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Extended Abstract

The classifier system framework is a general-purpose approach to learning and
representation designed to exhibit non-brittle behavior in complex, continually
varying environments. Broadly speaking, classifier systems are expected to avoid
brittle behavior because they implement processes that build and refine models of
the environment. One of the most important of these processes is categorization.
As Holland [5] has pointed out (p. 598) “Categorization is the system’s major
weapon for combating the environment’s perpetual novelty. The system must
readily generate categories for input messages, and it must be able to generate
categories relevant to its internal processes”. Research in classifier systems has
focused almost exclusively on finding generalizations for input messages. How-
ever, generalizations of actions will also be required in order to build effective
models of the environment. This paper introduces a new encoding for actions in
classifier rules that lends itself to representing abstract actions.

What categorizations of actions are desirable? Two distinct kinds of gener-
alizations appear to be useful [4]: abstractions that generalize over the possible
outcomes of an action, and aggregations that group related actions together.
Both kinds of generalizations are important for classifier systems, and some pre-
vious research has offered preliminary ideas about how to represent them (e.g.,
the expectation part of rules and action chunks in ACS [8] and the fuzzy com-
bination of action effects in fuzzy classifier systems [1]). One fundamental issue
that has not been addressed, though, is that actions are always represented as
primitive symbols having no constituent parts. This is problematic in a classi-
fier system that depends on a genetic algorithm to discover generalizations by
manipulating building blocks.

What is needed is an encoding for actions that uses effector settings as the
parts of an action, while at the same time permits useful generalizations of some
kind. Mechanisms prevalent in natural systems point the way to a solution. Re-
garding actions themselves, pairs of interacting effectors can provide a powerful
set of building blocks for constructing more sophisticated behaviors [2]. As for
encodings, the genotype of a heterozygote can be viewed as a reservoir of vari-
ability [3] that in some sense is an abstraction of the specific phenotypic traits



that can be produced from that genotype by breeding. The traits are the physical
manifestations (or outcomes) of the actions of the genes. The remainder of this
paper describes how these two ideas can be combined in the classifier systems
framework to provide a new approach to encoding actions.

Consider some trait controlled by a single gene, and assume that neither of
the two alleles A-a for that gene is dominant. By convention, the allele denoted
by the capital letter is the one responsible for increased manifestation of the trait
in question. Under these conditions, the diploid heterozygotes Aa will produce
a phenotype that is intermediate between the effects seen in the homozygotes
AA and aa. If the trait is height, for example, the homozygotes will be tall
or short while the heterozygotes will be “average”. When more than one gene
controls a trait, and those genes have equal and additive effects on the pheno-
type (assuming again that there is no dominance), then more variation will be
observed in the range of phenotypes. In the case of two genes controlling height,
for example, we have phenotypes (genotypes) “tall” (AABB), “short” (aabb),
“moderately tall” (AaBB, AABb), “moderately short” (aaBb,Aabb), and “av-
erage” (AAbb,aaBB,AaBb). If there are three genes of equal effect there will be
seven distinct phenotypes. In general, with n genes there will be 2n+ 1 distinct
phenotypes. Note that underlying the phenotypes is a graded series of genotypes
and, except for the two phenotypic extremes, each phenotype can be produced
by a number of genotypes.

The notion of several genes making equal, additive contributions to an ob-
servable outcome suggests an action representation for classifier rules that I will
call the paired effector encoding. Assume for the moment that we have two ac-
tions 0 and 1 controlled by a pair of effectors. Each effector “votes” for which
action to take and the action receiving the most votes is the one selected. There
are several possibilities for handling tie votes. If the actions are mutually exclu-
sive then a tie could lead to a random choice between the actions. If it makes
sense to “blend” the actions into some resultant behavior — for example, equal
tendencies to turn left and right result in a movement straight ahead — then ties
could produce that resultant. There are undoubtedly other ways to handle ties
given different assumptions about how the actions interact. Regardless of the
semantics, though, the action choice can be encoded using a ternary alphabet
{0, 1, ?} to designate the outcomes 0, 1, and “tie”. Finer gradations in outcome
can be represented by assuming the action choice is controlled by the combined
influence of several pairs of effectors. If there are n effector pairs then 2n + 1
distinct outcomes can be represented in a string of length n. For example, using
n = 2 gives the following five outcomes (assuming ties mean a random choice):
100% action 1 (11), 100% action 0 (00), 75% action 1 (1?,?1), 75% action 0
(0?,?0), 50% action 1 (10,01,??). Note that these outcomes are directly analo-
gous to the range of phenotypes discussed earlier, where the ternary alphabet
corresponds to the distinguishable single-locus phenotypes AA, aa, and Aa.

There are several potential advantages to using this paired-effector action
encoding. First, it provides a graded representation of the space of possible ac-
tions in a manner that may facilitate genetic search. Assuming, for example, that



strings having a nondecreasing number of “votes” for the best action will receive
correspondingly nondecreasing fitness evaluations (i.e., the more often the best
action wins, the higher the fitness), the search problem is basically the GA-easy
counting 1’s problem [9]. Second, the genetic variability provided by multiple
genotypes per phenotype should help maintain useful diversity in the action
gene pool without using disruptive mutation rates. Third, since the encoding
can specify more than one action, each rule can have a variety of effects. This
property may help “smooth” the consequences of inserting or deleting rules [7].
Finally, by allowing the specification of stochastic action choices that can evolve
into deterministic choices, this representation supports the implementation of
stochastic policies which are known to be useful in solving partially observable
Markovian decision processes [6].

Experiments are currently being conducted to investigate the advantages and
disadvantages of the paired-effector encoding.
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