward Markovian decision processes
are combined with a simple endogenous fit-
ness scheme in a classifier system. We de-
scribe initial tests of this approach on state-
space search problems used in previous clas-
sifier system studies.

1 Introduction

Classifier system implementations have traditionally
used explicit measures of utility — such as predicted
payoff, accuracy, payoff-derived strength, etc. — to
quantify the utility and fitness of classifier rules. This
research is investigating classifier systems that deter-
mine the utility and fitness of rules endogenously, with-
out computing explicit estimates.

The basic idea behind endogenous fitness schemes is
straightforward. The rules advocating an action on
a given time step (i.e., the action set) take all of the
credit for whatever reinforcement is received. FEach
reinforcement event leads to the distribution of some

nominal resources among those rules, and the acquired
resources accumulate over time in internal reservoirs.
Following the way resources are used in Echo [6], the
endogenous fitness scheme allows rules to reproduce
only when they have accumulated resources in excess
of some threshold amount. When enough resources
have been accumulated, a rule utilizes some of its re-
sources to reproduce and the reservoir level is reduced
accordingly. A distinction is made between reinforce-
ment events that are better than “average” and events
that are worse than average. The cumulative difference
in resources a rule has received for these two outcomes
is used to determine eligibility for reproduction. The
relative amount of resources received for these two out-
comes is the basis for a prediction about the outcome
(i.e., reinforcement better or worse than “average”)
expected whenever a rule is active.

Previous work [4] described one implementation of
this idea. That classifier system has a fairly conven-
tional design, borrowing elements from previous work
on GOFER [2, 3] and XCS [11]. The population of
classifiers has a fixed size A, each classifier having
a single condition on the left side and a single ac-
tion on the right side. Each classifier £ has two as-
sociated reservoirs: the Ay (€) reservoir that stores
resources obtained from “better than average” rein-
forcement events, and the A_ (&) reservoir that stores
resources obtained from “worse than average” rein-
forcement events. The only other parameters stored
with each classifier are: age «(€), which is used in
the procedure for deleting classifiers; an estimate (&)
of the average reward available when ¢ is included in
the match set; and, a counter v(£) that records the
number of times & has been included in the match set
on an “explore” trial. Classifiers are eligible to re-
produce when the difference |A4 (&) — A_(&)] is larger
than some threshold. Empirical performance of the en-
dogenous fitness scheme implemented in this way were
encouraging. The system performs as well as utility-



based classifier systems such as XCS [11] on the mul-
tiplexor problem.

One of the important research issues not addressed
by this previous work on endogenous fitness in clas-
sifier systems is how to solve multi-step reinforce-
ment learning problems involving sequences of actions
and delayed rewards. In this paper we describe work
in progress that is extending the endogenous fitness
scheme to handle such problems.

We begin with a brief discussion of our latest approach
to implementing endogenous fitness in classifier sys-
tems. That discussion is followed by a description of
work in progress that integrates average-reward rein-
forcement learning techniques into the endogenous fit-
ness paradigm.

2 Implementing Endogenous Fitness
In Classifier Systems

In the current implementation there are also no ex-
plicit, individual performance estimates associated
with classifiers. Each classifier ¢ has the two asso-
ciated reservoirs Ay (§) and A_(&). The reservoirs are
initialized to be empty and the initial classifiers are
generated at random. The following additional param-
eters are stored with each classifier: an estimate (&) of
the average reward available when £ is included in the
match set; estimates d4 (§) and §_ (§) of the average re-
ward available when the best and worst actions in M
are selected (as determined by the performance sys-
tem); a counter a (&) that records the number of times
¢ has been included in the action set; and, an estimate
w() of the proportion of times the reward available
exceeds (&) when ¢ is in the action set. These param-
eters are used to help characterize the flow of resources
in a match set. Here we provide a brief summary of
the key details, focusing primarily on those that differ
significantly from the description given in [4].

2.1 Performance System

The system performance cycle is fairly routine. For
each input message ¢, the system first determines the
set of classifiers M eligible to classify the message.
Matching classifiers are always included in M. Fol-
lowing the procedures in GOFER, if there are fewer
than N, matching classifiers available, classifiers with
the highest partial match scores are deterministically
selected to fill out M. We use the simple partial match
score
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if £ matches the message ¢
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where [ is the length of the input condition in ¢, s is
the specificity, and n is the number of positions where
the condition doesn’t match the message.

For each action a represented in the match set M, the
system computes an action mandate that captures the
system’s knowledge about the likelihood of a “better
than average” outcome if action a is chosen. FEach
classifier £ in M computes the value
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as the mandate for its action. Note that A(§) is 1
whenever the outcome associated with & is consistently
better or worse than average (w(§) = 0 or 1) and 0
when the outcome is random (w(€) = 0.5). When
w(&) > 0.5, this contribution from each rule is added
to an action selection array. When w(&) < 0.5, this
contribution from each rule is subtracted. The ratio-
nale for this approach is to give a higher net weight to
those actions that, based on previous experience, have
the highest likelihood of being followed by a “better
than average” outcome.

As in XCS, the information in the action selection ar-
ray 1s used to determine which action 1is selected. The
members of M that agree with the selected action con-
stitute the action set A. The system then sends that
action to the effectors, and the environment may re-
spond with reinforcement.

2.2 Reinforcement

On every time step, parameters of the classifiers in M
are adjusted and some amount of resource R > 0 is
made available to the classifiers in A. Competition
for this resource is the primary mode of interaction
among the rules in the population. The following se-
quence of steps is used to determine how the resource
is distributed:

e The m(&) parameter is revised for all classifiers in
M using the simple update rule
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where R is the reward received, v(§) is a counter
that records the number of times & has been in-
cluded in the match set, mo(§) = 0, and v4(€) = 0.
If the action a is the best (or worst) option avail-
able, then a similar update is made to ;4 (§) (or

- (£))-

e The members of M collectively estimate the aver-
age reward II for the current state as the central



tendency of the values 7(¢) in M. Since M will
often include overly general rules with inaccurate
values, 1t is helpful to take some steps to avoid
having this estimate contaminated. Order statis-
tics can provide a robust estimate of the central
tendency. We use a conservative boxplot crite-
rion [8] to identify outlying values and exclude
them from the computation. The boxplot crite-
rion computes the median Z of the data values,
the lower quartile ¢q1, and the upper quartile ¢3.
Any value that lies 3(¢g3 — q1) above the upper
quartile or below the lower quartile is labeled as
an outlier. The trimean estimator [1], given by

g1+ 22+ g3
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is used to obtain a simple and reasonably robust
estimate of the central tendency II. While there
are many other ways to compute the central ten-
dency that give adequate results, the methods us-
ing order statistics have given the best results so
far.

In an analogous manner, there is a collective de-
termination of the central tendencies J; and §_
of the parameters d4 (&) and §_ (§) respectively.

The resource R available on each time step 1is
scaled to reflect the size of the reward R relative
to what is expected in M. It is sufficient to use a
simple linear scaling given by

R=R 1.0+L_5A‘
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where R is a system parameter indicating the
minimum amount of resource made available on
each time step. Given two classifiers that are con-
sistently associated with above average rewards,
this procedure gives a modest selective advantage
to the classifier that is best from a payoff stand-
point.

Each classifier in A receives a share of the resource
given by
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where H(&) is a hypergeometric probability that
helps bias the distribution of resources to favor
sets of rules that efficiently cover all input mes-
sages. This computation is strongly related to the

familiar fitness-sharing schemes used in GA im-
plementations to solve multimodal optimization

problems. See [4] for more details. When R > TI,
p(€) is added to A4 (€); otherwise, it is added to

AZ(g).

Under this regime, rules that are consistently associ-
ated with only one type of outcome will quickly achieve
a large net accumulation of resources in one of the
reservoirs since all of their resources are stored in one
place. Conversely, rules associated with both out-
comes will distribute their resources over both reser-
voirs, taking longer to attain any large net accumula-
tion. This is significant because the frequency of re-
production is tied to the net accumulation of resources
in the one of the reservoirs.

2.3 Rule Discovery

After the rule reservoirs have been updated, any clas-
sifier in M having a sufficient net excess of resources in
its reservoirs becomes eligible to reproduce. An excess
of resources is indicated by

A& —A-(O] >

for some threshold 7.

If there is more than one classifier in M eligible to re-
produce on a given cycle, all eligible classifiers are des-
ignated as parents and allowed to produce one copy of
themselves. Parents then have the reservoir contain-
ing the excess decremented by 7, which can be viewed
as the cost of generating an offspring. The reproduced
copies are modified by mutation and crossover, and
the resulting offspring are inserted into the population.
Classifiers are stochastically selected for deletion based
on a(€), so that general classifiers are more likely to be
chosen. This is the simplest kind of deletion technique
used in Echo-like systems. Future research will inves-
tigate the potential advantages of charging each rule
a “maintenance cost” every time it is active, changing
the resource flow to allow parents to share resources
with their offspring, and deleting rules with empty (or
nearly empty) reservoirs.

Note that rules consistently associated with above av-
erage (or below average) outcomes will consistently
enjoy a reproductive advantage over their competi-
tors. In combination with a deletion technique biased
against general classifiers, this exerts considerable se-
lective pressure against overly general rules.

2.4 Initial Tests

Figure 1 and Figure 2 show the performance of this
revised classifier system on the 11-bit and 20-bit mul-
tiplexor problems. Results are averaged over 10 runs.
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Figure 1: Performance on 11-bit multiplexor
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Figure 2: Performance on 20-bit multiplexor

Performance was measured by the proportion of cor-
rect decisions over a learning epoch consisting of 50
randomly generated input strings. Each 11-bit exper-
iment was run for 400 epochs (20,000 input strings)
and each 20-bit experiment was run for 800 epochs
(40,000 input strings). The reward scheme pays +1
for correct responses and —1 for incorrect responses.
The action-selection regime was based on the one used
by Wilson [11]. This regime makes a random (prob-
ability 0.5) choice between “exploit” mode — where
the system selects the best action as indicated by the
action selection array — and “explore” mode where
the system selects an action at random. During ex-
plore trials, a correct decision is recorded whenever
the system would have made the correct “exploit” de-
cision. The system parameters' used were: N, = 16,
R = 2000, 7 = 500, initial reservoir levels of 0 for new
offspring, a mutation rate of 1/(3¢), and a crossover
rate of 1.0. The 11-bit experiments used A' = 400
while the 20-bit experiments used " = 800.

Note that the 11-bit problem was solved after about
100 epochs (5,000 inputs) and the 20-bit problem was
solved after about 500 epochs (25,000 inputs). This is
roughly half the time reported previously for the XCS
system on these problems [12]. Though it is difficult
to draw any definitive conclusions on the basis of these
results, it is clear that in these problems the endoge-
nous fitness scheme does an effective job of discovering
accurate rules. Work in progress is studying how this
approach scales to larger multiplexor problems.

3 Accommodating Delayed Rewards

One of the important research issues not addressed by
previous work on endogenous fitness in classifier sys-
tems is how to solve multi-step reinforcement learn-
ing problems involving delayed rewards. This section
briefly describes an initial approach to extending the
endogenous fitness scheme to handle such problems.

Classifier systems traditionally solve problems involv-
ing delayed rewards by using the bucket brigade algo-
rithm [7] or some other algorithm from the reinforce-
ment learning literature [9]. These algorithms all com-
pute and manipulate explicit estimates of the reward
expected when a specific action is taken in a given
state. Since the endogenous fitness scheme only com-
putes explicit estimates of the average reward expected
in a state, the most natural starting point for our in-
vestigation 1s to consider average-payoff reinforcement
learning algorithms [10].

! Classifier input conditions were initialized so that each
possible symbol in {1,0, #} was equally likely to occur.



A typical updating scheme for average-payoff rein-
forcement learning is given by:

Qe1(we, ar) =

(1 - ﬁ(mt, at))Qt(Ih Ctt) +

Blxt, ar)[R(xs,ar) —ry + max Qy(xs,a’)]
a'€Ai

where z; is the state, a; is the action taken, Q:(z:, a;)

is the payoff expected when taking action a; in state

z¢, and 7, is the sample average of the payoffs received

for greedy actions. Note that a discounting factor is

not needed to assure that the updated values remain

bounded, since anchoring the computation to r; ac-

complishes that.

In order to use this approach in a classifier system,
we must identify something that plays the role of
Q:(z¢,a:). The endogenous fitness scheme used here
only maintains explicit reward estimates associated
with the match set M, so there is no explicit informa-
tion available about the payoff of an arbitrary state—
action pair. However, since the resource flow experi-
enced by a classifier is correlated with the size of the
reward expected when that classifier belongs to A, it
is reasonable to consider modifying the resource flow
as an alternative to updating an explicit parameter.
Moreover, the parameter 5+ provides explicit payoff in-
formation about one very important state—action pair:
the one associated with the best action in M. Con-
sequently, the following heuristic counterpart to the
average-reward reinforcement learning update 1s used
in the endogenous fitness computation: at time ¢, the
value S_,_ is passed back to the classifiers in M;_; (i.e.,
it 1s added to whatever external reward was received
by that match set). The computations in M;_; then
proceed as usual using the augmented reward in place
of the external one.

Grefenstette’s state space search problem [5] was used
to test of how well this average-payoff version of the
classifier system can discover action sequences leading
to external reward. The state space contains 288 states
arranged in a 9 x 32 rectangular grid. The first row
contains the 32 initial states where all searches begin.
Three transitions are possible from any one state to
some neighboring state. If we identify each state using
arow index 7, 0 <7 < 9, and a column index j, 0 <
J < 32, then the states accessible from state (i, j) are
the states

(i+1,j—1mod32) (i+1,5) (i4+ 1,7+ 1 mod32)

The last row in the grid contains the 32 final states,
each of which is associated with a fixed reward. Re-
wards range from 0 to 1000 and are distributed as
shown in 1.

Reward Column Index
of Final State
0] 0,1,14,15,16,17,30,31
50 2,13,18,29
75 3,12,19,28
125 4,11,20,27
250 5,10,21,26
500 6,9,22,25
1000 7,8,23,24
Table 1: Distribution of rewards in the state space
problem.
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Figure 3: Performance on state space problem (com-

pared to Gofer and RUDI)

The challenge in this problem is to learn a sequence of
state transitions from each initial state that maximizes
the reward obtained at the end of the sequence. It is
a difficult learning problem because, from some initial
states, the early moves determine whether or not it
is even possible to achieve the maximum reward. Ef-
fective credit assignment is therefore a pivotal issue.
Another difficulty is that there is a “hamming cliff”
in the binary representation of the final states asso-
ciated with the optimum reward (between columns 7
and 8, and columns 23 and 24). This complicates the
categorization task faced by the genetic algorithm.

The revised classifier system was tested on this prob-
lem in an experiment involving 50 learning episodes,
each consisting of 1000 traversals of the state space.
The system parameters that differed from the mul-
tiplexor experiments were N = 2000, N,, = 24,
R = 500, and 7 = 2500. The action-selection regime
differed slightly from the one used for the multiplexor
problems. For each traversal of the state space, the
system first makes a random choice between an “ex-
ploit” traversal in which the best action is taken on
every step, or an “explore” traversal in which action se-
lection is controlled by the mulitplexor action-selection



regime. The results are summarized in Figure 3, which
compares the performance with previous results on
this problem reported for Grefenstette’s [5] system
RUDI and Booker’s [3] system GOFER. The revised
classifier system quickly achieves good performance on
this task and steadily improves toward optimum (1000
reward level) performance, clearly outperforming both

RUDI and (GOFER.

4 Conclusions

While these results are preliminary, they do show that
an endogenous fitness scheme is compatible with re-
inforcement learning algorithms for problems involv-
ing delayed rewards. This makes endogenous fitness
a more suitable alternative for implementing classi-
fier systems to solve interesting problems. Moreover,
the performance of the endogenous fitness approach
is comparable to that obtained by systems like XCS
and shows the potential to do even better. Current
research efforts are conducting more experiments with
this enhanced version of the endogenous fitness scheme
in order to better assess its strengths and weaknesses.
It 1s clear that this approach is promising enough to
warrant further investigation.
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