
M P 0 0 W 0 0 0 0 0 8 8

M I T R E P R O D U C T

A Guide to Understanding
Emerging Interoperability Technologies

July 2000

Terry Bollinger

Sponsor: ONR Contract No.: DAAB07-99-C-C201
Dept. No.: W09T Project No.: 0700V13A-AA

The views, opinions and/or findings contained in this report
are those of The MITRE Corporation and should not be
construed as an official Government position, policy, or
decision, unless designated by other documentation.

Approved for public release; distribution unlimited.

2000 The MITRE Corporation

Washington C3 Center
McLean, Virginia

ii

iii

MITRE Department Approval:

Gary R. Brisbois

MITRE Project Approval:

Daniel J. Lowen

iv

v

Abstract

Interoperability is the ability to use resources from diverse origins as if they had been
designed as parts of a single system. Over time, individual interoperability problems tend to
disappear as the resources involved literally become part of one system through integration
and standardization, but the overall problem of interoperability itself never disappears.
Instead, it simply moves up to a new level of complexity that accepts earlier integrations as a
given. Interoperability is especially critical for military systems, where international politics
can lead to abrupt realignments where yesterday’s foe becomes today’s coalition partner.
This report on interoperability has five sections. The first section is an introduction to the
interoperability problem, and the second section describes fundamental interoperability
concepts and develops a terminology for describing interoperability issues and needs. The
second section also addresses the vital issue of interoperability security. The third section is
about the processes by which interoperability technologies are standardized, including
comparisons of the interoperability benefits of different processes. The fourth section is an
overview of a number of emerging information technologies relevant to interoperability, and
the fifth section suggests opportunities for further action.

KEYWORDS: interoperability, security, standardization, processes

vi

vii

Acknowledgments

I would like to thank the following MITRE people for their excellent review comments
and overall assistance in creating this document: Dan Lowen, Larry Stine, Chuck Heazel,
Chuck Howell, and Thomas Buckman. I would also like to thank Ralph Wachter of ONR for
supporting this work, and for providing a number of very helpful suggestions on the content
of the document.

viii

ix

Table of Contents

Section Page

Abstract...v

Acknowledgments ...vii

Section 1 Introduction ..1-1
1.1 Purpose ...1-1
1.2 Background...1-2
1.3 Interoperability Technology Impacts ...1-3
1.4 Interoperability Technologies and Policies ..1-3
1.5 Overview of Report...1-4

Section 2 Fundamental Interoperability Concepts ..2-1
2.1 A Definition of Interoperability...2-1
2.2 Unique Features of Information Technologies ...2-1

2.2.1 Unique Aspects of Software ..2-2
2.2.2 Types of Hardware Interoperability ...2-3
2.2.3 Software Interoperability Strategies...2-3
2.2.4 Software Levels of Interoperability ...2-4

2.2.4.1 Physical Link Layer..2-4
2.2.4.2 Networked Data Layer..2-4
2.2.4.3 Basic Syntax Layer...2-4
2.2.4.4 Complex Syntax Layer ...2-5
2.2.4.5 Domain Semantics Layer..2-5
2.2.4.6 Full Semantics Layer ..2-5

2.3 Concepts for Describing Interoperability Requirements...2-5
2.3.1 Missions, Assets, and Interoperability Domains...2-6
2.3.2 Asset Characteristics ...2-8
2.3.3 System and Asset Adaptability ..2-9
2.3.4 Asset Logistics ..2-11
2.3.5 Asset Security ...2-13

2.4 Interoperability Domains and Standardization ...2-15

Section 3 Standardization of Interoperability Technologies3-1
3.1 Standardization as a Competitive Process..3-1
3.2 Phases in the Lifespan of a Standard ...3-1

3.2.1 Technology Inception..3-2
3.2.2 Technology Exploration ..3-2
3.2.3 Recognition of Technology Potential...3-2
3.2.4 Architecting the Standard ..3-3
3.2.5 Building a Consensus ..3-3
3.2.6 Mainstream Use of the Standard..3-3

x

3.2.7 Phase-Out of the Standard ...3-4
3.3 Basic Standardization Processes..3-4
3.4 Composite Standardization Processes..3-4
3.5 Technology Impacts of Standardization Processes...3-5

3.5.1 Technology Exploration and Standards Prototyping3-5
3.5.2 Risks of Using Closed De Facto Standards ..3-6
3.5.3 Standardization Time Scales..3-6
3.5.4 Self-Destruction of Promising Technology Markets3-7

3.6 Effects of Transitions in Composite Processes...3-8
3.6.1 Closed-to-Open Transitions (Good)...3-9
3.6.2 De Facto-to-Explicit Transitions (Good)..3-10
3.6.3 Open-to-Closed Transitions (Bad) ...3-10
3.6.4 Explicit-to-De Facto Transitions (Bad) ..3-10

3.7 Recommended Standardization Processes ...3-10
3.7.1 Ideal Open Standardization Process...3-10
3.7.2 Ideal Closed-to-Open Standardization Process...3-12
3.7.3 Ideal Closed Standardization Process ..3-13

3.8 Evaluating Technologies in Terms of Standardization Processes3-13

Section 4 Emerging Interoperability Technologies..4-1
4.1 Introduction ..4-1
4.2 Application Portability ..4-1

4.2.1 High-Portability Programming Languages...4-1
4.2.2 Java...4-4
4.2.3 Jini ..4-6

4.3 Component-Based Software ..4-8
4.3.1 JavaBeans and InfoBus..4-9
4.3.2 Enterprise Java Beans (EJB)..4-11
4.3.3 Microsoft COM (Common Object Model)...4-12

4.4 Middleware...4-13
4.4.1 DCOM (Distributed Component Object Model) and COM+........................4-14
4.4.2 CORBA – Common Object Request Broker Architecture............................4-15
4.4.3 Java RMI – Java Remote Method Invocation...4-16
4.4.4 XML (eXtensible Markup Language)..4-17
4.4.5 XML Metadata Technologies ..4-18
4.4.6 SOAP (Simple Object Access Protocol) and DNA 2000..............................4-21
4.4.7 WAP (Wireless Application Protocol) ...4-22

4.5 Portable Operating Systems ..4-23
4.5.1 COE – Common Operating Environment ..4-24
4.5.2 Linux ..4-24

Section 5 Summary: Naval Interoperability Opportunities ..5-1
5.1 The Role of Technology in Interoperability...5-1
5.2 Specific Opportunities...5-1

5.2.1 Analyze Needs In Terms of Assets and Interoperability Domains..................5-1

xi

5.2.2 Search for Applicable Technologies ..5-2
5.2.3 Prototype and Evolve the Use of Applicable Technologies5-2
5.2.4 Promote Standardization of Applicable Technologies....................................5-2

5.3 Technologies of Special Interest..5-3
5.3.1 SOAP (Simple Object Access Protocol) and Other XML Technologies.........5-3
5.3.2 WAP (Wireless Application Protocol) ...5-3
5.3.3 XML Metadata Technologies ..5-3
5.3.4 Java and associated technologies ...5-4
5.3.5 Linux and open systems ..5-4

Glossary of Acronyms..6-1

Index...7-1

xii

xiii

List of Figures

Figure Page

Figure 2-1. Missions, Assets, and Interoperability Domains ..2-6

Figure 2-2. Asset Characteristics...2-8

Figure 2-3. System and Asset Adaptability..2-10

Figure 2-4. Asset Logistics ...2-12

Figure 2-5. Asset Security...2-14

Figure 3-1. Pure and Composite Standardization Processes...3-5

Figure 3-2. Four Types of Transitions in Standardization Process3-9

Figure 3-3. Ideal Open Standardization Process ..3-11

Figure 3-4. The “Mozilla” Process for Standardizing Proprietary Technologies3-12

Figure 3-5. Ideal Closed Standardization Process ..3-13

List of Tables

Table Page

Table 2-1. Missions, Assets, and Interoperability Domains ...2-7

Table 2-2. Asset Characteristics ..2-8

Table 2-3. Asset Adaptability..2-11

Table 2-4. Asset Logistics...2-12

Table 2-5. Asset Security ..2-14

Table 3-1. The Four Basic Technology Standardization Processes3-4

xiv

1-1

Section 1

Introduction

1.1 Purpose

An interoperability technology is an integrated, automated set of capabilities that
makes it easier to share resources. The shared resources are usually data, but interoperability
technologies may also promote the sharing of software, physical components, or even
people. A fully deployed interoperability technology is one whose use has already saturated
most of its potential application areas. An example of a fully deployed interoperability
technology is ASCII (American Standard Code for Information Interchange), a old standard
for exchanging character data that has almost totally replaced alternative character coding
technologies such as EBCDIC (Extended Binary Coded Decimal Interchange Code) for the
global exchange of character data. Fully deployed interoperability technologies may be
extended or replaced by new technologies, but once in place they tend to remain stable due to
the high cost and lack of benefits of replacing them with a comparable alternative.

An emerging interoperability technology is an interoperability technology that exists
and is at least partially in use, but which has not yet – and may never – reach saturation of its
potential usage areas. Because they are not yet fully deployed, emerging interoperability
technologies are both riskier (they may never be fully deployed) and higher in potential (full
deployment may greatly increase benefits to all users) than fully deployed interoperability
technologies. As of mid 2000, XML (eXtensible Markup Language) is a good example of an
emerging interoperability technology. XML was designed as an easier-to-extend replacement
for HTML (Hypertext Markup Language), the language upon which the Internet was
originally built. XML is gaining rapidly in popularity, but it is currently far short of its
potential saturation levels as a replacement for HTML.

The overall purpose of this report is to provide general guidance on how to select and
promote the use of information-related interoperability technologies, and to briefly review a
number of promising (mid 2000) emerging interoperability technologies. To accomplish this,
the report first defines concepts and terms for understanding the interoperability problem,
and also addresses the process by which technologies become standardized to help address
such problems. The report then briefly reviews a number of emerging information
technologies, focusing on major concepts and comparative merits with references provided
for readers interested in technical details. No prior knowledge of the technologies is
assumed. The information-related emerging interoperability technologies covered in this
report include:

• High-portability programming languages

• Java

• Jini

1-2

• JavaBeans and InfoBus

• EJB (Enterprise Java Beans)

• Microsoft COM (Common Object Model)

• DCOM (Distributed Component Object Model) and COM+

• Microsoft SOAP (Simple Object Access Protocol)

• WAP (Wireless Application Protocol)

• CORBA (Common Object Request Broker Architecture)

• Java RMI (Remote Method Invocation)

• XML (eXtensible Markup Language)

• COE (Common Operating Environment)

• Linux

Finally, the report suggests some strategies for applying its information to naval issues.

1.2 Background

Interoperability is a vital issue whenever groups and equipment from diverse origins
must work together to meet a shared objective. Modern naval operations must deal with a
broad range of resource types, time scales, and scopes of operations. A naval operation may
be anywhere from local to global in scale, and may vary greatly in terms of the diversity of
the personnel and equipment involved. A simple operation may only require resources from
one defense service, but more commonly it will require the interactive use of multi-service,
allied, or even ad hoc coalition resources and personnel.

Effective selection and deployment of interoperability technologies can directly benefit
naval operations by making the composite command structures more cohesive and
responsive, and by providing groups at the tactical level with richer and more up-to-date
information resources. The improvements in the coordination from using interoperability
technologies in a composite force can literally make the difference between the success and
failure of that operation, and are one of the main reasons for pursuing greater use of such
technologies.

Another major benefit of good interoperability shows up in training and operations.
High levels of interoperability across systems can greatly increase the value of trained skills
by making them more “portable” across a wide range of equipment. Interoperability can also
increase the reliability with which a skill is used, since its user will no longer have to learn a
large number of confusing variations of it for different systems. Finally, interoperability
makes it easier to move personnel into critical situations by increasing the overall pool of
personnel who can operate potentially critical systems.

1-3

On the negative side, a poor choice of interoperability technologies can actually
increase the isolation of a system by making it incompatible with later systems. Another
important risk in using interoperability technologies is that better interoperability also
unavoidably means broader, easier system access, which in turn can make security an
increased concern. For these reasons the selection of a new interoperability technology
should never be taken too casually.

1.3 Interoperability Technology Impacts

Interoperability is not just a technology issue. For example, no technology can directly
provide an organization with the ability to ensure uniform use of interoperability standards.
On the other hand, the explosive growth of the global Internet in the 1990s aptly
demonstrated how a well-designed interoperability technology can encourage the growth of
interoperability. In the case of the Internet, a collection of relatively simple network
protocols and associated software (HTTP, TCP/IP, and web browsers) played a profound role
in making possible the rapid transition to global data and resource sharing over the Internet.
A major motive for examining emerging interoperability technologies is that one or more of
these technologies could well turn out to have similarly powerful impacts within their own
particular ranges of application.

1.4 Interoperability Technologies and Policies

Although the focus of this paper is interoperability technologies, it should be noted that
effective use of such technologies cannot be fully separated from policy for using and
administering sharable resources. After all, a technology that enables sharing of data,
software, parts, or people will be of little benefit if the policies (or lack of policies) that
control those resources makes such sharing difficult or impossible. Supporting
interoperability technologies at the policy level can be difficult, and even well intentioned
policies can have unexpected results. For example, simply issuing a service-wide policy
requiring use of a specific interoperability standard or technology can actually end up hurting
overall interoperability instead of helping it due of the risk of the technology being
“orphaned.” That is, the technology may lose its support in industry and other DoD services
because of rapid changes in competing technologies or their supporting markets. Orphaned
interoperability technologies can be especially troublesome, since they can end up isolating
its users and making the overall interoperability problem harder instead of easier.

There is no easy answer to the issue of how to combine interoperability technologies
with sound supporting policies, and such an answer would in any case be outside the scope
of this paper. On the other hand, the increasing use of information technology in warfare
means that there will always be a need for interoperability technologies as more and more of
the data exchanges in the battlefield begin to take place on time scales that are too fast for
people to follow. This need for real-time interoperability without necessarily involving
humans and policy directly will help ensure that interoperability technologies have an
important place in future systems, even when the precise policies for supporting and using
such systems have not yet been worked out.

1-4

1.5 Overview of Report

This report is divided into five sections, each of which addresses a particular aspect of
understanding emerging interoperability technologies.

Section 1 is this introduction, which explains the problem and provides an overview.

Section 2 defines fundamental interoperability concepts and develops a terminology for
describing interoperability issues and requirements. The purpose of this section is to provide
a way to describe the requirements for emerging interoperability technologies more
precisely. This section also discusses the vitally important issue of interoperability security.

Section 3 part describes the processes by which interoperability technologies are
standardized, and how such standardization processes affect the use and selection of
emerging interoperability technologies. This section also compares the interoperability
benefits of the various standardization processes that it defines.

Section 4 provides a quick, high-level overview of a number of high-potential emerging
interoperability technologies, and provides references for further investigation of these
technologies.

Section 5 concludes the report with a summary of potential opportunities for applying
emerging interoperability technologies to naval and defense interoperability problems.

2-1

Section 2

Fundamental Interoperability Concepts

2.1 A Definition of Interoperability

Interoperability is the ability to use resources from diverse origins as if they had been
designed as part of system. Individual interoperability problems may disappear as such
resources literally become part of a single system through integration and standardization,
but the problem of interoperability itself never disappears – it simply moves up to a new
level of complexity that accepts earlier integration as a given.

This same example emphasizes the critical role that security plays in interoperability.
Improved interoperability opens new highways that an adversary may be able to use just as
effectively as a coalition partner.

Interoperability is a difficult problem for military forces, where international politics
can result in abrupt realignments where yesterday’s foe is today’s coalition partner. The time
available to make their systems and resources work together is often very short, and security
becomes a major complication as forces attempt to share resources in the short term without
necessarily providing any additional mutual access in the long term. Another security issue
that must be addressed in military interoperability is a higher risk of major security breaches,
since the “highways” of sharing that interoperability builds between forces can often be used
as effectively by intruders as they can by the forces for which they were constructed.

Interoperability can also be difficult to design into military systems because the
strongly hierarchical operational command structures of military services can inadvertently
lead to the development of new systems in isolation from each other, even when the
developers are aware of the need for such systems to interoperate. The result can be a
“stovepiping” effect that results in systems that can interoperate only with great cost and
difficulty.

Section 2.2 discusses the unique interoperability needs of information technologies and
why they differ in important ways from physical interoperability requirements. This is
followed in Section 2.3 by the development of a set of concepts and terms for describing all
types of interoperability requirements for both hardware and software.

2.2 Unique Features of Information Technologies

As will be seen in the definition sections that follow this one, there is relatively little
difference in how fundamental interoperability concepts apply to hardware (physical) and
software (information) resources. On the other hand, it would be grossly incorrect to leave
the impression that there are no significant differences in how interoperability works at the
hardware and software levels. This section looks at some of those differences and their
implications to emerging information interoperability technologies.

2-2

2.2.1 Unique Aspects of Software

Software interoperability differs from hardware interoperability largely because
software itself differs from hardware in a number of significant ways. Some of these
differences include:

• Software is more complex than hardware. While it is true that some large, costly
physical machines such as the Space Shuttle can be extremely complex, software is
unique in that even low-cost, relatively small software “machines” have complexities
comparable to or higher than those of the most expensive physical machines. This
“casual complexity” of software can make software especially hard to understand and
standardize.

• Software changes faster than hardware. Because it is so easy to change binary
information, there is a powerful incentive in system design to keep as much design
complexity and uncertainty as possible in the form of software. While this is definitely
a positive trend in terms of the overall flexibility and reliability of systems, it also
means that software is the most likely part of a system to change. Rapid changes can
make it extraordinarily difficult simply to obtain interoperability in the first place, and
can make it equally difficult to keep it current.

• Software is easier to replicate than hardware. Because software and data are both
forms of pure information, they are enormously easier to copy and disseminate than
hardware. This can be both a good and a bad thing, since on one hand it means that
critical information resources (e.g., tactical situation data) can be dispatched to
wherever they may be needed. On the other hand, easy dissemination of software and
data can also greatly complicate security by making theft of data much easier.

• Software does not wear out. Although software can (and does) quickly become
obsolete or unusable for any of a number of reasons, “wearing out” is not one of those
reasons. As information machines, the patterns that constitute software and data remain
the same for as long as the software is recorded on some form of digital media. When
software does stop working, it is nearly always due to modifications made to it over
time, or because of changes to its environment.

• Software is extremely compact. Especially for modern computers, storing software,
requires very little physical space, and most of the space that it does occupy is taken up
by packaging and documentation. Software that is transmitted over the Internet with its
documentation in electronic form is so compact (essentially a few square centimeters of
a disk surface) that issues of physical size are essentially meaningless.

Given these differences, the bottom line is that software interoperability is more
complex than hardware interoperability. Software interoperability thus requires strategies
that are more complex than those required in hardware interoperability. These differences are
discussed below.

2-3

2.2.2 Types of Hardware Interoperability

Hardware interoperability technologies focus more on the physical aspects of the
interoperability problem. Four main categories of hardware interoperability methods and
strategies can be defined:

• Mechanical Interoperability looks at whether components are physically compatible
with each other.

• Chemical Interoperability looks at whether systems can make use of the same
chemical assets (e.g., low-octane gasoline).

• Electrical Compatibility similarly looks at whether diverse systems can make use of
(or convert) the same electrical power assets.

• Data Link Interoperability addresses use of the same logical interpretation by
hardware components to permit sending and receiving of data. Data link interfaces can
be electronic (wires), optical (fiber), or radio frequency in nature. Data link
interoperability tends to be the most complicated form of physical interoperability, both
because of the different media involved and because the complexity of some
connectors is driven in part by how they will be used by software.

The use of standards is especially important for hardware interoperability, since
adapters for physical interfaces can be costly, clumsy, and at times highly restrictive. The
details of the engineering methods used to design and fabricate hardware-level
interoperability interfaces are beyond the scope of this document. However, the obvious
overlap of the Electrical and Data Link categories with the basic ability to exchange data
shows how important hardware interoperability technologies are to achieving the initial
levels of information interoperability upon higher levels are based.

2.2.3 Software Interoperability Strategies

Software interoperability strategies use the power and flexibility of computers and
related information technologies to convert information from one form to another. As
processors have become cheaper and more powerful, the importance of this approach to
interoperability has increased greatly, since processors are now capable of converting many
types of information (including audio, visual, and radio frequency) quickly enough to make
conversion and adaptation approaches viable. The negative side of software-based
interoperability is that it requires enough knowledge about each type of resource to allow
“translation” between them. Collecting and integrating this information into a system can be
daunting when many types of resources are involved (e.g., in a coalition deployment
environment), or when the details of some resources are not well known (e.g., when older
legacy systems are involved). To help control the complexity of the problem, software-based
interoperability strategies rely on a combination of standards (e.g., of the protocols used to
build the Internet) to permit basic communications, and more complex conversion and
bridging strategies that are built on top of those standards.

2-4

2.2.4 Software Levels of Interoperability

Another notable feature of software interoperability is that it is usually accomplished
by creating layered systems, in which each new layer makes possible the exchange of
increasingly complex forms of data or software. From an engineering perspective, layered
approaches reduce design complexity and make it easier to add new capabilities. From a field
operations perspective, layered approaches increase flexibility and adaptability by providing
“fall back” levels of interoperability that can be used when higher levels are unavailable. For
example, ad hoc coalition ships would not typically be able to exchange entire applications
and their associated databases, but they can usually fall back to some lower level of
interoperability. This lower level might consist of an exchange of structured data such as
selected database records, or at a still lower level, an exchange of unstructured data such as
freeform text.

It should be noted that using layers to build interoperability is a design decision, and
not a fundamental characteristic of interoperable systems. Layering is most commonly used
in digital information systems in which it is easy to define more than one level of complexity
in the way a string of bits is interpreted. In contrast, traditional analog voice radios usually
lack layering, since the analog voice data is very difficult to break down into simpler, more
fundamental units.

One example of a layering approach for software interoperability is shown below, but
many other variations are possible.

2.2.4.1 Physical Link Layer

The physical link layer is the physical infrastructure that enables basic exchange of raw
binary or analog data between systems. It includes components such as cable, radios,
antennas, CPUs, signal encoding, bit error recovery logic, NICs, hubs and repeaters. For
allied and coalition environments, reaching even the physical link level of interoperability
can be difficult due to incompatibilities of equipment and standards.

2.2.4.2 Networked Data Layer

The networked data layer provides a layer of abstraction between the hardware
oriented physical layer and the software-oriented layers. It includes the operating system,
protocol stack, network management, router control logic, address assignment and naming
(location) services. This second level of interoperability enables directed, point-to-point
exchange of raw binary or analog data (e.g., via packet or switched circuits).

2.2.4.3 Basic Syntax Layer

The basic syntax layer enables exchange of syntactically structured data between
components, and requires the use of standardized conventions and software between
recipients. IEEE standard formats for text (ASCII) and numeric data are examples of
standards that operate at this level. This level of interoperability enables exchange of

2-5

meaningful data and values, but does not ensure consistent use or interpretation of the
received values.

2.2.4.4 Complex Syntax Layer

The complex syntax layer includes any kind of software that helps ensure the consistent
interpretation of data when it is ported between different types of computer systems and
platforms, and can be viewed as a more advanced extension of the data consistency standards
of the Basic Syntax level. By providing more structure, this level also begins to support the
active exchange of control data to direct remote processing operations. Examples of generic
support level technologies include CORBA (Common Object Request Broker Architecture)
standards and software, and XML (eXtensible Markup Language) standards and tools.

2.2.4.5 Domain Semantics Layer

The domain semantics layer of interoperability provides a sufficiently high level of
automation between recipients to allow common interpretation of complex, applications-
specific data. Examples include the ability to consistently and correctly interpret visual
battlefield data at multiple sites and across multiple groups and cultures. Ideally, this level
would include generic support for each group and culture represented, so that operations such
as metrics conversion can always be done using the same infrastructure tools. In practice,
however, domain semantics support is more often accomplished at current technology levels
by incorporating the conversion capabilities in each of the tools that require it.

2.2.4.6 Full Semantics Layer

The full semantics layer provides sufficient machine-based “understanding” of data and
requests to allow transfers of information even between different domain-specific areas of
expertise. Thus, for example, requests for the status of a tactical situation could result in
collection of meaningful data from all coalition partners and systems, and for all aspects of
the battle situation. This level of interoperability does not exist in fully automated form in
any current systems, although can be said to exist in limited form when networks incorporate
people to interpret and translate semantics for the rest of the network. Although it may never
be fully feasible, complete automation of the full semantics level represents an important
overall automation goal towards which interoperability technologies can be developed and
applied incrementally.

2.3 Concepts for Describing Interoperability Requirements

The remainder of Section 2 presents a set of concepts and terms that were defined as
part of the development of this report. They apply to all forms of interoperability, both
information-based and hardware-based. Examples are given throughout this section to show
how the concepts apply to both classes of interoperability

2-6

2.3.1 Missions, Assets, and Interoperability Domains

The most fundamental concept of this section is that interoperability exists as a problem
only relative to some well-defined type of resource or asset that is being applied to a
common purpose. A simple example of this concept, based on the idea of a bullet being such
a shared asset, is shown in Figure 2-1.

Mission
Goal

Mission Context

Example of an Interoperability Domain…

… and its defining Asset

(nope!)

Figure 2-1. Missions, Assets, and Interoperability Domains

A mission (Table 2-1) is an undertaking that defines such a problem context. Missions
may range in size from very small in size and short through international efforts that last for
decades, but they all require contribution of resources or assets from the participants.

An asset can be anything that helps contribute towards meeting the objective of the
mission. There are three broad categories of interoperability assets:

• Physical assets are material objects such as vehicles, fuel, and personnel.

• Information assets are items such as software and data are composed entirely of digital
information.

• Skill assets human abilities to accomplish tasks, such as interpreting acoustic signals or
operating computers. Skills are similar to software in terms of what they can
accomplish, and they can in some cases be replaced by software. However, a skill is not
digital information and can only exist in a person.

For interoperability purposes, a system is a constructed entity that uses assets to
accomplish a goal. Systems are also assets, but are distinguished by their ability to use or
process simpler assets. Systems can be physical (e.g., an engine), information based (e.g., a

2-7

software application), or skill based (e.g., a standardized procedure for interpreting
reconnaissance data).

Table 2-1. Missions, Assets, and Interoperability Domains

Mission

An undertaking that is defined by a single overall goal to which all the participants in the
mission have agreed. The mission context is the region of space and time for which
the mission exists. The mission assets are the assets available within the mission
context. The mission systems are the entities that use or process assets within the
mission context.

Asset

Anything that can be used to help accomplish a well-defined mission or goal. There are
three broad categories of assets: physical, information, and skill. A physical asset
such as a vehicle, fuel, or a person is a material object. An information asset such as
software or data is composed entirely of digital information. A skill asset is a non-
digital human ability to accomplish tasks such as interpreting acoustic signals or
operating computers.

System

A constructed entity that uses assets to accomplish a goal. A system is also an asset,
but is distinguished by its ability to process other simpler assets. A system may be
physical (e.g., an engine), information based (e.g., a software application), or skill
based (e.g., a standardized procedure for interpreting reconnaissance data).

Interoperability Domain

The full set of mission systems in which a specific type of asset can be used. A simple
interoperability domain supports the sharing of a single type of asset. The collection
of all systems capable of receiving and understanding a standardized radio broadcast
of a time synchronization signal is an example of a simple interoperability domain. A
compound interoperability domain supports sharing of more than one type of asset.
The set of all coalition locations that can use U.S. equipment is a compound
interoperability domain.

Target Interoperability
Domain

An interoperability domain that has been defined as a desired objective, but which does
not yet exist within the mission context.

Interoperability Goal The full set of target interoperability domains defined for a mission.

With the terminology given above, it is now possible to define the concept of
interoperability with greater precision. An interoperability domain is the full set of mission
systems in which a specific type of asset can be used. A simple interoperability domain
supports the sharing of only one type of asset. The set of all vehicles that use diesel fuel is an
example of a simple interoperability domain. A compound interoperability domain supports
sharing of more than one type of asset. The set of all coalition locations that can use U.S.
equipment is a compound interoperability domain.

It should be noted that this approach defines interoperability in terms of assets, as
opposed to “compatibility” of systems. The concept of asset-based interoperability domains
provides greater precision in describing interoperability status and goals for a mission. A
target interoperability domain is just such a goal, stated in the form of an interoperability
domain that has been defined as a desired objective, but which does not yet exist within the
mission context.

Similarly, the interoperability goal of a mission is simply the set of all target
interoperability domains for that mission. The interoperability goal can be thought of as a

2-8

statement of the interoperability requirements of a particular mission, stated in terms of
specific assets and the systems on which they need to be usable.

2.3.2 Asset Characteristics

Different types of assets require different strategies for making them interoperable.
Figure 2-2 shows three resource examples, each of which demonstrates at least two of these
characteristics. The full set of characteristics is described in Table 2-2.

Simple / Single-Use Compound / Reusable

“INCOMING!”

Replicable / Perishable

Figure 2-2. Asset Characteristics

Table 2-2. Asset Characteristics

Simple Asset

An asset that cannot be divided up into smaller parts without losing all significant value
within the context of a mission. An intact rifle barrel is a simple asset in a tactical
mission, but a broken rifle (which cannot normally be repaired within a tactical context)
is not.

Compound Asset
An asset that is comprised of two or more simple assets. A rifle is compound asset,
since even in a tactical environment it can be taken apart into simpler parts and
reassembled later.

Single-Use Asset
An asset such as fuel or artillery shells that is either destroyed or irreversibly
transformed by the act of using it. Most supplies (e.g., ammunition and food) are single-
use assets. A single-use asset may also be called a consumable asset.

Reusable Asset
An asset such as a ship, software, or a human skill that (barring its unplanned damage
or destruction) can be used and reused many times over the duration of a mission. A
reusable physical asset is also called a durable asset.

Replicable Asset
An asset that can be quickly and cheaply replicated or reproduced many times within
the timeframe of a mission. Many information assets are replicable, whereas most
physical and skill assets are not.

Perishable Asset

An asset whose value declines rapidly in comparison to the overall duration of a
mission. The decline may be preventable through the application of other assets (e.g.,
refrigeration of perishable food), or it may be unavoidable due to a direct dependency
on time or other external factors (e.g., reconnaissance data in a tactical environment).
Tactical data is an example of an information asset that is both replicable (it can be
replicated quickly and easily) and perishable (it becomes useless after a certain length
of time no matter how many times it has been replicated).

Simple assets cannot be divided up into smaller parts without losing all significant
value within the context of a mission, such as bullet or (for information technology) a data
packet. A rifle is compound asset, since even in a tactical environment it can be taken apart

2-9

into simpler parts and reassembled later. A modular software application with options for
adding and removing features as needed is an example of a composite information
technology asset.

Compound assets often imply significant interoperability issues. In the cases of both
rifle and modular software applications, it will not in general be possible to share or
interchange the simpler components from which they are constructed unless those
components have previously been designed to meet a common standard. This can in turn
“fragment” the associated interoperability domains, resulting in complex support logistics
and higher risks of unexpected incompatible combinations.

Single-use assets such as fuel, bullets, or data packets are either destroyed or
irreversibly transformed by the act of using them, and for that reason may also be referred to
as consumable assets. Most supplies (e.g., ammunition and food) are single-use assets, and
so are most of the information constructions such as packets that are used to transfer data
around in a network. Reusable assets are items such as ships, software, or human skills that
normally can be applied many times over the duration of a mission. When a reusable asset is
also a physical asset, it may be referred to as a durable asset.

Replicable assets are ones that can be quickly and cheaply created or reproduced within
the timeframe of a mission. Most information assets, such as data packets, files, and software
applications, are replicable, whereas most physical and skill assets are not. Replicability thus
is one of the more significant differences between information and physical assets. Because
there is so little cost in duplicating the assets themselves, it is often worth the trouble of
building a complex transport system (a network) to carry copies of them quickly throughout
the entire mission space. Because they can be broadcast so easily, replicable assets provide a
major opportunity for sharing useful resources if they can be made interoperable across all of
the systems in a mission.

Perishable assets are ones whose value declines quickly in comparison to the overall
duration of a mission. The decline may be preventable through the application of other assets
(e.g., refrigeration of perishable food), or it may be unavoidable due to a direct dependency
on time or other external factors (e.g., reconnaissance data in a tactical environment).
Tactical data is an example of an information asset that is both replicable (it can be replicated
quickly and easily) and perishable (it becomes useless after a certain length of time no matter
how many times it has been replicated). For perishable information assets, speed of transport
and interpretation (that is, of interoperation on mission systems) can be especially critical.

2.3.3 System and Asset Adaptability

In general, there are two strategies for making an asset usable within an interoperability
domain. The first and easily most preferable method is to use agreed-to standards during the
original design of the systems that use an asset. However, standards-based interoperability
domains are not always feasible for missions with diverse participants and systems. The
development and use of standards is discussed in another section of this document.

2-10

The second strategy is to use adapters (Figure 2-3 and Table 2-3) that that convert one
type of asset into another (usually similar) form that works on a different system. Compared
to using standards to create interoperability domains, adapters require more design, are more
expensive, and can lead to slower systems. On the other hand, adapter-based systems are
often more flexible and robust than purely standards-based systems, since the ability to
handle a wide range of unexpected cases is an inherent part of adapter design.

System-Side Adaptability

“Whoa! I’m not designed
for your barrel size!”

“No problemo! I’m the new
variable-bore model!”

Asset System

Asset-Side Adaptability

“Wow… I know I’m adaptable,
but isn’t this a tad extreme?”

“Look here sonny… are you up
to real coalition work or not?”

Asset System

Mutual Adaptability

“Ah, my sweet, we’re both
flexible, so let’s talk a bit…”

“Sure thing… just promise me
you won’t be too big a bore!”

Asset System

Figure 2-3. System and Asset Adaptability

Adaptability can be designed into any kind of a system, but it is an especially important
strategy for information technology systems because of their ability to transform data rapidly
and in complex ways. For physical systems, simple examples of adaptability include
adjustable wrenches (mechanical adaptability), engines designed to accept a wide range of
fuels (chemical adaptability), portable computers that can accept a wide range of input power
voltages and frequencies (electrical adaptability), and radio receivers that accept multiple
frequencies and formats. For information systems, examples of adaptability include
compilers that translate source code for use on more than one type of computer, applications
that can display more than one type of graphical file, software for translating email messages,

2-11

and network portals that transform data packets for transmission across incompatible
networks. Many of the technologies described in Section 4 deal with adaptability issues.

Table 2-3. Asset Adaptability

Adapter

An mechanism that allows an asset to be used in a system for which it was not
specifically designed. Adapters may reside in the asset (asset-side adaptability), in
the system that uses the asset (system-side adaptability), or on both sides (mutual
adaptability).

System-Side Adaptability
The ability of a system to adapt itself to use a variety of assets. An example would be
an internet browser that supports display of many different types of graphics files.

Asset-Side Adaptability
The ability of an asset to adapt itself for use in a variety of target systems. An simple
example is a screw that accommodates both regular and Phillips head screwdrivers.

Mutual Adaptability

When both an asset and the system that uses it have the ability to adapt to each other.
Systems with mutual adaptability may require a brief period of negotiation to determine
the most effective combination of asset and system adapters to use. Modem systems
that operate at more than one data rate on both sides are examples of mutual
adaptability.

Figure 2-3 and Table 2-3 define three major strategies for building adaptability into a
mission. Adapters may reside in the system that uses the asset (system-side adaptability), in
the asset itself (asset-side adaptability), or on both sides (mutual adaptability). Examples of
system-side adaptability include Internet browsers that can display many different types of
graphics files, and software-based radios that can adapt themselves to many different radio
formats. A simple example of asset-side adaptability is a screw designed to accommodate
both regular and Phillips screwdrivers. The combination of a multi-bit screwdriver with a
multi-head screw provides an example of mutual adaptability, since more than one choice is
possible on both sides. Systems with mutual adaptability may require a short period of
negotiation to determine which combination of asset and system adapters to use. A simple
example of mutual adaptability is the way home computers connect to Internet service
providers. To establish such connections, a home computer modem and a service provider
modem must both look for and lock onto the highest possible mutually compatible data rate.

2.3.4 Asset Logistics

An important dynamic aspect of an interoperability domain is how it transports assets
among the systems in the domain. This concept of asset logistics, or the timely distribution
of assets within an interoperability domain, is described in Figure 2-4 and Table 2-4.

The initial asset distribution of an interoperability domain describes where assets of a
particular type are located immediately after they are first created or as they are added into a
mission. In contrast, the optimum asset distribution describes where the assets need to be to
provide the maximum benefit for accomplishing the mission objectives. These two endpoints
are often vastly different, and that difference describes the overall requirements for dynamic
transport of the asset within its domain. The asset transport system is simply the set of
mechanisms that make such dynamic transport of the assets possible. A fleet of aircraft

2-12

carriers is an example of an asset transport system for aircraft, and a data network is an asset
transport system for command, control, and operational data. As shown by these examples,
assets usually share such transport systems, although dedicated transport systems may be
constructed for especially critical types of assets (e.g., for command and control data).

Initial Asset Distribution Optimum Asset Distribution

Asset Transport System

Main
cache Sub-

cache

Sub-
cache

Figure 2-4. Asset Logistics

Table 2-4. Asset Logistics

Initial Asset Distribution
The set of locations where assets of a particular type are located as they are first
created or as they are added into a mission.

Optimum Asset Distribution
The set of location where assets of a particular type provide the maximum benefit for
accomplishing mission objectives.

Asset Transport The act of relocating an asset.

Asset Transport System
Within an interoperability domain, the set of mechanisms that make transport an asset
possible. A fleet of aircraft carriers is a transport system for aircraft assets, and a data
network is a transport system for command, control, and operational data.

Asset Cache
A location at which assets are stored until needed. For a particular asset a mission may
use more than one size and location of caches, depending on levels of need and how
perishable the asset is. This may also be called an asset depot.

Finally, an asset cache is simply a location at which asset can be stored until needed.
Like transport systems, different types of assets usually share these caches. For a particular
type of asset the optimum storage arrangement will generally include more than one cache
size and location, and determining the best arrangement of caches for can be a complex
process.

2-13

2.3.5 Asset Security

One of the more important (and possibly more overlooked) aspects of building
interoperability into mission systems is the following relationship between security and
interoperability. We suggest the following rule-of-thumb as a way of expressing this issue:

The higher the level of interoperability, the greater the risk of system-wide failure
due to malicious intrusion

This unsettling rule is simply a consequence of the observation that you cannot commit
a robbery until you have a way to get to the bank. As the idea of interoperability domains
helps point out, the real goal in interoperability is to create “highways” that lead directly into
all the systems involved in a mission. With full interoperability, malicious intrusions that
previously might have affected only one system can travel more easily to other systems by
way of the interoperability domains that have been defined for them. This problem is
especially true when the defined interoperability domains include assets that control system
resources and security.

The pervasiveness of this rule can be seen by its existence in natural biology. When
populations of animals or plants become too “standardized” genetically (e.g., due to
inbreeding), the chances of a disastrous plague increase dramatically as the pathogens
“discover” exactly the same genetic breeding ground exists in all members of the species.
This is one reason why cloning is relatively rare in nature – it creates populations that are too
easily destroyed by a single new pathogen. (It is also an interesting argument against
achieving interoperability only by using standards, which could create extremely
homogenous systems that could all fail at the same time.)

Biology also provides evidence that high levels of interoperability are nonetheless
possible, but only if adequate security mechanisms are in place. Complex organisms such as
humans have cells that freely share a very broad range of resources, yet the system as a
whole remains capable of resisting most pathogen attacks. The difference is that these
cellular sharing mechanisms include the use of complex security techniques such as self-
identification, self-evaluation, and constant policing of the “interoperability medium” for
suspected pathogens.

Figure 2-5 and Table 2-5 introduces a few basic concepts for understanding the security
issues of interoperability domains. An asset container is that portion of an asset that does not
directly contribute to its use, but which is necessary either to prevent damage or loss of
integrity of an asset while it is being transported. An asset container may also be responsible
for providing an environment that is required for correct operation of the asset. Fuel tanks
and shipping containers are physical asset containers, while network data packets are
information containers. Humans are containers for skills, since they provide the
“environments” for exercising them. Containers are themselves a type of asset and may be
single-use (food wrappers) or durable (shipping containers). Containers are important from a
security viewpoint because they can include security features.

2-14

()
Asset PayloadAsset Container

Asset
Signature

(… and a Trojan Asset)

Asset Authenticator

Figure 2-5. Asset Security

Table 2-5. Asset Security

Asset Container

The portion of an asset that does not directly contribute to its use, but which is
necessary either to prevent damage or loss of integrity of an asset while it is being
transported, or to provide an environment that is required for the correct operation of
the asset. Fuel tanks and shipping containers are physical asset containers, while
network data packets are information containers. Humans are containers for skills,
since they provide the “environments” needed to use them. Containers are themselves
a type of asset and may be single-use (food wrappers) or durable (shipping
containers).

Asset Payload
The usable content of an asset, as distinguished from the asset container. The asset
payload of a fuel tanker is the fuel, and the asset payload of a data packet is its usable
data content.

Asset Signature

The external characteristics of an asset that make it of recognizable and usable within
a mission. For a physical asset such as an artillery shell, the signature may include
issues such as size, shape, weight, chemical composition, and engineered
performance characteristics. For an information asset such as a software application,
the asset signature consists of the features of the application that allow it to operate
correctly and safely on a specific computer system. For a skill asset, the signature
consists of a human-understandable description of the skill and how it applies to
mission objectives.

Asset Authenticator
A mission component that is responsible for analyzing the signature of an asset and
deciding whether the asset is what it claims to be, and that it is safe to use in a
particular context.

Trojan Asset
An entity that presents the signature of a valid asset, but whose payload is malicious –
that is, in opposition to the overall objectives of the mission. Nonfunctioning ordinance,
software viruses, and human agents are all examples of possible Trojan assets.

An asset payload is the usable content of an asset, as distinguished from its container.
The asset payload of a fuel tanker is the fuel, and the asset payload of a data packet is its
usable data content. An asset signature is the collection of external characteristics of an asset

2-15

that make it recognizable (and usable) within a mission. For a physical asset such as an
artillery shell, the signature may include issues such as size, shape, weight, chemical
composition, and engineered performance characteristics. For an information asset such as a
software application, the asset signature consists of the features of the application that allow
it to operate correctly and safely on a specific computer system. For a skill asset, the
signature consists of a human-understandable description of the skill and how it applies to
mission objectives.

An asset authenticator is a system mechanism that is responsible for analyzing the
signature of an asset and deciding whether it is what it claims to be. The authentication
process may be either continuous or periodic, depending on the design of the system, but it
should always ensure that authentication will be completed before the asset is opened or used
in any way.

Finally, a Trojan asset is an entity that presents the signature of a valid asset, but whose
payload is malicious – that is, in opposition to the overall objectives of the mission.
Nonfunctioning ordinance, software viruses, and human agents are all examples of possible
Trojan assets.

2.4 Interoperability Domains and Standardization

In summary, interoperability issues can be defined and quantified more specifically by
defining interoperability domains over which the sharing of a specific type of resource can
take place easily and safely. Identifying where and how these domains should overlap to
make logistical support easier helps guide overall design, and defining sharp boundaries for
the domains helps define and quantify the security problem. There are two main approaches
to making such sharing of assets possible: standardization, and adaptability. By far the most
important of these two approaches is standardization, since even adaptable parts and systems
must usually share some set of underlying standards to work effectively.

Once a system has been understood in terms of interoperability domains and sharing of
assets, the next problem is often the creation of standards to support the required domains.
Because of the importance of standardization in the creation of effective interoperability
domains, the next section (Section 3) is devoted entirely to developing and understanding
how standardization works, how it can be promoted, and how it can fail. Unlike locally
controlled design, standardization is a complex process that is as much economic and
political as technical, and understanding how it works is vital to applying new technologies.

2-16

3-1

Section 3

Standardization of Interoperability Technologies

3.1 Standardization as a Competitive Process

Standardization of interoperability technologies is a far more Darwinian process than
the placid pace of many standards committees might lead one to think. Firstly, the promise of
a new technology is rarely obvious enough to persuade conservative standards groups to
invest the substantial time and personnel resources needed for a full committee-style
standardization effort. Secondly, the actual success of a standard often depends upon
competitive issues that have little to do with the standards process itself. Standards that fail to
gain sufficient recognition or approval within their target communities may fail despite great
technical promise. The market success of the VHS videotape standard over the
technologically more impressive BetaMax standard is one example of how such market
forces affect the viability of standards.

This section of the reports looks at the standardization process in depth in order to help
understand the factors that help lead to the success or failure of emerging interoperability
technologies, and to help plan standardization strategies when specific technologies are
selected for interoperability applications. Section 3.2 discusses the phases in the full lifespan
of a standard, including technology inception, technology exploration, recognition of
technology potential, architecting the standard, building a consensus, mainstream use of the
standard, and phase-out of the standard. Section 3.3 defines and explains basic
standardization processes based on how they deal with issues of owenship and distribution of
information. Section 3.4 introduces composite standardization processes, in which the basic
standardization processes are combined to create more complex (and often more effective)
standardization processes. Section 3.5 addresses technology impacts of standardization
processes, including technology exploration and standards prototyping, risks of using closed
de facto standards, standardization time scales, and self-destruction of promising technology
markets. Section 3.6 looks at effects of transitions in composite processes, including closed-
to-open transitions (good), de facto-to-explicit transitions (good), open-to-closed transitions
(bad), and explicit-to-de facto transitions (bad). Section 3.7 describes three recommended
standardization processes: an ideal open standardization process, an ideal closed-to-open
standardization process, and an ideal closed standardization process. Finally, Section 3.8
discusses evaluating technologies in terms of standardization processes.

3.2 Phases in the Lifespan of a Standard

Committee-style standardization thus is better understood as simply the most
conspicuous phase of a much more complex overall process of technology acceptance and
standardization. The phases of this process are described below.

3-2

3.2.1 Technology Inception

Contrary to what one might expect, successful standards usually begin their careers as
highly innovative ideas that push or even break the boundaries of acceptable behavior (often
as defined by earlier standards). New technologies “sneak in” through niche application areas
and tools in which their benefits to a small community of users outweighs the disadvantages
of ignoring the standards of some larger community. The premiere example of this effect is
the Internet, whose TCP/IP protocols were first developed and proven out by a small and (to
most people) little-known community of DoD researchers who used the early Arpanet as a
mechanism for sharing research results. In sharp contrast, the laboriously constructed
International Standards Organization (ISO) seven-layer protocol stack that was intended to
address many of the same issues as TCP/IP is effectively dead in the current market. Another
interesting example is the MPEG-4 data compression standard, which creates an innovative
framework for diverse types of hardware and software technologies that is very different
from its much more rigidly defined, hardware-oriented MPEG-2 predecessor.

One important implication of this is that the best place to look for long-term
interoperability standards is probably not in existing standards, but rather in new and
innovative “niche market” technologies that may not follow current standards all that closely.

3.2.2 Technology Exploration

For information technology, an innovative new technology generally enters its niche
area not as an abstract concept, but rather as part of a specific tool or product that directly
demonstrates its value to potential users. The Mosaic browser is an example, since its success
in presenting the Internet to users as a set of hyperlinks (the Web) greatly helped promote
and solidify the HTTP (HyperText Transfer Protocol) standard that underlies all current Web
browsers.

The core set of users of such a new technology tool are typically willing to take more
risks with an unproven new technology, and are often found in research or applied research
environments. Their adoption of the tool provides an important phase of hands-on use and
maturing of the technology, which stabilizes it and helps prove (or disprove) its overall
viability.

3.2.3 Recognition of Technology Potential

Next, a group within or at the periphery of the core group recognizes the broader
potential of the technology, and decides to push for formal standardization as a way of
increasing its value. The transition from niche technology into formal standardization is an
especially critical one in terms of its impact on the long-term success of the technology, since
it is at this point that major decisions must be made on how to create a generalized
architecture for the technology.

3-3

3.2.4 Architecting the Standard

Based on the successes of the original core community in using the technology, a small
group of architects or designers must propose a new framework for applying the technology
to a broader community. Poor design decisions at this point can lead to a framework that is
poorly integrated, inconsistent, inflexible, or of little interest to the broader community. The
architectural generalization effort may be done by a small architecting group, or as part of the
early work of a full-fledged standardization committee.

The initial extraction of the XML (eXtensible Markup Language) standard from the
earlier and much larger SGML standard provides a good example architectural
generalization, and it also shows the critical role that design decisions play in this phase. In
the case of XML, the architecting group chose to make XML a strict subset of SGML. This
reduced risk by avoiding inherently risky technology extrapolations, and speeded the
dissemination of the standard by making it possible for XML users to take advantage of a
mature set of tools developed earlier by the SGML community.

At the other end of the spectrum of architectural generalizations is Ada 83, a
programming language that was inspired by the earlier languages Pascal, Algol, and PL/I.
While many of the simpler features of Ada 83 were based on well-proven programming
principles, the standard also included a number of innovative features (e.g., the rendezvous
mechanism for inter-process communications) whose implications were not nearly as well
understood. This lack of understanding of the implications of the standard significantly
slowed the creation of Ada compilers and support tools, and made it harder for programmers
to apply Ada effectively. Compared to XML, the adoption of Ada by its target community
consequently was much slower and far less pervasive.

3.2.5 Building a Consensus

After generalization of its architecture, a technology is then ready for the familiar and
often far more conspicuous committee-style standardization process. By this time the outline
of how the technology will be used is usually well understood, so the committee
standardization process focuses more on building a community consensus on the details of
how to use the technology. Major debates on the technology may still erupt during this
phase, but if they do it is often an indication that the earlier architectural generalization phase
was either incomplete or poorly done. The goal in this stage is to get a strong consensus from
as diverse a range of competing parties as possible, to increase both the completeness and the
stability of the draft standard. (Narrowly focused and non-competitive committees can
produce unstable standards because they may not adequately represent the full range of
issues and priorities needed.)

3.2.6 Mainstream Use of the Standard

The mainstream life of a standard usually begins with the release its first complete
draft. The first draft is usually updated soon after its release, in response to the first reports of
actual field use of the standard. Standards in mainstream usage are mostly likely to succeed if

3-4

they are open enough to allow incorporation of new, often unforeseeable innovations and
technologies. Rigid standards that cannot handle unanticipated change are more likely to fall
by the wayside and be replaced by standards better able to handle technological innovation.

3.2.7 Phase-Out of the Standard

The final phase of a standard is obsolescence and phase-out. This can happen rapidly
for poorly designed or out-of-favor standards, since market reluctance to use standards that
are perceived as risky can make them irrelevant with surprising speed. Open, adaptable
standards may not really become obsolescent at all. Instead, they may be come deeply
incorporated into the lower levels of other technologies and standards and survive
indefinitely as components of new standards.

3.3 Basic Standardization Processes

Not all technologies follow the above sequence. In particular, standardization processes
vary in important ways based on how they deal with issues of technology ownership and
distribution. Based on these issues, four basic variations of the standardization process are
listed in Table 3-1.

Table 3-1. The Four Basic Technology Standardization Processes

De Facto Explicit

Closed
Closed De Facto

(Example: Windows NT)
Closed Explicit

(Example: I2O - Intelligent I/O)

Open
Open De Facto

(Example: Linux)
Open Explicit

(Example: XML)

Windows NT is a closed de facto standard, since it is proprietary and has never
undergone explicit standardization. The competing Unix-like operating system Linux is an
example of an open de facto standard, since it has never undergone explicit standardization,
but was developed in a very open fashion. The Intelligent I/O (I2O) standards process is
explicit but closed, since its results are available only to members of the I2O organization.
Finally, the eXtensible Markup Language (XML) is open and explicit, with a committee-
based standardization process and results that are readily accessible to any interested group.

3.4 Composite Standardization Processes

For a given technology, more than one of the processes in Table 3-1 may apply over
time. Figure 3-1 shows two particularly important applications of the fundamental

3-5

standardization processes: A pure de facto process, and a composite process that begins with
de facto standardization and subsequently moves into an explicit process. The de facto
process is important because it produces many of the informal standards that go into
commercial information technology products such as Microsoft Office, while the composite
process in Figure 3-1 is important because it defines the most common sequence for creating
a formal standard. In fact, the typical overall process described earlier is essentially this two-
step process, with technology inception and exploration providing the de facto phase of the
composite process, and the committee-based process that grows out of it providing the
explicit phase.

Explicit
Standardization

Process

De facto
Standardization

Process

De facto
Technology

Standard

Explicit
Technology

Standard

Pure De Facto Process

Two-Part Composite Process

Figure 3-1. Pure and Composite Standardization Processes

3.5 Technology Impacts of Standardization Processes

This section discusses some of the important impacts of standardization processes on
the long-term growth and use of an emerging technology.

3.5.1 Technology Exploration and Standards Prototyping

To understand the interplay of standardization processes, the composite process can be
viewed in terms of prototyping. The first de facto phase is equivalent to developing and
thoroughly testing a prototype of the final standard, while the subsequent explicit phase
corresponds to rigorous development of a final standard. The prototyping phase is needed
because it is perhaps the most effective way to identify the potential risks and inconsistencies
hidden in any type of complex technology specification, and because it allows core
developers to be creative in exploring alternatives without undue consequences to a larger
community of users. Conversely, being overly creative during the second (explicit)

3-6

standardization phase can be quite risky. If major technology extrapolations are made at that
point, they will lack the proof-of-concept validation that had been provided by earlier
prototyping work. Consequently, these late-addition features will tend to be much riskier
when played against other more proven components of the standard.

The standardization effort for the Ada computer language is a good example of the
risks of attempting creative technology exploration in the explicit phase of standardization.
While much of the Ada standard relied on well-proven programming language concepts, it
also specified a number of new concepts (the “rendezvous” is a particularly notable example)
whose implications to both tool builders and users were largely unknown at that time. The
result was lengthy delays and significant confusion in the release and use of efficient Ada
compilers. In contrast, the standard for the C programming language was based very heavily
on earlier C compilers that had become de facto standards. As a direct consequence, the C
standard was much more quickly accepted and adopted by its target community than had
been the case with Ada.

3.5.2 Risks of Using Closed De Facto Standards

Closed (that is, single-vendor) de facto standards are a normal part of technology
innovation, and the strong profits associated with them provide an important incentive for
encouraging vendors to explore innovative approaches. From a consumer viewpoint,
however, long-term reliance on closed de facto standards entails significant risks. There are
three main problems: closed de facto standards tend to be cryptic, unstable, and costly.

Closed de facto standards are cryptic because it may be difficult or impossible to obtain
detailed information about them from their owners. They are unstable because they are not
based on any shared public standard to which a large number of competing parties have
agreed. Without such an agreement, there is nothing to keep technology owners from
changing a technology standard independently of the broader needs of a user community.
Finally, they are costly because of their monopolistic nature. With only one owner, users
have few ways to influence the price or release of new versions of the technology.

The problem of instability in de facto standards is exacerbated by financial factors that
encourage the companies that own them to alter them. A company that owns a popular
de facto standard can make large profits at low risk simply by periodically altering the
standard, which in turn forces their user community to buy upgrades for products that either
use the technology or interface with it. The impending (year 2000) move of much of the PC
server industry from Microsoft Windows NT 4.0 to Microsoft Windows 2000 is an example
of how changes to a closed de facto standards can destabilize an entire industry. Windows
2000 incorporates a significantly different network infrastructure. These changes effectively
obsolete earlier NT 4.0 systems, and thus may require massive upgrades to entire networks.

3.5.3 Standardization Time Scales

Historically, standardization of interoperability technologies often occurs a long time
(months or more years) after the introduction of the first tools and products that demonstrate

3-7

them. An example is the POSIX standard, which helped standardize Unix-like operating
system functions that in some cases had been first introduced years or even decades earlier.
This delay between introduction and standardization of a technology is not overly surprising,
since the promise of a new technology is rarely sufficiently convincing to lead to an
immediate effort to standardize it.

3.5.4 Self-Destruction of Promising Technology Markets

Another factor that can delay or even destroy standardization is competition between
companies that are attempting to create their own closed de facto standards. Many companies
prize closed de facto standards because they can provide monopolies on promising new
technologies, and because they give the company a huge advantage in the subsequent support
and upgrades market. (It should be noted that open de facto standards usually do not suffer
from these problems, since no one company can fully control an open standard.) The positive
side of competition among companies for creating closed de facto standards is that it
encourages thorough exploration of the technology and its potential uses. The negative side
is that the resulting standard is usually closed, and thus subject to potentially arbitrary
marketing decisions by the company that owns it.

More importantly in many cases, severe competition to create closed de facto standards
can literally destroy the market for a promising new technology, especially if other less
promising but serviceable technologies exist alongside the new one. Technology self-
immolation is most likely to happen when the following three conditions exist:

• The technology promises substantial financial rewards. The first condition is that
the technology has high to very high financial promise. Curiously, this has a “gold
rush” effect that makes it much more difficult to elicit cooperative behavior from
competing groups, and so diminishes the chances for the type of cooperation needed to
create a successful standard.

• The manufacturing process for the technology requires substantial set-up time.
The second condition is that it takes a long time to prepare to manufacture the product
once a standard has been set. This condition places companies in a sort of Catch-22
situation in which losing the de facto standard is tantamount to giving the entire market
over to the competitor closest to the final standard.

• An older but serviceable technology exists for the same market. This final condition
means that there is a “release valve” for consumers who become cynical with the lack
of standardization of the new technology. Even if it is substantially inferior, an older
technology that provides serviceable support can leach support away from a much more
impressive new technology that lacks full-market standardization

The first two conditions of high profit potential and difficult setup can tempt trailing
companies to encourage market self-destruction. The incentives are very basic and can be
summed up in an old schoolyard bully slogan: “If I can’t have it, you can’t either.” The
strategy is more than a simple emotional response, however. In particular, a company that
already has a large market share based on older technologies (and which is trailing in a new

3-8

one) may surmise that self-destruction of the new technology is the safest way to maintain an
existing advantage. Unfortunately, consistent promotion of technology self-destruction by
entrenched companies quickly degenerates into monopolistic behaviors that can seriously
stifle innovation throughout an entire industry.

Encouraging market self-destruction works best in combination with the third condition
of having technology alternatives. Having a serviceable older technology available makes it
easier for companies to devise alternatives, and heavy investment in older technologies can
make it difficult for new technologies to break into a market. The CRT (Cathode Ray Tube)
display is an example of an older technology with major disadvantages in terms of weight,
volume, security, implosion risks, complex manufacturing, and use of high voltages. If the
CRT were introduced now as a display technology, its disadvantages would be so
overwhelming that it would probably fail. In actuality, the CRT has benefited from so many
decades of technical investment and cost-lowering mass production that it is difficult for
newer and technologically superior approaches such as flat-screen displays to compete
against CRTs in the general market.

Self-destruction of a new technology leads to one of two long-term outcomes. The first
outcome is a delay of years or even decades in the deployment of the technology. Examples
of such delays include laser videodisks and cellular telephony, both of which were delayed
for over a decade by self-destruction of early standardization efforts. The second possible
long-term outcome is permanent failure of the technology through its replacement with an
even newer technology. An ongoing example of this outcome is the increasing popularity of
recordable and rewritable compact disks (CD-R and CD-RW) for digital audio recording.
While the easier alternative of digital audiotapes has been technically feasible for decades,
broad use of that technology has been hampered by repeated self-destruction of standards.
Given the low cost and high reliability of CD-R and CD-RW technologies, it is now possible
that widespread use of digital audio recording tapes simply will never occur at all.

There are many interesting examples of technologies being delayed or failing altogether
due to self-destruction of their associated standards efforts. A notable example of self-
destruction and delay of a promising technology market was the first (1980s) attempt to
market videodisks. Fierce competition between companies with proprietary formats resulted
in an implosion of the market, and potential customers turned instead to magnetic tape based
VHS (Video Home System) and BetaMax technologies. These tape technologies were less
impressive technologically than videodisks, but they delivering good service to home users.
Consequently, the advent of a commercially significant laser videodisk industry was delayed
for well over a decade until the late 1990s release of the DVD (Digital VideoDisk) standard.

3.6 Effects of Transitions in Composite Processes

Basic standardization processes can be combined in many different ways to create
composite processes. Figure 3-2 shows four important transitions that can take place within
composite standardization processes. The first two transitions have generally positive affects,
while the second two usually result in a deterioration of standards. When constructing a

3-9

specific strategy for standardizing an emerging interoperability technology, it is advisable to
avoid the latter two types of transitions if at all possible.

Closed
Standard

Closed
(Private concept

exploration

Open
(Public concept

exploration)

(c) Open-to-Closed Process (bad)

Open
Standard

Open
(Public concept

exploration)

Closed
(Private concept

exploration)

(a) Closed-to-Open Process (good)

Explicit
Standard

Explicit
(Public control

of standard)

De facto
(Private control

of standard)

(b) De facto-to-Explicit Process (good)

(d) Explicit-to-De facto Process (bad)

De facto
Standard

De facto
(Private control

of standard)

Explicit
(Public control

of standard)

Figure 3-2. Four Types of Transitions in Standardization Process

3.6.1 Closed-to-Open Transitions (Good)

Figure 3-2(a) shows a closed-to-open transition in which a company or individual
decides to fully disclose the details of a previously private technology standard. This is most

3-10

likely to occur when the owner of the technology sees more marketing potential from
opening up a selected technology than from keeping it closed (e.g., because they feel it will
result in wider use of a standard with which they are already intimately familiar). These
transitions generally lead to more stable standards upon which new markets and technologies
can be built more easily and more quickly.

3.6.2 De Facto-to-Explicit Transitions (Good)

Figure 3-2(b) shows a de facto-to-explicit transition in which a company or individual
chooses to relinquish control of the standardization process to a group of competitors. This
can be a difficult decision for a company to make, since there are financial benefits to
retaining control of de facto standards. Such transitions are usually beneficial to the
community as a whole, however, since they help stabilize and generalize the standard.

3.6.3 Open-to-Closed Transitions (Bad)

Figure 3-2(c) shows an open-to-closed transition in which a standard that is initially
open and public is “captured” and converted into a proprietary standard. Open-to-closed
transitions are usually accomplished through a gradual process of “standards pollution,” in
which a powerful company incrementally releases new or updated software components that
deviate enough from the public standard to make it unusable. Open-to-closed transitions are
costly and disruptive to users, and should be discouraged when they are done solely to
capture a market. On the other hand, there are also cases where old or badly designed
standards genuinely cannot meet market needs. In those cases, the prospect of an open-to-
closed transition can provide a valuable incentive for businesses to provide real innovations.

3.6.4 Explicit-to-De Facto Transitions (Bad)

Figure 3-2(d) shows an explicit-to-de facto transition, which tends to occur in
combination with an open-to-closed transition. Like open-to-closed, explicit-to-de facto is
most likely to occur as a result of intentional “standards pollution” by a company that wishes
to obtain full de facto control of an important public technology standard.

3.7 Recommended Standardization Processes

The next three sections provide recommendations for building standardization
processes that avoid negative transitions and enhance positive effects.

3.7.1 Ideal Open Standardization Process

Figure 3-3 shows the ideal open process for standardizing a new technology. It is a
composite process consisting of a fully open early phase of de facto technology exploration
and trial use, followed by and open and explicit standardization process that tracks very
closely to the proof-of-concept results of the de facto prototype. The Internet, which is the

3-11

direct descendent of the DoD-sponsored Arpanet “prototype,” is the most impressive
example of this style of standardization through evolution and extension.

Open Explicit
Technology

Standard

Open Explicit
(Standardize the

“Prototype”)

Open De facto
(Explore & Use

the Technology)

Figure 3-3. Ideal Open Standardization Process

The ideal standardization process uses de facto exploration of the technology to
encourage the greatest possible exploration of implications of the technology before full
standardization. This phase also encourages creative inputs at the right point in the process –
that is, before the final committee-style formal standardization process begins.

Making initial phase open improves the stability of the resulting standard by ensuring
input from as large groups of potential technology users as possible. It also increases the
opportunities for creativity and innovation during the “prototyping” part of the process,
which can substantially improve the overall value of the resulting standard. The Internet is an
especially powerful mechanism for implementing such open de facto standardization
activities, since it can be used to reach a very wide audience of potential users. Open source
methods can further increase the effectiveness of this phase. In open source technology
exploration the source code for a new information technology is always be available to all
interested parties, and no one group or individual can own the source code. Open source
methods prevent “capture” of the technology by any one group during the exploration phase,
and later helps ensure that companies focus on applying the technology instead of attempting
to capture it in the form of a proprietary standard.

In this ideal process, the second (open and explicit) phase of committee-style
standardization maintain a very low-risk approach. In particular, it should not attempt to
introduce innovations that have not already been explored in the earlier prototyping phase,
but should instead focus on selecting, generalizing, and fully documenting the most useful
results produced by the earlier phase. The XML standardization effort is a good example of
this approach, with its strong focus on selecting a subset of the most valuable features of the
earlier SGML language while keeping compatibility with SGML tools and capabilities. The
XML case also demonstrates that while the standardization activity may be conservative, a
successful standard may then lead to a new cycle of prototyping and innovation in associated
standards. For XML this second phase of , as has happened in the case of XML with a
number of supporting technologies standards that have since developed about the stable
XML core standard.

3-12

While the temptation to innovate can be strong during this phase, the lesson of efforts
such as Ada 83 (a negative lesson) and XML (a positive lesson) seems to be that innovation
should be done before and after the explicit standardization process, not within it.
Technologies such as XML that have been explicitly designed to support later extensions and
generalizations work particularly well in such an approach, since they provide good outlets
both before and after the actual standardization effort for further innovation.

3.7.2 Ideal Closed-to-Open Standardization Process

While Figure 3-3 provides a strategy for fully open standardization, many standardized
technologies begin as closed, proprietary concepts or technologies that only later become
candidates for open standardization. Figure 3-4 shows a three-step modification of the ideal
open process that provides a way to transition proprietary technologies into open standards.

Closed De
facto

Open
De facto

Open
Explicit

Open Explicit
Technology

Standard

Figure 3-4. The “Mozilla” Process for Standardizing Proprietary
Technologies

Standardization of closed, proprietary technologies can occur only if the company that
originally owns the technology is willing to release full control of it. A company may release
a technology if they feel that it will result in a highly profitable new market in which their
profits will be higher than is possible if the technology is not universally adopted. Both audio
and the new (DVD) generation of video laser disks provide examples of this incentive.
Companies may also release technologies as a way of preventing competitors from
dominating a market, or because the technologies are no longer directly profitable to them.

Whatever the incentive behind opening a proprietary technology to standardization, the
three-step Figure 3-4 allows the implications of the proprietary technology to be explored in
a more open forum before sending it on for committee-style explicit standardization. This
approach can work especially well with software-based information technology that can be
placed on the Internet for faster dissemination and exploration. The AOL/Netscape “Mozilla”
effort to develop an open source web browser is an excellent example. Mozilla began with
proprietary technology (the Netscape browser), transitioned the browser into a fully open
development and testing process (the Mozilla effort), and as of early 2000 is encouraging the
development of XML-based XUL (XML-based User Interface Language).

The Mozilla effort also demonstrates some of the disadvantages of this approach, since
the original proprietary code base had to be largely re-written during the transition process.

3-13

3.7.3 Ideal Closed Standardization Process

Another option for standardizing technologies with high profit potential is the closed
process shown in Figure 3-5. This composite process is exemplified by the Intelligent I/O
(I2O) process, which extended proprietary technologies into a larger (but still closed) group
of potential competitors without fully releasing it. This approach is in some ways a restricted
version of the open-to-open model that uses a smaller group. The main disadvantage is the
smaller size of the exploration effort and the unavailability of the resulting standard to all
interested users. On the other hand, for technologies with high profit potential the closed
model can provide a powerful commercial incentive for developing a strong standard.

Closed Explicit
Technology

Standard

Closed Explicit
(Standardize the

“Prototype”)

Closed De facto
(Explore & Use

the Technology)

Figure 3-5. Ideal Closed Standardization Process

3.8 Evaluating Technologies in Terms of Standardization
Processes

It is easy to view technology standardization as being largely a matter of getting an
appropriate standards body to accept responsibility for a technology. However, when
evaluating early and rapidly changing technologies, factors need to be taken into account that
extend far beyond the issue of finding a standards group.

As described in the section on the ideal standards process, a technology that stays
“aggressively open” throughout its lifespan has the best chance for enduring and expanding,
and so is more likely to be a good choice for interoperability support. Conversely, a
technology that forfeits the benefits of open standardization in exchange for the nearer-term
advantages of proprietary ownership and control is much riskier and likely to be much
costlier in the end.

Many of the emerging interoperability technologies described in the rest of this
document are in the early exploratory phases where innovation and hands-on use of
preliminary tools need to be encouraged. Research organizations can help encourage this
type of exploration by pushing the boundaries of such technologies can be used through
innovative applications, and in some cases by developing tools that make it easier for others
to access and try out the technology.

3-14

4-1

Section 4

Emerging Interoperability Technologies

4.1 Introduction

The purpose of this section of the report is to briefly summarize a number of emerging
information technologies. The summaries focus on major concepts and comparative merits
from the perspective of how they could support higher levels of interoperability. No prior
knowledge of the technologies is assumed, but references are provided for readers interested
in investigating specific technologies in more detail. The information-related emerging
interoperability technologies covered in this section include:

• High-portability programming languages

• Java

• Jini

• JavaBeans and InfoBus

• EJB (Enterprise Java Beans)

• Microsoft COM (Common Object Model)

• DCOM (Distributed Component Object Model) and COM+

• Microsoft SOAP (Simple Object Access Protocol)

• WAP (Wireless Application Protocol)

• CORBA (Common Object Request Broker Architecture)

• Java RMI (Remote Method Invocation)

• XML (eXtensible Markup Language)

• COE (Common Operating Environment)

• Linux

4.2 Application Portability

4.2.1 High-Portability Programming Languages

What are high-portability programming languages?

High-portability programming languages are simply programming languages that work
“the same” on a wide range of operating systems and hardware platforms. What makes
portability difficult, however, is determining exactly what the phrase “the same” means for

4-2

platforms that may have very different capacities, performance levels, and attached
peripherals. For example, if the main purpose of a unit of software is to provide an easy-to-
use graphical user interface, it may be very difficult to interpret such a program on older
systems that lack sufficiently powerful displays, processors, or operating system software to
handle the needs of the program. Similarly, programs that use detailed features of the
operating system such as “threads” (a way of having multiple independent tasks running
simultaneously within one program) may have difficulty executing fast enough or even
correctly on a different or simpler operating system.

Historically, many of our main programming languages started out as efforts to provide
high-portability programming. Ada is a particular example, but languages such as C, C++,
Cobol, and even Fortran are examples of languages intended to be highly portable, also.
However, it would probably be safe to say that all of these languages (including Ada) have
fallen far short of their original portability goals.

A new twist on portable languages has arisen with the advent of the Internet during the
1990s. With its ability to pass large programs around very easily and to large to very large
audiences, the Internet has provided both the incentives and the test bed needed to make
programming languages more portable. Economically, highly portable programs have far
more impact on the Internet, and so highly portable languages are attractive to developers of
Internet software. From a testing perspective, distribution of programs over the Internet
provides a ferociously effective way to validate both the program and the language in which
it was written over a very diverse set of platforms and user needs.

These incentives have combined to encourage the creation of new languages that “live”
on the Internet and are standardized not by committee, but rather by their level of success or
failure at distributing software functionality over the Internet. Two notable examples of such
Internet-first languages are Perl and Python, both of which are widely used on Internet
servers. Older languages such as C, C++, and Ada have also benefited from de facto
standardization through Internet distribution of powerful open source (that is, free with
original source code provided) compilers that help make proprietary differences between
compilers largely irrelevant by taking over much of the market for those languages.

One of the most notable and widely publicized Internet-oriented new languages,
however, is the Java language from Sun Microsystems, which looks like a carefully selected
subset of C++. Java is an interpreted language, which means that each platform that runs it
must have its own virtual “Java computer” implemented to run Java programs. Although this
is by no means a new concept for making languages portable, Java has benefited from the
much more powerful machines now available, as well as from advances in compiler
technology that help make interpreted programs more efficient. Unlike open source
languages such as Perl, however, Java remains a proprietary language of Sun Microsystems.
Java thus has probably has not benefited as much from Internet-based development and
testing as other Internet languages, but instead relies on a Sun-sponsored certification
program to ensure portability across platforms.

4-3

How are high-portability programming languages relevant to interoperability?

High-portability programming languages are relevant to any effort that requires the
same software to exist on a wide range of platforms and operating systems. They are far less
important in cases where all of the relevant computers use the same operating system and
same general class of computers. In general, and especially for Internet-based software
systems, the use of a high-portability language provides highly significant cost, time, and
availability benefits by making it trivially easy to use the same software on different systems.

It should be noted that an important alternative to using highly portable languages is
instead to standardize the data and processing requests that are passed between different
types of software and systems. Such middleware approaches have their own difficulties, but
they can be a useful alternative when the use of high-portability programming languages is
not practical.

What are the best opportunities for using high-portability programming languages?

High-portability programming languages are necessarily one of the foundation blocks
of building highly interoperable systems, especially as Internet-based, multi-computer
applications become more common. Java in particular is important both because of its
similarity to the popular C++ language, which makes it easier to find or train Java
programmers, and because of the extensive effort that has gone into it in the past few years to
develop closely associated interoperability technologies. These associated technologies
include Jini (which is intended to support the dynamic composition of software services,
including those provided by networked devices), JavaBeans (to make graphical programming
and interfaces easier), and Enterprise JavaBeans (to extend use of Java components to the
level of entire enterprises.)

Other high-portability languages, in particular Internet-based languages such as Perl
and Python, should also be monitored and probably utilized where appropriate, since these
languages have become a surprisingly large part of the overall Internet infrastructure.
Similarly, Internet-standardized versions of languages such as C (e.g., the GNU compiler)
and C++ may also provide valuable assets to efforts that require extensive interoperability,
since they often execute on the same platforms as proprietary compilers, but generally lack
the extensions and exceptions that make such proprietary compilers non-portable.

References

http://www.sun.com/java/platform.html, “What Is the Java Platform?”

http://language.perl.com/index.html, “Perl Language Page.”

http://www.python.org/, “Python.”

http://www.gnu.org/software/gcc/gcc.html, “GNU C Compiler.”

4-4

4.2.2 Java

What is Java?

Java is a compact programming language that is mostly a subset of the popular (but
much larger) programming language known as C++. Java is an “interpretive” language,
meaning that its programs are compiled down to machine-independent “byte code” instead of
the native machine language of a computer. The fact that Java uses byte code rather than
machine-dependent assembly code makes it possible to run the same compiled Java
computer on nearly any type of computer. However, it often means that Java applications are
somewhat slower, since the byte codes must be interpreted while the program is running.
Performance has been an area of substantial progress as the Java virtual machines and
compilers mature, and there is strong evidence that this maturation will continue. However,
performance is clearly an issue that must be carefully managed from the start and monitored
as a risk management priority for any performance sensitive application using Java.

Java is easier language to use than C++. Firstly, it is a much smaller language than
C++, with fewer parts to learn. Secondly, Java automatically takes care of many important
but error-prone “housekeeping” chores such as managing memory resources, which allows
programmers to worry less about managing the internal resources of a computer and focus
more on their primary programming tasks. Thirdly, it is so similar to C++ that programmers
can learn to read Java with little or no additional training. Finally, Java is an example of a
consistently “object-oriented” programming language, which means that the only way a
programmer can develop software in Java is in the form of software “objects.”

(A software object is simply a structured collection of data, such as “employee address
data,” for which there is a clearly defined set of “operations” that can be performed on it,
such as creating, printing, or updating the data. This is in contrast to more traditional
“functional” programming, in which programmers first create functions to process data and
only then worry about how data will be structured and passed around. If used consistently,
object-oriented software design can result in software that is easier to understand, more
compact, and less costly to maintain than the equivalent functional code. When object-
oriented methods are used inconsistently or incorrectly, however, they can produce rather
spectacular programming disasters. The purely object-oriented style of Java has a distinct
advantage over C++ on this point, since it makes it much harder to mix object and functional
styles. In contrast, C++ allows (and even encourages) risky mixing of functional and object-
oriented style of programming.)

Java is not just a language. Associated with it are standards such as Java Beans and
Enterprise Java Beans that help prescribe how to write “composable” sets of Java
components that can be combined together even when they were originally created by
different groups. Another associated software technology is called JavaScript, which is
actually not a version of Java at all, but a similar, complementary language is easier to embed
in web pages. Finally, Java was defined specifically designed for use as a platform-
independent programming language for the Internet, so that it is most often seen in
association with programs such as Internet web browsers and other Internet technologies. For

4-5

example, small Java programs called “applets” are often used to add custom data processing
capabilities temporarily to remote Internet web browsers.

How is Java relevant to interoperability?

Java is probably the most promising computer language for increasing the ability of
computers to share software easily across a heterogeneous network of many different types
of computers. Its use of computer-independent byte codes means that the same compiled
Java program can usually execute on many different computers and under many different
operating systems. Furthermore, its popularity and similarity to C++ make it a much stronger
candidate for general adoption than are other similar byte-code languages (e.g., the venerable
and ruthlessly object-oriented language known as Smalltalk).

Use of byte-codes also means that Java is more mobile than most other forms of
software. That is, a Java program can often be “moved” over a network to the location (such
as an Internet user’s web browser) where it can work fastest and with the least overhead.
This ability to move Java programs to where they are most needed is the software equivalent
of a rapid deployment force, and may in time allow naval operations to shift data processing
resources around quickly enough to handle rapid changes in the battlefield configurations
and status.

The portability of Java programs is further enhanced when they use standards such as
Enterprise Java Beans to ensure their overall ability to interoperate with other Java
components.

What are the best opportunities for using Java?

Java clearly needs to be researched and developed as an important (possibly the most
important) software language for implementing mobile and interoperable software
components. In particular, tracking and exploration of how to use Java and its associated
Internet technologies in web-based applications looks like promising research and
development path for making new systems both more interoperable and more adaptable to
specific battlefield situations.

Java also appears to have good potential as a “wrapper” technology for making legacy
systems appear to be coded in a more Internet-friendly language – that is, to make them look
like Java applications. For example, Java applets can act as front ends for accessing the
capabilities of a valuable but cumbersome remote legacy system. Remote Internet users can
then access those legacy systems without having to have any knowledge of the special access
mechanisms that are hidden away in the Java applet.

References

http://www.sun.com/java/platform.jhtml, “What Is the Java Platform?”

http://www.sun.com/java/javameansbusiness/, “Java™ Technology Means Business”

4-6

4.2.3 Jini

What is Jini?

Jini (which is a name, not an acronym) is an application of the Java language to the
problem of how to interconnect diverse types of electronic devices and more generally any
provider of computing services (from printers to GPS receivers to any kind of algorithm that
is provided as a service) with little or no manual intervention. It is essentially a set of
standards produced by the Sun Corporation for creating electronic devices that are self-
installing, self-configuring, and self-diagnosing. The focus of Jini on device self-
management makes it potentially powerful tool for interoperability, since lack of information
about how a device works is one of the most fundamental road blocks to making it work
together with other devices. Bill Joy, the key architect of Jini, defines it as “the BIOS for the
age of networked devices”.

The first major Jini concept is that of service self-description. Every service in a Jini
system is required to have in effect a “resume” (written in Java) that defines what that service
can and cannot do, and how to use the service. The Jini concept relies heavily on the object-
oriented programming concepts to do this, since the description of the device looks like a
Java software object. Services are often associated with devices (e.g., a printer provides
printing services).

The second major Jini concept is the idea of a lookup service, which is essentially an
electronic matchmaker that stores definitions of all the known Jini devices in a system or
network. The lookup service helps devices recognize each other’s presence, and then
provides the devices with all the information needed for them to communicate directly. After
the initial connection has been made, the devices thus can communicate without any further
use of the lookup service.

Jini assumes that most of the devices using it will be “smart” in the sense of having
their own built-in processing and storage capabilities. However, the presence of the lookup
service means that Jini can also accommodate older “dumb” devices by storing their resumes
in the registry. This allows other “smart” devices to retrieve the information for how to
access an older device.

Sun’s Jini program is still relatively new as of early 1999, and the level of adoption that
it will see in the commercial world is still uncertain. However, even if Jini does not prove to
be widely adopted, the principles that it represents are already widely acknowledged by the
commercial world as being crucial to sales of the next generation of smart appliances and
devices. Thus even if Jini does not become that standard, some other similar set of standards
will almost certainly take its place. Similarly, Java has an excellent chance of becoming the
underlying programming language for representing Jini “resumes,” since it is both popular
and was originally designed for just such smart appliance applications.

It should be noted that while the basic concepts of Jini are straightforward, there are
many, many unsolved problems implied by the Jini scheme. In particular, simply describing
an interface at the level of a Java interface does not in general provide enough information

4-7

for another device to understand fully what the device is capable of doing. Jini will
presumably take care of many cases by defining a variety of standard interface types (such as
“disk drive” or “mass storage device”), but detailed descriptions of the operating
characteristics of some devices will also be needed. Even more generally, some device types
will be completely unknown to older Jini devices, and so may require even more abstract
descriptions of their functions. It is not clear yet how far Jini will be able to move in such
directions. Even for current devices, more complex standards will be needed, and the
interoperability implications of different sets of such standards are not currently well know.

How is Jini relevant to interoperability?

Jini is immediately relevant to hardware interoperability due to its focus on helping
electronic devices to integrate together and share data more easily. Jini is particularly
relevant to the widely anticipated “next revolution” in smart appliances (versus the current
PC revolution), and in that role it may help spawn a wide variety of new off-the-shelf
hardware components that will be far easier to integrate than is typical of the current
generation.

Jini also has potential as a structured approach to “retrofitting” aging hardware
components with newer, smarter Java-based interfaces that will be easier to access and use.

What are the best opportunities for using Jini?

If for no other reason than that it is probably the current leading candidate for how to
implement a strongly anticipated next generation of smart commercial appliances and
devices, Jini clearly merits attention as a Navy interoperability technology. As a research and
development topic, Jini is rich in both pragmatic application issues and advanced research
problems. On the pragmatic, development-oriented end are how to standardize and apply
interface definitions for widely used classes of commercial and military hardware, while on
the research side there are many issues regarding how to add arbitrarily complex “new”
devices to a Jini network. Additional concepts such as explicit hierarchies of metadata to
describe new devices may be needed, as well as work on how to resolve conflicts and
ambiguities. Another potential research topic would be how to apply Jini concepts effectively
to “wrapping” legacy Navy systems for easier future access, and whether such methods could
be at least partially automated to speed conversions.

References

http://www.sun.com/jini/overview/,
“Jini™ Connection Technology Executive Overview”

http://www.sun.com/jini/faqs/index.html,
“Jini™ Technology Frequently Asked Questions”

4-8

4.3 Component-Based Software

What is component-based software?

Programming in conventional English-like computer languages is slow, and the
constructs and statements that are used to create a function usually bear little or no
resemblance to the resulting operations. Component-based software is simply the idea that if
the programming process could somehow be made to “look like” the actual functional
results, the entire programming process could be made faster, simpler, and much more
reliable.

The problem is that for many types of software (e.g., mathematically intensive
software), there are no few obvious ways of “attaching” final results back to the software in a
way that would be meaningful for changing the software. On the other hand, there are also
large and important classes of software for which there is a very strong link between the
visual results of software and the way that software is used and configured. In particular,
development of graphical user interfaces, or GUIs, is very amenable to this type of higher-
level, non-linguistic programming.

Consequently, the phrase component-based software most often refers to a style of
“visual programming” in which components with well-defined graphical outputs can be
manipulated and combined on a display screen, often without having to use conventional
coding at all. It can also refer to a more conventional style of programming in which large,
predefined software components are used as objects or procedures that can be combined
quickly and easily to create new programs. In both cases, the objective of component-based
programming is to start the programming effort at a much higher, more results-oriented level
of capability. Stated another way, the common thread throughout component-based software
development is that one should always begin the programming process using powerful,
predefined modules, and should use conventional source code only as a last resort.

How is component-based software relevant to interoperability?

While component-based software has obvious advantages when building new systems,
its connection to interoperability is a bit subtler. One way that it contributes is by making it
easier and less painful to phase out older, less interoperable systems by allowing rapid
recreation and verification of their capabilities on a new system. Another way in which
component-based software contributes is that it can be used to spread standardized over an
entire network much more quickly than would have been possible with non-component
software. Finally, component-based software can be designed to “accommodate” significant
differences in the underlying hardware and operating system architectures of different
systems. An example of this is the JavaBeans component architecture, which uses the
portability of Java to hide differences between systems and make new software more
immediately portable and interoperable.

4-9

What are the best opportunities for using component-based software?

Perhaps the most important reason for using component-based software in the Navy is
that it provides a powerful mechanism for building up and maintaining higher levels of
interoperability across systems.

References

http://www.sei.cmu.edu/str/descriptions/cbsd.html,
“Component-Based Software Development / COTS Integration”

4.3.1 JavaBeans and InfoBus

What are JavaBeans and InfoBus?

JavaBeans are small software units that are written in Java and are capable of being
modified and combined graphically to create new graphical user interfaces (GUIs) and
applications. Software units can be called JavaBeans only if they meet a set of standards for
reusability, modifiability, and graphical support. InfoBus is an extension of the JavaBean
standards that provides a fast, uniform mechanism by which JavaBeans can broadcast data
items or arrays of data items to each other, provided that the components are on the same
computer system.

Historically, JavaBeans are Sun’s answer to the earlier success of Microsoft visual
components, such as the components provided in Microsoft’s Visual Basic language. In both
cases, a major objective was to dramatically reduce the amount of time required to create a
graphical user interfaces when compared to older hard coded approaches to creating such
interfaces. With graphical components, building a user interface becomes little more than a
matter of selecting components, modifying them graphically, positioning them on the screen,
and linking them to other components. Graphical component programming also benefits
from the ease with which developers can experiment with the interfaces that they create. This
makes possible a better fit to actual user needs than is possible with hard-to-change
traditional interfaces.

While JavaBeans are not restricted to being only graphical “widgets” such as response
boxes in a graphical user interface, modifying and combining JavaBeans (or any other type
of visual component) becomes substantially more difficult and complex as the processing
behavior of the JavaBean becomes more complex. This is because the easy visual analogies
that make JavaBeans simple to use for creating graphical interfaces become more strained as
the connection between the screen and the type of processing needed becomes more remote.
For this reason, the easily observed productivity gains that come from using visual
components to construct graphical user interfaces should not automatically be assumed to
apply to the construction of more complex, algorithmically complex software (e.g., server
applications). JavaBeans and their Microsoft equivalents thus have substantial value as
programming tools, but it is a value that is largely constrained to the domain of graphical
user interface design.

4-10

Compared to JavaBeans, Microsoft visual components have the advantage of being
integrated with and closely tied popular Microsoft products such as the Windows operating
systems and the Microsoft Office suite. However, Microsoft components are based on the
Component Object Model (COM), which as a unique software communication scheme that is
fully supported only by the Microsoft Windows family of operating systems. JavaBeans have
the advantage of being more broadly supported across a range of platforms, since they are
implemented in Java instead of with proprietary formats.

The InfoBus extension of JavaBeans standards increases the power of JavaBeans
substantially by giving them a simple, fast, and standardized way of broadcasting data items
and arrays of data to each other. It is important to note that InfoBus only applies to
JavaBeans that reside on the same computer; it is not at present a distributed or multi-
computer standard. This restriction has the advantage of allowing very rapid, memory-based
exchange of data between JavaBeans, but it also has the obvious disadvantage of strictly
limiting the range over which JavaBeans can communicate using the InfoBus.

The InfoBus is conceptually similar to an electronic bus such as those used in a
computer. Producer JavaBeans place information on the InfoBus, from which any (or all) of
the consumer JavaBeans on that InfoBus can then pick up the information. This approach
assumes that all the JavaBeans on an InfoBus have the same level of trust, since any
JavaBean on that InfoBus can in principle read any information placed on that bus. However,
it is also possible to create more than one InfoBus in the same application, so that groups of
JavaBeans can be created on the basis of what type of information they need to exchange
over their shared InfoBus.

How are JavaBeans and InfoBus relevant to interoperability?

For situations that require interoperability across operating systems and platforms,
JavaBeans and its InfoBus extension have the clear advantage of being based on the
comparatively platform independent Java language. However, it should also be noted that for
situations where all platforms use Microsoft Windows, the alternative of using Microsoft
components (e.g., via Visual Basic) is probably stronger. Within a Windows-only
environment, Microsoft components are more tightly integrated with the operating systems,
and at least somewhat faster because they use compiled code instead of interpreted Java. In
both cases, however, component-based methods for constructing graphical components have
strong cost and quality advantages over older and more laborious approaches of hard coding
such interfaces.

What are the best opportunities for using JavaBeans and InfoBus?

For the Navy, use of JavaBeans and InfoBus is necessarily closely tied to use of Java.
Use of JavaBeans should also be assumed for any program that is looking into Java for
interoperability. For programs that are interested exclusively in interoperability across
Microsoft Windows platforms, the focus should probably be on COM-based Microsoft
components, although the uses of Java there should not be overlooked. In either case, the
importance of using component based approaches to create graphical user interfaces should

4-11

be taken as a given because of the much higher productivity and reliability of component
based approaches for such systems.

A potentially high-value (but difficult) research topic in this area would be to look into
ways to extend the JavaBeans graphical programming model to encompass more complex
forms of programming. The relationship of such research to interoperability is that it could
help configure or adapt systems quickly to work in new environments or military situations.
The most powerful approach could be to develop JavaBean sets that specifically address
interoperability issues, such as JavaBeans that could be used to quickly set up graphical
interfaces to incompatible or legacy computer systems. Research challenges in such an
approach would include the need to develop a sufficiently powerful “language” (set of
complementary components) to describe the full range of Navy system compatibility issues,
and (even more difficult) how to connect the resulting new interface descriptions into the
legacy software with a minimum of new programming.

Developments in the InfoBus standard should also be tracked over time, since the
InfoBus may eventually be extended to cross computer platforms. If InfoBus is extended in
this fashion, it could provide a powerful cross-platform interoperability capability by making
exchange and remote display of data significantly easier. If such extensions do occur, they
are likely to be based on existing standards for distributing calls, such as Common Object
Request Broker Architecture (CORBA) or Java’s own Remote Method Invocation (RMI),
and so would represent a convention way of using one or more of those standards.

References

http://java.sun.com/beans/FAQ.html,
“JavaBeans™ Frequently Asked Questions.”

http://java.sun.com/beans/infobus/,
“JavaBeans™ FAQ: InfoBus.”

http://java.sun.com/products/jdk/rmi/index.html,
“Java™ Remote Method Invocation (RMI) Interface”

4.3.2 Enterprise Java Beans (EJB)

What is Enterprise JavaBeans?

Enterprise JavaBeans, or EJB, is a set of standards for how to write server applications
in Java so that peripheral, non-enterprise-related programming issues are kept to a minimum.
The goal it to make server applications highly portable and scalable by eliminating many of
the issues that tend to “lock down” an application to a single server or operating system
architecture.

Despite similar names, Enterprise JavaBeans and JavaBeans have little in common.
EJB is largely non-graphical, application-oriented, and is intended to reside on the server
side, while JavaBeans are interface-oriented and reside on the client side. Their only real

4-12

connection is that they are intended to complement each other by allowing both the server
and client sides of applications to be written in Java.

How is Enterprise JavaBeans relevant to interoperability?

EJB classifies as a component technology in the sense that it allows application
programming to be done at a higher and more platform-independent fashion than would
otherwise be possible. Its main advantage to interoperability is that it should allow
applications written to EJB standards to be more easily ported to a wide range of platforms,
so that a wider range of system can use those applications.

What are the best opportunities for using Enterprise JavaBeans?

EJB is an interesting and relatively young effort that is well worth watching as a
possible approach to creating platform-independent server applications that promote
interoperability.

References

http://java.sun.com/products/ejb/, “Enterprise JavaBeans™ Technology.”

http://java.sun.com/products/ejb/faq.html, “Enterprise JavaBeans™

4.3.3 Microsoft COM (Common Object Model)

What is Microsoft COM?

The Microsoft Component Object Model (COM) is the basis for what has arguably
been the most successful component-based programming system ever created. COM is a set
of binary-level standards for how compiled components can call each other and exchange
data with each other within Windows 95, 98, and NT operating systems. It is used heavily
throughout both these three operating systems and in many (probably most) of the
applications that run on them.

COM makes possible the visual style of programming seen in Microsoft tools such as
Visual Basic. Major Microsoft Windows applications such as Word, Excel, and PowerPoint
also have COM interfaces that flexibly exchange data and processing requests with other
applications. It is COM, for example, that make it possible to define an array of data in an
Excel spreadsheet and then display it within a complex 3D bar chart in PowerPoint.

Despite these strong positives, COM also has a number of conspicuous limitations. For
example, the fact that it is a binary standard makes it necessary to use it indirectly through
other tools and macros. This is inconvenient, since users cannot simply specify in a standard
language how they want an interface to appear. However, the single most important
limitation of COM is that it is very closely tied to the Microsoft Windows series of operating
systems. As a binary-level interface, it is also difficult to extend meaningfully to other

4-13

operating systems without ending up simply replicating large chunks of the Windows
operating system.

Finally, when discussing COM it is important to recognize that it is distinct from
Microsoft’s Distributed Component Object Model, or DCOM. The objective of DCOM is to
extend COM across multiple systems on a network, and it uses a distinct set of
communication technologies not seen in COM itself to accomplish that. DCOM is used
mostly in small LAN environments, and is seldom (as of the late 1990s) used in large, highly
distributed applications. The weak record of DCOM is particularly conspicuous given the
strong success of COM.

How is Microsoft COM relevant to interoperability?

Within a Windows 95, 98, or NT based system, COM is a valuable technology for
building new applications rapidly. An indirect interoperability benefit of COM is that many
remote invocation technologies (e.g., DCOM and CORBA) target COM to allow remote
software applications to use components on Windows systems. This can be highly beneficial
to interoperability, since it can allow non-Windows systems to access and use certain aspects
of Windows applications.

What are the best opportunities for using Microsoft COM?

COM should be viewed primarily as an important component technology that is already
firmly entrenched within Windows systems. Tools that make it easy to access COM
components should be tracked and possibly actively encouraged as a good approach to
enhancing interoperability between Windows and non-Windows systems.

References

http://www.microsoft.com/com/, Microsoft home page for all COM technologies.

http://www.microsoft.com/com/tech/com.asp, COM – Component Object Model.

4.4 Middleware

What is middleware?

Middleware is software that makes it easier for different types of software at different
locations in a network to call each other and exchange data. In general, it does this by
providing both a standardized calling format and a special communication protocol for
conveying calls and data across a network. Middleware calling formats often closely
resemble the formats used to invoke objects or procedures in ordinary programming
languages, and the communication protocols are often based on widely used protocols such
as the Internet’s TCP/IP.

4-14

How is middleware relevant to interoperability?

Middleware is a fundamental interoperability concept. For example, when it is not
practical to redevelop legacy applications, middleware often provides the best overall
approach to getting incompatible systems to interoperate with each other.

What are the best opportunities for using middleware?

Middleware is particularly appropriate for “wrapping” older, hard-to-change legacy
systems in a new set of interfaces that then can be used to interact with other systems. It can
also be used to create new “distributed” applications – that is, applications that are designed
to reside on more than one computer in a network.

References

http://dii-sw.ncr.disa.mil/coe/topics/atd/recommend/all.doc,
“Recommendations for Using DCE, DCOM, and CORBA Middleware”

4.4.1 DCOM (Distributed Component Object Model) and COM+

What are DCOM and COM+?

DCOM is middleware from Microsoft for making COM component available across a
network. It is essentially an application of an older middleware technology called DCE
(Distributed Computing Environment) to the specific problem of supporting COM interfaces.
Microsoft generally does not emphasize the DCE roots of DCOM, preferring instead to focus
on it as an extension of COM. (DCE itself is essentially obsolete, with few prospects for
being implemented on any new systems.)

COM+ is one of several marketing terms that has been promoted by Microsoft to
describe its next generation of both its COM component technology and its DCOM
middleware technology. It is difficult to obtain non-marketing definitions of what COM+
currently represents technically.

How are DCOM and COM+ relevant to interoperability?

As a middleware technology, DCOM is relevant for connecting systems with Windows
95, 98, and NT over a network. It is not particularly practical or useful as a way of
connecting into non-Windows systems, since it expects to “find” COM components on the
remote systems. Such COM components are generally impractical to implement on non-
Windows systems. A better approach is usually to use tools that bridge from more universal
middleware technologies (e.g., CORBA) and go directly to COM. Of particular interest over
the first few years of the new millennium will be the Microsoft and IETF supported and
XML-based Simple Object Access Protocol, or SOAP (see below). In sharp contrast to
DCOM and COM+, SOAP is readily portable to non-Windows architectures and has good
support from a wider range of communities.

4-15

What are the best opportunities for using DCOM, and COM+?

DCOM and COM+ clearly should be tracked, but the recent (late 1999) release and
strong promotion by Microsoft of a new XML-based Simple Object Access Protocol (SOAP)
protocol (see below) for the same general market area may be a strong indication that the
days of DCOM and COM+ as anything other than marketing labels may be numbered.

References

http://www.microsoft.com/com/,
Microsoft home page for all COM technologies.

http://www.microsoft.com/com/tech/DCOM.asp,
DCOM – Distributed Component Object Model

http://www.microsoft.com/com/tech/COMPlus.asp,
COM+ – Component Object Model Plus.

4.4.2 CORBA – Common Object Request Broker Architecture

What is CORBA?

CORBA is a middleware technology with broad support in the software industry. It
uses an “object-oriented” approach to transferring data and calls between software modules,
which means that functions (procedures) are specifically associated with definite data types.
CORBA uses calling formats that are similar to that of the object-oriented language C++,
which makes it easier to use with that language. CORBA is more difficult to use with non-
object languages such as C, since in effect it requires that the interface objects be constructed
manually.

CORBA currently (late 1999) does well at interoperability across vendors, and, in
contrast to Microsoft DCOM, CORBA is available on a wide range of platforms.

How is CORBA relevant to interoperability?

Overall, CORBA is probably the best current middleware candidate for getting a
diverse range of systems to interoperate with each other, and it is also the strongest candidate
for “wrapping” older legacy systems to make them accessible to newer systems and
networks.

What are the best opportunities for using CORBA?

CORBA is an important interoperability technology that merits both direct application
to existing Navy interoperability problems, and research into how it might be used to solve
more complex classes of interoperability problems. The Internet-based CORBA protocol for
transmitting calls and data over the Internet (IIOP) could be particularly useful for getting
systems to interoperate over the web.

4-16

Any use of CORBA, however, should first be checked against the potential of the new
Simple Object Access Protocol (SOAP) that is being promoted by both the IETF and
Microsoft. Unlike CORBA, SOAP is XML based and thus portable to any system that can
use a text-processing language such as Perl to implement SOAP parsing. On the other hand,
SOAP is a communications protocol that competes directly only against the communications
(IIOP) component of CORBA, rather than against the interface definition language (IDL)
that CORBA uses to specify access into objects. CORBA thus could potentially use SOAP as
an alternative to its own IIOP. As of early 2000, however, no such option has been defined
for CORBA.

References

http://www.whatis.com/corba.htm, What is CORBA? (a one-page definition)

http://www.omg.org/, “OMG – Object Management Group”

http://www.aurora-tech.com/corba-faq/toc.html, “CORBA FAQ Overview”

4.4.3 Java RMI – Java Remote Method Invocation

What is Java RMI?

RMI is simply a way of extending Java calls across a network, in much the same way
that DCOM is a way of extending COM calls across a network. RMI works only within Java,
but since Java is available on a wide range of platforms, this means that RMI can be use to
link software on many types of systems .

How is Java RMI relevant to interoperability?

RMI can help link remote systems using Java together, and so classifies as a technology
for increasing the interoperability of such systems. It is limited to Java only, however.

What are the best opportunities for using Java RMI?

For a Java programmer, RMI is significantly easier to use than CORBA, since it works
within the normal framework of the Java language and does not require re-definition of any
interfaces. Unlike CORBA, however, the Java-only RMI technology does not provide for
any interaction with other non-Java software modules. As an interoperability technology,
RMI may be the easiest way to achieve interoperability between Java applications on
different types of machines.

References

http://java.sun.com/products/jdk/rmi/index.html,
“Java™ Remote Method Invocation (RMI) Interface”

4-17

4.4.4 XML (eXtensible Markup Language)

What is XML?

XML (eXtensible Markup Language) is closely related to HTML, the language in
which Internet web pages are generally implemented. In HTML, readable “tags” are used to
specify how a particular piece of text should be displayed on the screen – e.g., the tag “<p>”
can be used to specify where a new paragraph begins. However, HTML tags can only be
used to define how to display text; they do not say anything about the actual content of the
marked text.

XML simply broadens the concept of a tag to include arbitrary, user-defined tags that
can then be used to specify what kind of text is being marked, rather than just how to display
it. Thus, it would be possible to define a new tag called “<integer>” to mark text that should
be interpreted as an integer number. There is no upper limit to how complex the meaning of a
tag could be, so XML allows the specification of complex content information.

It should be noted that XML does not in any way solve the problem of how to define,
standardize, use, or display data. All it immediately does is provide a standardized way to
represent content tags.

How is XML relevant to interoperability?

One major impediment to interoperability between many types of systems is a lack of a
standard way to describe the format and content of data. One system may use binary data,
another may use structured text, and another may use a different style of structured text.
What XML provides is standard way of expressing data formats for transmission over a
network, although it does not by itself tell how those formats should be interpreted.

What are the best opportunities for using XML?

The current market situation for XML is excellent. Many companies (including
Microsoft) are making significant commitments to using it in their products and
infrastructures, and important affiliated standards for using XML in specific application areas
are appearing at a surprisingly rapid pace. XML is benefiting both from its close ties to the
earlier Internet success of HTML, and from the ease with which it can be read and processed.

XML should be viewed both as an important immediately available tool (e.g., via
supporting COTS products such as XML-enable web browsers) for increasing data
interoperability between systems, and as a longer-term research issue for how to make
effective use of its capabilities.

References

http://www.ucc.ie/xml/#FAQ-GENERAL, “XML FAQ – A. General Questions.”

http://www.w3.org/XML/, “Extensible Markup Language (XMLTM)”

4-18

http://msdn.microsoft.com/xml/default.asp, Microsoft XML Developer Center

4.4.5 XML Metadata Technologies

What are XML metadata technologies?

As described in the previous section, XML (eXtensible Markup Language) is closely
related to HTML and provides a highly generalized way to attach “tags” to textual data. One
particularly important application of XML is as a mechanism for adding metadata, which
simply means “data about data,” to data or software. Metadata is important to interoperability
because it can be used to provide a context or overall understanding of how data should be
used or interpreted, and thus of how it can be made to interoperate across diverse systems.

For example, metadata that tells which version of Java is being used in a module is
immediately helpful in making that module interoperable by allowing anyone receiving it to
know whether and how to interpret the associated Java code. A more complex example of
metadata is the registry system of Windows operating systems. The Windows registry is a
structured repository of shared metadata that allows applications to know what services and
capabilities are available on that system. The applications can then use that metadata to work
within the constraints of that particular system.

It should emphasized that metadata is itself a form of data, and so consists of bits,
bytes, and characters just like regular (or referential) data. The difference is in the topic
addressed by those bits and bytes. Regular or referential data measures aspects of physical
(e.g., sensor) or logical (e.g., financial) systems that exist independently of the computer
system in which the data resides. In contrast, metadata measures aspects of data sets that
exist within a computer system, such as referential data files collected from a sensor or a
financial system. It is also possible to have metadata that describes other metadata, since
metadata is itself a form of data. Multiple layers of metadata can be useful for providing
increasingly broad layers of context in which to interpret data or software applications.

Metadata can be either automated or manual. Automated metadata is metadata that can
be created and used entirely by software, without any direct human intervention. Database
index files are an example of fully automated metadata, since they are generated and used
without requiring an interpretation by people. Manual metadata is usually associated with
complex tasks that require more sophistication than is possible with current levels of
automation, and for that reason it is often descriptive or text-based in nature. Design
comments in a software source file are an example of manual metadata that requires
interpretation by humans before it can be used effectively.

Another important distinction is how metadata will be used. Optimization metadata is
used to make processing of the original data more efficient. Database index files and data
caches are both examples of optimization metadata. Because optimization metadata often can
be derived directly from the original data set, it tends to be easier to automate and use.
Semantic metadata is a form of metadata that is more difficult to automate, and more
relevant to interoperability. The objective of semantic metadata is to make the original data

4-19

“meaningful” or usable in a broader range of contexts than would normally be possible.
Version tags, Windows registries, and source code comments are all examples of semantic
metadata, since they all help make applications usable in a broader range of contexts. While
metadata can sometimes be derived directly from original data such as source code, in most
cases it must be captured from external sources at the same time that the original data is
being collected. Once omitted, lost, or damaged, semantic metadata can be extremely hard to
rebuild or recreate.

XML is relevant to metadata because of its ability to add tags and structured text to
data items. Both the tags and their associated data can be used to associate arbitrary new data
with existing data, and that new data can represent (for example) semantic metadata about
the interpretation and use of the original data. Another advantage using XML for metadata is
that it provides a uniform way to represent both fully automated metadata (e.g., numeric data
with a precise interpretation) and manual data (e.g., textual comments). Consequently,
interest in XML has also given rise to a variety of related technologies that address the issue
of how to express and associate metadata with referential data.

As of mid 2000, several XML technologies deal with various aspects of metadata. The
XML technology that is most specifically and generically associated with metadata is RDF
(Resource Description Framework). RDF was explicitly designed to support the addition of
metadata to the Internet, which is difficult problem because the Internet is both decentralized
and global. RDF is particularly oriented towards adding optimization metadata that can be
used (for example) to speed the process of querying the Internet. However, the RDF
framework may also prove to be suitable for adding other types of metadata (semantic
metadata in particular) to networks that use Internet technologies.

A second fundamental XML technology related to metadata is XML Schema. As of
mid 2000, XML Schema is an extensive emerging standard for defining valid XML
constructs and specifying acceptable data for those constructs. XML Schema is a more
powerful replacement for the older DTD (Document Type Definition). In contrast to the
older DTD technology, XML Schema can be used to create new XML document types
dynamically, verify data validity, and uses standard XML syntax. These capabilities make
XML Schema an important tool for enabling the addition and use of metadata, since it makes
it easier to create new schemas that provide or add metadata to existing XML document
types. XML Schema is a more generic tool than RDF (see paragraph above), since it is
intended for full definition of XML documents and not just metadata.

Another specialized XML metadata technology is XMI (XML Metadata Interchange).
Despite its name, XMI is intended more for the exchange of object-oriented design and
business process information than for the exchange of generic metadata. XMI was developed
the Object Management Group (OMG), which is the same group that is responsible for the
Common Object Request Broker Architecture (CORBA) middleware architecture, and it is
used to exchange objects based on the OMG Object Analysis and Design Facility. Such
objects are more commonly called UML (Unified Modeling Language) models and MOF
(Meta Objects Facility) objects, and the type of metadata that they represent is abstract

4-20

descriptions of object-oriented designs. XMI is probably best viewed as more as an XML-
based support tool for UML and object design than as a generic tool for expressing metadata.

How are XML metadata technologies relevant to interoperability?

As XML metadata technologies and standards develop over time, they should provide a
range of useful off-the-shelf solutions for expressing metadata specifically oriented towards
interoperability. New technologies addressing interoperability can also be developed using
XML metadata technologies as a starting base.

What are the best opportunities for using XML metadata technologies?

RDF (Resource Description Framework) presents a good opportunity for adding new
metadata to XML based systems. The most likely near term uses of RDF and other XML
metadata technologies will probably be for Internet search and retrieval. However,
competitive pressure from search engines such as Google (http://www.google.com) that rely
on fully automated metadata extraction to improve searches could slow the use of RDF, since
RDF requires explicit manual entry of the metadata by document creators. This is less of an
issue for interoperability, however, since there are relatively few options for automated
extraction of interoperability metadata from existing data and source codes. RDF thus may
provide a good tool for research-oriented efforts in capturing and applying interoperability
metadata. Other XML tools that support metadata, such as XML Schema and (possibly)
object-oriented XMI, may also prove useful in developing new ways to capture and use
interoperability metadata.

References

http://www.xml.com/xml/pub/98/06/rdf.html,
“RDF and Metadata…What is RDF? Why would you want to use it?”

http://www.w3.org/TR/REC-rdf-syntax/,
“Resource Description (RDF) Model and Syntax Specification,” 22 Feb 1999

http://www.w3.org/TR/2000/WD-xmlschema-0-20000407/primer.html,
XML Schema Part 0: Primer

http://www.w3.org/TR/xmlschema-1/,
XML Schema Part 1: Structures

http://www.w3.org/TR/xmlschema-2/,
XML Schema Part 2: Datatypes

http://www.ucc.ie/xml/#SCHEMATA,
XML FAQ answer to question on differences between DTDs and XML Schema

http://www.omg.org/news/pr99/xmi_overview.html,
“An Overview to the XMI”

4-21

4.4.6 SOAP (Simple Object Access Protocol) and DNA 2000

What are SOAP and DNA 2000?

SOAP is a very recent (late 1999) XML-based middleware from Microsoft. DNA 2000
is the latest incarnation of Microsoft’s “Distributed Network Architecture” marketing
concept, this time based on SOAP rather than on COM+ (which was never well defined).
While DNA 2000 is largely just a marketing label, the SOAP protocol is well defined and
supported by the Internet Engineering Task Force (IETF), as well as by Microsoft. Perhaps
the single most important distinction between SOAP and earlier Microsoft middleware
efforts such as DCOM is that SOAP is truly portable to non-Windows platforms, and is
already extensively supported by such non-Microsoft-focused communities such as Perl
programmers. This portability and the use of XML in SOAP make it a more interesting and
potentially powerful technology than the earlier and technically much weaker offerings of
DOM and COM+ that Microsoft previously promoted for this same general market area.
Indications are strong that Microsoft will pursue XML and SOAP vigorously over the next
few years, and will likely de-emphasize or even begin to phase out its earlier DCOM based
efforts at middleware support.

How is SOAP relevant to interoperability?

SOAP is likely to be readily available on all Windows systems, and should be readily
available on nearly any other type of actively supported computing platform. One of the
reasons for this portability is that SOAP is based on XML, which uses text strings that are
readily parsed by highly portable programming languages such as Perl. As a direct result,
SOAP can be ported with relative ease even when a platform does not currently support it
directly. SOAP thus is likely to be a significant component of future interoperability in
distributed networks.

What are the best opportunities for using SOAP?

SOAP has unusually good prospects for becoming a globally important method for
supporting communicating between distributed software components, and should be tracked
closely. SOAP is also well worth using in early prototyping and interoperability exploration
work, since its XML base makes it an interesting tool with good potential for building up
new interoperability between systems fairly quickly.

References

http://www.develop.com/soap/,
Simple Object Access Protocol (SOAP)

http://www.develop.com/soap/soapfaq.htm,
SOAP Frequently Asked Questions

4-22

http://msdn.microsoft.com/workshop/xml/general/soapspec.asp,
SOAP 1.1 Specification

http://msdn.microsoft.com/xml/general/soap_faq.asp,
Microsoft SOAP FAQ

http://msdn.microsoft.com/xml/general/soap_white_paper.asp,
SOAP and Firewalls

http://www.devx.com/upload/free/features/entdev/1999/11nov99/cv1199/cv1199.asp,
“DNA 2000: Opening New Windows”

4.4.7 WAP (Wireless Application Protocol)

What is WAP?

WAP (Wireless Application Protocol) is best understood as a customization of Internet
protocols to the needs of mobile devices. WAP takes Internet protocols that were designed
for fixed, high-reliability, land-based networks with high data rates, and adapts them for use
in mobile networked environments. Compared to the land-based networks, such mobile
environments have limited bandwidth, uncertain and unreliable access, higher latency
(delay), modest client-side processing capacities, and limited client-side battery life. These
are all issues that are addressed in one way or another by WAP standards.

WAP standards development began in earnest in early 1998, and reached an important
threshold of commercial maturity in late 1999 with release of the WAP 1.2 specification. As
of mid 2000, roughly 90% of mobile device manufacturers had committed to using WAP 1.2
in their next generation of mobile devices. This unusually high level of support for a new
standard indicates good prospects for WAP to become the basis for the mobile Internet.
Additionally, the WAP standards group, WAP Forum, has chosen a well-formulated, highly
cooperative approach that should help stabilize and promote WAP. Rather than defining new
standards that compete with existing standards from other groups, the WAP Forum focuses
on how to support use of such standards (e.g., XML) in mobile systems. WAP specifications
thus focus on how to adapt such standards to the unique needs of mobile devices, with
standards from other groups referenced freely wherever appropriate.

How is WAP relevant to interoperability?

WAP is especially relevant to naval needs because it focuses on essentially the same
problems that traditionally set naval and DoD communication environments apart from
commercial ones: limited bandwidth, uncertain and unpredictable access, higher latency
(delay), limited client-side processing capacities, and limited client-side battery life. These
problems are typical of deployed military forces and tactical environments at sea and on
land, so a technology that makes the proven interoperability of the Internet more accessible
in such environments also has substantial potential for benefiting naval interoperability.

4-23

What are the best opportunities for using WAP?

The impending release over the next year or two (2001-2002) of the first generation of
commercial WAP-capable mobile devices translates into a unique opportunity for adapting
such devices to naval needs. WAP has already addressed many of the same problems found
in tactical military environments, so WAP devices presents a significant opportunity to leap
ahead in resolving such issues. The two areas that will require the most attention for effective
naval use of WAP are: applying WAP devices to specific DoD needs, and ensuring that high
levels of security can be supported.

References

http://www.wapforum.org/what/index.htm, What are WAP and WAP Forum?

http://www.wapforum.org/what/WAP_white_pages.pdf, WAP White Paper

http://www.wapforum.org/what/technical.htm, WAP Forum Specifications

4.5 Portable Operating Systems

What are portable operating systems?

A portable operating system is one that provides the same basic services across a range
of hardware platforms. It should be noted that having a portable operating system does not
immediately guarantee that applications will be similarly portable, since applications that
have been compiled to work in the binary language of a computer will not run on a different
platform.

As used here, portable operating systems also includes cases where “adapter layers”
have been added to other operating systems to make them appear more compatible.

How are portable operating systems relevant to interoperability?

As with portable languages, portable operating systems make interoperability easier by
making it easier to run the same applications on different systems. From an operational
perspective, they can also make the use of a system more consistent and thus easier.

What are the best opportunities for using portable operating systems?

Portable operating systems probably provide the greatest interoperability benefits in the
area of training and support, and (like portable languages) they can reduce the overall cost
and difficulty of creating new systems and upgrading older ones.

References

– None –

4-24

4.5.1 COE – Common Operating Environment

What is COE?

The Defense Information Infrastructure Common Operating Environment (DII COE, or
simply COE) is an example of an “adapter layer” applied to two Unix and one Windows
(NT) operating systems to make them appear more uniform. It also includes custom software
that manages startup, access, and installation of new applications, with the objective of
providing the same kind of easy installation and de-installation of applications found on
Microsoft Windows systems. The COE also includes a large suite of approved commercial
software for use with COE systems.

How is COE relevant to interoperability?

The goal of the COE is interoperability between diverse types of operating systems. At
present that goal is limited by the fact that the COE only supports three operating systems:
two Unix systems, plus Windows NT. Additionally, the COE only applies to relatively recent
computers and operating systems; it cannot be used or older and smaller systems, since it
requires significant graphics processing.

What are the best opportunities for using COE?

The COE effort is ongoing and should be carefully tracked by any naval
interoperability effort. To see if it applies to a specific situation and computer environment,
the referenced checklists can be used.

References

http://spider.dii.osfl.disa.mil:80/dii/aog_twg/twg/kern4_5.ppt,
“Overview of RT COE issues”

http://spider.dii.osfl.disa.mil:80/dii/aog_twg/twg/DECISION.DOC,
“Decision tree for using the RT COE”

http://spider.dii.osfl.disa.mil:80/dii/kpc/KPCP_doc/KPCP_doc.htm,
“DII COE Kernel Platform Certification (KPC) Program”

4.5.2 Linux

What is Linux?

Linux is a free, full-featured, open-source, Unix-like operating system. Although it was
originally designed for PCs, it currently runs on at least as wide a range of platforms as any
other operating system currently available. The fact that Linux is open-source means both
that all of the source code for it is available, and that it can be obtained without charge.

4-25

Although commercial vendors generally avoided Linux in the past because of its free,
open-source status, that situation has change dramatically over the past year. Because Linux
has increasingly come to be viewed as a non-proprietary alternative to Windows NT, many
large vendors such as IBM and Oracle, as well as many smaller vendors, have announced
that they will port products for Linux.

How is Linux relevant to interoperability?

Linux is a potential asset for interoperability both because of its availability on a wide
range of platforms, and because the availability of its source code means it can be adapted to
specialized uses or even custom machines.

A recent graphical interface to Linux, called GNOME, also represents an intriguing
possibility for greater interoperability at the graphical user interface level. GNOME is
unusually flexible, and may be capable of emulating a wide range of other interfaces without
undue effort.

What are the best opportunities for using Linux?

Linux and Linux applications should be tracked carefully over the next few years.
Where its use does not contradict applicable standards, Linux could be used to provide a
more uniform environment that can more readily include older, smaller systems, since in
general Linux runs more efficiently on such systems than other (e.g., NT) operating systems.

References

http://www.linux.org/, “Linux Online.”

4-26

5-1

Section 5

Summary: Naval Interoperability Opportunities

5.1 The Role of Technology in Interoperability

While military interoperability is often viewed as being more a matter of policy than
technology, the vital role of emerging technologies in supporting those policies must not be
overlooked. Emerging information technologies not only make communication of data
between allies easier, but also allow such communications to take place at much faster
speeds than is possible using only people-based policy decisions. For example, fast-paced
tactical environments require data exchanges and re-alignments of resources at speeds that
will be feasible only if higher levels of automated interoperability become widely available.

5.2 Specific Opportunities

While this document is only intended to summarize and clarify some of the issues
surrounding emerging interoperability technologies, the topics covered in this report also
suggest some possible specific strategies for promoting interoperability technologies. The
following paragraphs outline one such approach.

5.2.1 Analyze Needs In Terms of Assets and Interoperability Domains

In this step the objective is to understand better what is being shared and how it needs
to be shared to be effective in supporting multi-force and allied missions. Activities include:

• Defining current levels of intentional and “accidental” sharing of resources.

• Determine logistically reasonable interoperability domains in which assets that need to
be used together are part of the same composite interoperability domains. The goal here
is to prevent useless distribution of parts or data to locations that do not have a
sufficient overall set of assets to make use of them. Such “frayed” distributions are
wasteful, operationally confusing, and can be significant security risks (e.g., sending
out RF messages to allied forces that are incapable of receiving them).

• Define clear, sharp boundaries for each resulting composite interoperability domain.
These boundaries should be defined for both space (where assets may go) and time
(how long assets should be available to, say, an allied force), and their structure will
delineate the overall security requirements for building interoperability firewalls.

• For each type of asset, determine internal security needs for detecting, slowing, halting,
and removing threats that penetrate the outer (“firewall”) protections.

5-2

5.2.2 Search for Applicable Technologies

In this step, the requirements defined by analysis of assets and interoperability domains
are mapped into known and emerging technologies that could support those needs. Fallback
positions may need to be defined when there are no good candidates for supporting a specific
interoperability requirement. For information technologies, general technology categories to
investigate include:

• Standards. Good international standards should be the first starting point for any kind
of interoperability exploration, since they offer the most efficient and economical way
of getting diverse systems to interoperate.

• Networking. Good networking technologies usually have to deal with various aspects of
interoperability because of their need to interconnect resources with diverse origins,
and so are some of the first technologies that should be investigated to look for
improved ways to interoperate. The impressive commercial success of the Internet and
resulting commercial investment makes Internet technologies and systems particularly
worth looking at as possible off-the-shelf interoperability solutions.

• Security. As pointed out by the unavoidable “firewall” requirements of well-defined
interoperability domains, security technologies are a vital part of workable solutions to
interoperability.

• Adaptability. Due largely to the Internet, there has been a significant growth in the use
of technologies that deal with adaptability and translation, as well as greater
recognition of the need for such products. These technologies range from some of the
high-portability languages discussed in this report to low-cost, reasonably effective
translators for human languages. Interesting advances are likely in this area.

5.2.3 Prototype and Evolve the Use of Applicable Technologies

In order to help promote new technologies that deal specifically with special naval and
military needs, prototyping and helping to evolve new standards and technologies is an
important part of the overall approach to building better interoperability. In particular, naval
groups can investigate promising technologies from unique perspectives, such as their use in
high security environments and rapidly changing tactical environments.

5.2.4 Promote Standardization of Applicable Technologies

Based both on special naval and military needs and on the result of experimental use of
new technologies, active promotion of new (and especially international) standards will be an
important long-term component of any overall strategy to promote interoperability. Viewing
these activities in terms of the basic and composite standardization strategies described in
Section 3 of this report can help understand and in some cases predict whether a particular
standardization effort is likely to produce results that will be truly useful for naval needs.
Also, when new technologies that look promising are identified, the recommendations and

5-3

warning signs of Section 3 can be used to help build new standardization efforts that are
more likely to succeed.

5.3 Technologies of Special Interest

Although predicting “winners” in emerging technologies is always fraught with risk,
this section summarizes several technologies from Section 4 that seem particularly likely to
have both significant commercial support and strong impacts in interoperability over the next
few years. These technologies are strong enough to merit inclusion in one or more new or
ongoing naval research and development programs that are specifically devoted to tracking,
testing, and prototyping the use of interoperability technologies for naval operations.

5.3.1 SOAP (Simple Object Access Protocol) and Other XML Technologies

The new SOAP protocol is probably the single most interesting new interoperability
technology covered in this document. It is highly portable and supported both by a broad
community of developers (the Internet Engineering Task Force, or IETF) and Microsoft, the
leading vendor of PC operating systems. It is also sufficiently well defined for immediate use
in exploratory naval applications and prototyping work. Finally, SOAP is associated with a
suite of related XML-based technologies that are rapidly growing in use and worth tracking
and investigating in their own right. One risk that should be noted with SOAP results from
Microsoft’s investment in it. Microsoft could decide later to abandon cooperation with IETF
and create a proprietary SOAP standard.

5.3.2 WAP (Wireless Application Protocol)

WAP is another very interesting and promising interoperability technology, since it
stands a good chance of bringing the benefits of the Internet to mobile environments whose
needs are strikingly similar to those of tactical military environments. Both environments
share problems of limited bandwidth, uncertain access, unreliable connections, high latency,
modest client-side processing capacities, and limited client-side battery life, and all these
issues are issues that are addressed to one degree or another in WAP standards. WAP devices
thus could prove highly cost-effective for solving many tactical interoperability needs, and
naval support for WAP security could benefit both the defense and commercial sectors. The
impact of WAP on software will be more indirect; it should encourage the growth and spread
of more small, portable applications based on technologies such as XML and Java.

5.3.3 XML Metadata Technologies

XML technologies that specifically support metadata are of special interest due to their
good fit to the fundamental problem of how to capture and use interoperability metadata. The
RDF (Resource Description Framework) is perhaps the best off-the-shelf candidate for
capturing interoperability metadata. However, RDF was originally conceived as a way to
capture document retrieval metadata, not interoperability metadata. Using RDF to capture
interoperability metadata thus would require refocusing it to the interoperability problem.

5-4

XML Schema is another XML metadata technology that could prove useful because of its
ability to specify new XML data formats dynamically. XML metadata technologies could
prove especially useful if combined with SOAP to help support automated distribution of
interoperability-related data types to systems in an allied or coalition network.

5.3.4 Java and associated technologies

Although it is far from an new technology, Java and more recent associated
technologies such as Jini and Enterprise Java Beans are well worth pursuing because they
currently have the best overall potential as “universal” Internet application languages and
system interfaces. The greatest problem with this suite of technologies is that they are
proprietary to Sun Microsystems. Java and its associated technologies have also generally
failed to reach the level of market saturation for which Sun had originally hoped, and for that
reason are still better described as emerging technologies than as fully deployed ones.

5.3.5 Linux and open systems

Open source systems such as Linux are of special interest because they are far more
adaptable than most comparable commercial products, and thus can be applied to special
defense needs more readily. A good example of this is ongoing work by the National
Security Agency (NSA) to produce a secure version of Linux. Open source methods are also
interesting as ways of stabilizing important standards against capture of open standards by
private corporations.

Linux in is likely to become more important as a direct consequence of the planned
breakup of Microsoft into two corporations that will focus in one case on the operating
system (Windows) and in the other on applications (Office and other Microsoft products).
Due to the greatly increased corporate support Linux has received over the last couple of
years, it will almost certainly be the single most important direct competitor of any such
Windows-only company. Its low cost and ready availability could make it an especially
difficult competitor for Windows.

6-1

Glossary of Acronyms

A

ASCII............American Standard Code for Information Interchange

B

BYOXBring Your Own X

C

COBOLCOmmon Business Oriented Language
COMComponent Object Model
CORBACommon Object Request Broker Architecture
COTSCommercial Off-The-Shelf

D

DCEDistributed Computing Environment
DCOMDistributed Component Object Model

DII COEDefense Information Infrastructure Common Operating Environment
(often pronounced “die-co”)

DNA 2000Distributed Network Architecture 2000

E

EBCDICExtended Binary Coded Decimal Interchange Code
EJBEnterprise Java Beans

F

FORTRAN ...FORmula TRANslation

G

GNU..............GNU’s Not Unix [a recursive acronym]
GUIGraphical User Interface

6-2

H

HTML...........HyperText Markup Language
HTTPHyperText Transfer Protocol

I

I2OIntelligent I/O (Input/Output)
IETFInternet Engineering Task Force
IIOPInternet Inter-ORB Protocol
IPInternet Protocol

J

Java...............[Not an acronym; a marketing name selected and trademarked by Sun]
Jini[Not an acronym; a marketing name selected and trademarked by Sun]

L

Linux[Not an acronym; derived from first name of its creator, Linus Torvalds]

M

MPEG...........Moving Picture Experts Group

N

NT[Windows] New Technology [operating system]

O

ORBObject Request Broker
OMG.............Object Management Group

P

PL/IProgramming Language One [IBM had high hopes]
POSIX...........Portable Operating System Interface [BYOX]

R

RDFResource Description Framework
RMIRemote Method Invocation

6-3

S

SGMLStandard Generalized Markup Language [the parent of HTML]
SOAPSimple Object Access Protocol

T

TCP...............Transmission Control Protocol
TCP/IP..........Transmission Control Protocol / Internet Protocol

U

Unix[Not an acronym; a play on the name of the Multics operating system]

W

WAPWireless Application Protocol

X

XMLeXtensible Markup Language
XULXML-based User Interface Language

6-4

7-1

Index

A

Ada.. 3-3, 3-6, 3-12, 4-2
AOL.. .. 3-12
ASCII.. 1-1, 2-4
asset authenticator.. 2-14
asset cache.. 2-12
asset container.............................. 2-14
asset depot.. 2-12
asset payload................................ 2-14
asset security....................... 2-13, 2-14
asset signature.. 2-14
asset transport.. 2-12
asset-side adaptability.. 2-11

B

basic syntax layer.. 2-4

C

C.. i, 3-6, 4-2, 4-3, 4-4, 4-5, 4-15, 6-1,
8-1

C++.. 4-2, 4-3, 4-4, 4-5, 4-15
chemical interoperability.. 2-3
Cobol.. ... 4-2
COE........................ 1-2, 4-1, 4-24, 6-1

COM..4-10, 4-12, 4-13, 4-14, 4-15,
4-16, 4-21, 4-23

complex syntax layer.. 2-5
component-based software.. 4-8, 4-9
compound asset.............................. 2-8
compound interoperability domain..2-7
consumable asset............................ 2-8

CORBA..1-2, 2-5, 4-1, 4-11, 4-13,
4-14, 4-15, 4-16, 4-19, 6-1

COTS....................................4-9, 4-17

D

data link interoperability.................2-3
DCE.. ...4-14
DCOM.. 4-13, 4-14, 4-15, 4-16
DII COE.......................................4-24
DNA 2000...........................4-21, 4-22
domain semantics layer..2-5
durable asset............................2-8, 2-9
DVD..3-8, 3-12

E

EBCDIC...1-1
EJB..4-11, 4-12
electrical compatibility..2-3

emerging interoperability technology..
..1-1, 3-9

Enterprise Java Beans.......4-4, 4-5, 5-4

F

Fortran.. ...4-2
full semantics layer..2-5

fully deployed interoperability
technology................................1-1

G

GNU.. ..4-3
Google..4-20
GUIs..4-8, 4-9

7-2

H

HTML.. 1-1, 4-17, 4-18
HTTP...................................... 1-3, 3-2

I

I2O.. 3-4, 3-13
IETF.. 4-14, 4-16, 4-21, 5-3
IIOP.. 4-15, 4-16, 6-2
InfoBus.. 1-2, 4-1, 4-9, 4-10, 4-11

information asset..2-7, 2-8, 2-9, 2-14,
2-15

initial asset distribution.. 2-12

Interoperability Domains..2-6, 2-7,
2-15, 5-1

interoperability goal.. 2-7

interoperability technology..1-1, 1-3,
4-7, 4-15, 4-16, 5-3

IP..1-3, 3-2, 4-13

J

Java..1-1, 1-2, 4-1, 4-2, 4-3, 4-4, 4-5,
4-6, 4-7, 4-8, 4-9, 4-10, 4-11, 4-12,
4-16, 4-18, 5-4, 6-1, 6-2

JavaBeans..1-2, 4-1, 4-3, 4-8, 4-9,
4-10, 4-11, 4-12

JavaScript.. 4-4
Jini.. 1-1, 4-1, 4-3, 4-6, 4-7, 5-4

L

Linux.. 1-2, 3-4, 4-1, 4-24, 4-25, 5-4

M

mechanical interoperability.. 2-3
metadata....... 4-7, 4-18, 4-19, 4-20, 5-3

Microsoft..1-2, 3-5, 3-6, 4-1, 4-9, 4-10,
4-12, 4-13, 4-14, 4-15, 4-16, 4-17,
4-18, 4-21, 4-22, 4-24, 5-3, 5-4

middleware..4-3, 4-13, 4-14, 4-15,
4-19, 4-21

mission assets.................................2-7
mission context..2-7
mission systems..............2-7, 2-9, 2-13
Mozilla...3-12
MPEG-2...3-2
MPEG-4...3-2
mutual adaptability.......................2-11

N

Netscape.......................................3-12
networked data layer..2-4

O

OMG...................................4-16, 4-19
open source..3-11, 5-4
optimum asset distribution............2-12

P

Pascal...3-3
perishable asset..2-8
Perl..4-2, 4-3, 4-16, 4-21

physical asset..2-7, 2-8, 2-9, 2-13,
2-14, 2-15

physical link layer..2-4
PL/I..3-3
portable operating system..4-23
POSIX..3-7
Python.....................................4-2, 4-3

R

RDF..4-19, 4-20, 5-3

7-3

replicable asset............................... 2-8
reusable asset.. 2-8
RMI.. 4-11, 4-16

S

SGML................................... 3-3, 3-11
simple asset.................................... 2-8
simple interoperability domain.. 2-7
single-use asset.. 2-8
skill asset.. 2-7, 2-14, 2-15

SOAP..1-2, 4-1, 4-14, 4-15, 4-16,
4-21, 4-22, 5-3, 5-4, 6-3

software interoperability strategies..2-3
standards prototyping.. 3-5
Sun Microsystems.. 4-2, 5-4
system-side adaptability.. 2-11

T

target interoperability domain.. 2-7
TCP.. 1-3, 3-2, 4-13
trojan asset.. 2-14

U

Unix............................... 3-4, 3-7, 4-24

V

Visual Basic..4-9, 4-10, 4-12

W

WAP..1-2, 4-1, 4-22, 4-23, 5-3, 6-3
WAP 1.2..4-22
WAP Forum........................4-22, 4-23

Windows..3-4, 3-6, 4-10, 4-12, 4-13,
4-14, 4-18, 4-19, 4-21, 4-22, 4-24,
4-25, 5-4

Windows 2000..3-6
Windows 95.. 4-12, 4-13, 4-14
Windows NT.........3-4, 3-6, 4-24, 4-25

X

XMI..4-19, 4-20

XML..1-1, 1-2, 2-5, 3-3, 3-4, 3-11,
3-12, 4-1, 4-14, 4-15, 4-16, 4-17,
4-18, 4-19, 4-20, 4-21, 4-22, 5-3,
6-3

XML Schema..4-19, 4-20, 5-4
XUL...3-12

7-2

